
Arulanand Natarajan et al./ Elixir Comp. Sci. & Engg. 41 (2011) 5914-5918

5914

Introduction

A spam filter is a program that is used to detect unsolicited

and unwanted email and prevent those messages from getting

into user's inbox. A spam filter looks for certain criteria on

which it stands decisions. For example, it can be set to look for

particular words in the subject line of messages and to exclude

these from the user's inbox. This method is not effective,

because often it is omitting perfectly legitimate messages and

letting actual spam through. The strategies used to block spam

are diverse and includes many promising techniques. Some of

the strategies like black list filter, white list / verification filters

rule based ranking and naïve bayesian filtering are used to

identify the spam.

A Bloom filter presents a very attractive option for string

matching (Bloom 1970). It is a space efficient randomized data

structure that stores a set of signatures efficiently by computing

multiple hash functions on each member of the set. It queries a

database of strings to verify for the membership of a particular

string. The answer to this query can be a false positive but never

be a false negative. The computation time required for

performing the query is independent of the number of signatures

in the database and the amount of memory required by a Bloom

filter for each signature is independent of its length (Feng et al

2002).

This paper presents a BBF which allocates different false

positive rates to different strings depending on the significance

of spam words and gives a solution to make the total

membership invalidation cost minimum. BBF groups strings

into different bins via smoothing by bin means technique. The

number of strings to be grouped and false positive rate of each

bin is identified through SA which minimizes the total

membership invalidation cost. This paper examines different

number of bins for given set of strings, their false positive rates

and number of strings in every bin to minimize the total

membership invalidation cost.

The organization of this paper is as follows. Section 2 deals

with the standard BF. Section 3 presents the SA technique.

Section 4 explains the optimized BBF using SA. Performance

evaluation of the BBF with standard BF is discussed in section

5.

Bloom Filter

 Bloom filters (Bloom 1970) are compact data structures for

probabilistic representation of a set in order to support

membership queries. This compact representation is the payoff

for allowing a small rate of false positives in membership

queries which might incorrectly recognize an element as

member of the set.

 Given a string S the BF computes k hash functions on it

producing k hash values and sets k bits in an m-bit long vector at

the addresses corresponding to the k hash values. The value of k

ranges from 1 to m. The same procedure is repeated for all the

members of the set. This process is called programming of the

filter. The query process is similar to programming, where a

string whose membership is to be verified is input to the filter.

The bits in the m-bit long vector at the locations corresponding

to the k hash values are looked up. If at least one of these k bits

is not found in the set then the string is declared to be a

nonmember of the set. If all the bits are found to be set then the

string is said to belong to the set with a certain probability. This

uncertainty in the membership comes from the fact that those k

bits in the m-bit vector can be set by any other n-1 members.

Thus finding a bit set does not necessarily imply that it was set

by the particular string being queried. However, finding a bit not

set certainly implies that the string does not belong to the set.

 In order to store a given element into the bit array, each

hash function must be applied to it and, based on the return

Tele:
E-mail addresses: arulnat@yahoo.com, dsraju49@gmail.com,
kpl_barath@yahoo.co.in

 © 2011 Elixir All rights reserved

Optimization of bloom filter using simulated annealing for spam filtering
Arulanand Natarajan

1
, Subramanian S

2
 and Premalatha K

3

1
Anna University of Technology, Coimbatore, TN, India

2
Sri Krishna College of Engineering and Technology Coimbatore, TN, India.

3
Bannari Amman Institute of Technology, Erode, TN, India.

ABS TRACT

Bloom Filter (BF) is a simple but powerful data structure that can check membership to a

static set. The trade-off to use Bloom filter is a certain configurable risk of false positives.

The odds of a false positive can be made very low if the hash bitmap is sufficiently large.

Spam is an irrelevant or inappropriate message sent on the internet to a large number of

newsgroups or users. A spam word is a list of well-known words that often appear in spam

mails. The proposed system of Bin Bloom Filter (BBF) groups the words into number of

bins with different false positive rates based on the weights of the spam words for spam

filtering. Simulated Annealing (SA) is stimulated by an analogy to annealing in solids. It is

used to search for feasible solutions and converge to an optimal solution. In this paper SA is

applied to minimize the total membership invalidation cost of BBF. The experimental results

are analyzed for various sizes of bins. The results show that, the BBF using SA with

different false positive rate has lower total membership invalidation cost than the standard

BF.

 © 2011 Elixir All rights reserved.

ARTICLE INFO

Article his tory:

Received: 21 September 2011;

Received in revised form:

29 November 2011;

Accepted: 17 December 2011;

Keywor ds

Bin Bloom Filter,

Bloom Filter,

Spam word,

Hash function,

Simulated Annealing,

False positive rate.

Elixir Comp. Sci. & Engg. 41 (2011) 5914-5918

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Arulanand Natarajan et al./ Elixir Comp. Sci. & Engg. 41 (2011) 5914-5918

5915

value r of each function (r1, r2, … , rk), the bit with the offset r is

set to 1. Since there are k hash functions, up to k bits in the bit

array are set to 1 (it might be less because several hash functions

might return the same value). Figure 1 is an example where

m=16, k=4 and e is the element to be stored in the bit array.

Figure 1 Bloom Filter

 One important feature of BF is that there is a clear tradeoff

between the size of the filter and the rate of false positives. The

false positive rate of BF is

 ))eln(1exp(ke1 f kn/mkkn/m  
 (1)

Let)eln(1kg kn/m . Minimizing the false positive

probability f is equivalent to minimizing with respect to k.

 (2)

The derivative equals 0 when kmin=(1n2)(m/n). In this case the

false positive probability f is:

 (3)

of course k should be an integer, so k is

The BF has been widely used in many database applications

(Mullin 1990 ; Mackert and Lohman, 1986). It is applied in

networking literature (Broder and Mitzenmacher, 2005).

A BF can be used as a summarizing technique to aid global

collaboration in peer-to-peer networks (Kubiatowicz et al., 2000

; Li et al, 2002 ; Cuena-Acuna et al, 2003). It supports

probabilistic algorithms for routing and locating resources (Rhea

and Kubiatowicz 2004; Hodes et al, 2002; Reynolds and Vahdat,

2003; Bauer et al, 2004) and share Web cache information (Fan

et al,2000). BFs have great potential for representing a set in

main memory (Peter and Panagiotis, 2004) in stand-alone

applications.

BFs have been used to provide a probabilistic approach for

explicit state model checking of finite-state transition systems

(Peter and Panagiotis, 2004). It is used to summarize the

contents of stream data in memory (Jin et al,2004; Deng and

Rafiei,2006), to store the states of flows in the on-chip memory

at networking devices (Bonomi et al,2006), and to store the

statistical values of tokens to speed up the statistical-based

Bayesian filters (Li and Zhong,2006). The variations of BFs are

compressed Bloom filters (Mitzenmacher,2002), counting

Bloom filters (Fan et al,2000), distance-sensitive Bloom filters

(Kirsch and Mitzenmacher,2006), Bloom filters with two hash

functions (Kirsch and Mitzenmacher,2006), spacecode Bloom

filters (Kumar et al,2004), spectral Bloom filters (Cohen and

Matias,2003), generalized Bloom filters (Laufer et al,2005),

Bloomier filters (Chazelle et al,2004), and Bloom filters based

on partitioned hashing (Hao et al,2007).

Simulated annealing

In an optimization problem, often the solution space has

many local minima. A simple local search algorithm proceeds

by choosing random initial solution and generating a neighbor

from that solution. If it is a minimum fitness transition then the

neighboring solution is accepted. Such an algorithm has the

drawback of often converging to a local minimum. The SA

(Dowsland 1995) avoids getting trapped in a local minimum by

accepting cost increasing neighbors with some probability. It

solves this problem by allowing worse moves (lesser quality) to

be taken some of the time. That is, it allows some uphill steps so

that it can escape from local minima. In SA, first an initial

solution is randomly generated, and a neighbor is found and is

accepted with a probability of min (1, exp (-∆E/T)), where ∆E is

the cost difference and T is the control parameter corresponding

to the temperature of the physical analogy and will be called

temperature On slow reduction of temperature, the algorithm

converges to the global minimum. Among its advantages are the

relative ease of implementation and the ability to provide

reasonably good solutions for many combinatorial problems.

Simulated Annealing is inherently sequential and hence very

slow for problems with large search spaces.

Algorithm

Set X a initial configuration

Set E as Eval(X)

Set T as high temperature and frozen is false

while (!frozen)

repeat

Choose a random move i from the move set

Set Ei as Eval(move(X, i))

if E < Ei then

set X as move(X, i)

set E as Ei

else accept the move with probability exp(-(∆E/T) even though

things get worse

until the s stem is in thermal equilibrium at T

if ((E is stil decreasing over the last few temperatures)

 reduce T

else

 assign frozen is true

Bloom Filter Optimization using SA

Bin bloom filter

A BBF is a date structure considering weight for spam

word. It groups spam words into different bins depending on

their weight. It incorporates the information on the spam word

weights and the membership likelihood of the spam words into

its optimal design. In BBF a high cost bin lower false positive

probability and a low cost bin has higher false positive

probability. The false positive rate and number of strings to be

stored is identified through optimization technique SA which

minimize the total membership invalidation cost. Figure 3

shows Bin Bloom filter with its tuple <n,f,w> configuration.

Figure 3 Bin Bloom Filter

Arulanand Natarajan et al./ Elixir Comp. Sci. & Engg. 41 (2011) 5914-5918

5916

Problem Definition

Consider a standard supervised learning problem with a set

of training data D = {<Y1,Z1 >,..., <Yi, Zi>, … ,< Yr ,Zr >} ,

where Yi is an instance represented as a single feature vector, Zi

= C(Yi) is the target value of Yi , where C is the target function.

Where Y1, Y2,… , Yr set of text document collection C is a class

label to classify into spam or legitimate (non-spam). The

collection is represented into feature vector by the text

documents are converted to normalized case, and tokenized

them, splitting on non-letters. The stop words are eliminated.

The spam weights for words are calculated from the set. This

weight value indicates its probable belongings to spam or

legitimate. The weight values are discretized and assigned for

different Bins. The tuple to describe the Bin Bloom Filter is,

{{n1, n2,, …, nL}, {w1, w2,…, wL}, m, {k1, k2, …, kL}, {f1, f2, …,

fL}}. It is an optimization problem to find the value of n and f

that to minimize the total membership invalidation cost. For

membership testing the total cost of the set is the sum of the

invalidation cost of each subset. The total membership

invalidation cost (Xie et al., 2005) is given as,
E= n1f1w1 + n2f2w2 +……+ nLfLwL

The total membership invalidation cost or the Evaluation

function is

E(L) =

 (4)

.where Nn
L

1i

i 


 N- Total number of strings in a spam set.

Weight assignment

 The first step for assigning weight to spam words is

estimating the word probability that depends on word frequency.

Word frequency is measured by the number of occurrences of a

specific word in the document. Estimating probabilities is

achieved using Bayes conditional probability theorem according

to which the probability of a word given that the message is

spam can be estimated as follows:

 (5)

 (6)

Ps is the probability of a word given the mail is spam.

Pns is the probability of a word given the mail is legitimate.

fs is the frequency of word in the spam documents.

fns is frequency of words in the legitimate documents.

Ns is the total spam documents.

 Nns is the total legitimate documents.

The next step is calculating word weights. Estimating a

weight for each word is based on its frequency and its

probability in spam mail documents and non-spam mail

documents. The weight of every word is estimated using the

formula:

 (7)

This weight value is based on text collection containing

spam messages and non-spam messages. The word weights are

estimated for spam list during the training process and stored in

a separate text document.

Initial solution

In the context of Bin bloom filter, a chromosome represents

number of bloom filters with its number of words to be stored,

false positive rate and its weight. That is, each chromosome Xi,

is constructed as follows:

Figure 4 Initial Solution

where nj fj and wj refer respectively the number of words, false

positive rate and average weight of the jth bin. A set of 3 genes

<n,f,w> encodes a protein – a trait, that is a single bin. The false

positive rate fj can be obtained from equation (6) where n j is

drawn from the particle dimension, m is known in advance and k

is calculated from equation (8).

SA solves problem by allowing worse moves to be taken

some of the time. That is, it allows some uphill steps so that it

can escape from local minima.

The maximum cost function difference between one

neighbour and another may be taken as a starting temperature.

Another method, suggested in (Rayward-Smith, 1996), is to start

with a very high temperature and cool it rapidly until about 60%

of worst solutions are being accepted. This forms the real

starting temperature and it can now be cooled more slowly.

Dowsland (1995) suggested for heating the system until a certain

proportion of worse solutions are accepted and then slow

cooling can start.

The decrement of temperature is important to the success of

SA. One way to decrement the temperature is a simple linear

method. An alternative is a geometric decrement is t = tα where

α < 1.

Experimental results

 The total number of strings taken for testing is 3000 and

their weights are ranging from 0.0005 to 5. The size of the BF is

1024. These experimental values are tested for bin size 10,11

and 12. The Temperature T is assigned to BF size 1024 and T is

decremented using the formula t = tα where α=0.9.

Since Bloom Filter allows false positive, the membership

invalidation cost is unavoidable. For BBF, the total membership

invalidation cost is expressed in equation (4). In standard BF,

different weights in different bins into consideration, the total

membership invalidation cost is then as follows.

Fstandard= (n1w1 + n2w2 +……+ nLwL)f





L

1i

iistandard wnf(L)F

Figures 5,6 and 7 show the membership invalidation cost for

standard BF with BBF using SA for the bin sizes 10,11 and 12

respectively.

Figure 5 Membership invalidation cost for bin size 10

Arulanand Natarajan et al./ Elixir Comp. Sci. & Engg. 41 (2011) 5914-5918

5917

Figure 6 Membership invalidation cost for bin size 11

Figure 7 Membership invalidation cost for bin size 10

Table 1 shows the values obtained at 100
th

 iteration of the

proposed work. The first column represents the bin size; the

second column, number of strings in each bin; the third column,

average weight of the strings present in a bin; the fourth column,

false positive rate of each bin. The fifth and sixth column show

the total membership invalidation cost of each bin in BBF and

standard BF respectively. The experimental results exhibit that

the total membership invalidation cost of the BBF remarkably

less value compared with the original standard BF.

Conclusion

Bloom filters are simple randomized data structures that are

useful in practice. The BBF is an extension of BF, and inherits

the best feature of BF such as time and space saving. The BBF

treats strings in a set in a different way depending on their

significance, groups the strings into bins and allocates different

false positive rate to different bins. Important spam words have

lower false positive rate than less significant words. SA is an

optimization technique which chooses a random move from the

neighbourhood. If the move is better than its current position

then simulated annealing will always take it. If the move is

worse then it will be accepted based on some probability. SA

technique is applied in this paper to minimize the total

membership invalidation cost. Experiment results show that the

total membership invalidation cost in spam filtering with

different false positive rate of BBF performs better than standard

BF.

References

[1] Anayat, S, Ali, A and Ahmad, H.F. Using a probable

weight based Bayesian approach for spam filtering , Proceedings

of INMIC, 2004, 340-345

[2] Dowsland, K.A., Simulated Annealing. In Modern Heuristic

Techniques for Combinatorial Problems (ed. Reeves, C.R.),

McGraw-Hill, (1995).

[3] Bauer D, Hurley P, Pletka R, and Waldvogel M, Bringing

Efficient Advanced Queries to Distributed Hash Tables, Proc.

IEEE Conf. Local Computer Networks, 2004, 6-14

[4] Bloom B, Space/time tradeoffs in hash coding with

allowable errors, Communications of the ACM, 13, 1970, 422–

426.

[5] Bonomi F, Mitzenmacher M, Panigrahy R, Singh S, and

Varghese G, Beyond Bloom Filters: From Approximate

Membership Checks to Approximate State Machines, Proc.

ACM SIGCOMM, 2006 , 315-326.

[6] Broder A and Mitzenmacher M. Network Applications of

Bloom Filters: A Survey, Internet Math., 1(4), 2005, 485-509.

[7] Chazelle B, Kilian J, Rubinfeld R, and Tal A, The Bloomier

Filter: An Efficient Data Structure for Static Support Lookup

Tables, Proc. Fifth Ann. ACM-SIAM Symp. Discrete

Algorithms (SODA), 2004, 30-39.

[8] Cohen S and Matias Y, Spectral Bloom Filters, Proc. 22nd

ACM SIGMOD, 2003, 241-252.

[9] Cuena-Acuna F.M, Peery C,Martin R.P, and Nguyen T.D,

PlantP: Using Gossiping to Build Content Addressable Peer-to-

Peer Information Sharing Communities, Proc. 12th IEEE

Int’lSymp. High Performance Distributed Computing, 2003,

236-249

[10] Deng F and Rafiei D, “Approximately Detecting Duplicates

for Streaming Data Using Stable Bloom Filters,” Proc. 25th

ACMSIGMOD, 2006, 25-36.

[11] Fan L, Cao P, Almeida J, and Broder A, Summary Cache: A

Scalable Wide Area Web Cache Sharing Protocol, IEEE/ACM

Trans. Networking, 8(3), 2000, 281-293.

[12] Feng W,.Shin K.G, Kandlur D.D. & D.Saha, "The BLUE

active queue management algorithms", IEEE/ACM

Transactions on Networking, 10, 2002, 513 – 528.

[13] Hao F, Kodialam M, and Lakshman T.V, Building High

Accuracy Bloom Filters Using Partitioned Hashing, Proc.

SIGMETRICS/Performance, 2007, 277-287 . Hodes T.D,

Czerwinski S.E, and Zhao B.Y, An Architecture for Secure

Wide Area Service Discovery, Wireless Networks, vol. 8, nos.

2/3, 2002, 213-230.

[14] Jin C, Qian W, and Zhou A, Analysis and Management of

Streaming Data: A Survey, J. Software, 15(8), 2004, 1172-

1181.

[15] Kirsch A and Mitzenmacher M, Building a Better Bloom

Filter, Technical Report tr-02-05.pdf, Dept. of Computer

Science, Harvard Univ,2006.

[16] Kirsch A and Mitzenmacher M, Distance-Sensitive Bloom

Filters, Proc. Eighth Workshop Algorithm Eng. and Experiments

(ALENEX ’06), 2006.

[17] Kumar A, Xu J, Wang J, Spatschek O, and Li L, Space-

Code Bloom Filter for Efficient Per-Flow Traffic Measurement,

Proc. 23rd IEEE INFOCOM, 2004, 1762-1773.

[18] Kubiatowicz J Bindel D, Chen, Y Czerwinski S, Eaton P,

and Geels D, Oceanstore: An Architecture for Global-Scale

Persistent Storage,” ACM SIGPLAN Notices, 35(11), 2000,

190-201.

[19] Li J, Taylor J, Serban L, and Seltzer M, Self-Organization

in Peer-to-Peer System, Proc. ACM SIGOPS, 2002.

[20] Li K and Zhong Z, Fast Statistical Spam Filter by

Approximate Classifications, Proc. Joint Int’l Conf.

Measurement and Modeling of Computer Systems,

SIGMETRICS/Performance, 2006, 347-358.

[21] Laufer R.P, Velloso P.B, and Duarte O.C.M.B,

GeneralizedBloom Filters, Technical Report Research Report

GTA-05-43, Univ. of California, Los Angeles (UCLA), 2005.

[22] Mackert L.F. and Lohman G.M., Optimizer Validation and

Performance Evaluation for Distributed Queries, Proc. 12th

Int’l Conf. Very Large Data Bases (VLDB), 1986, 149-159.

[23] Mitzenmacher M, Compressed Bloom Filters, IEEE/ACM

Trans.Networking, 10(5) 2002, 604-612.

[24] Mullin J.K, Optimal Semijoins for Distributed Database

Systems, IEEE Trans. Software Eng., 16, 1990, 558-560.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=90
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=90

Arulanand Natarajan et al./ Elixir Comp. Sci. & Engg. 41 (2011) 5914-5918

5918

[25] Peter C.D and Panagiotis M, Bloom Filters in Probabilistic

Verification, Proc. Fifth Int’l Conf. Formal Methods in

Computer- Aided Design, 2004, 367-381.

[26] Reynolds P and Vahdat A, Efficient Peer-to-Peer Keyword

Searching, Proc. ACM Int’l Middleware Conf., 2003, 21-40.

[27] Rhea S.C and Kubiatowicz J, Probabilistic Location and

Routing, Proc. IEEE INFOCOM, 2004, 1248-1257.

[28] Xie K., Min Y., Zhang D., Wen J., Xie G. & Wen J,

Basket Bloom Filters for Membership Queries, Proceedings of

IEEE Tencon’05,2005, 1-6.

Table 1: Values obtained from SA at 100th iteration

Bin size Number of Strings Average String weight False positive rate Cost of BBF Cost of Standard BF

10

96, 129
174, 212

319, 321
383, 385
490, 491

4.906, 4.663
4.424, 4.101

3.694, 3.190
2.607, 1.966
1.250, 0.385

0.0059, 0.0221,
0.0592, 0.0982

0.2139, 0.2159,
 0.2767, 0.2786
0.3664, 0.3671

6119.99

6340.83

11

45, 45
124, 169

258, 259
356, 357
437, 438
512

4.956, 4.757
4.677, 4.445

4.095, 3.691
3.211, 2.619
1.961, 1.242
0.402

1.79E-05, 1.79E-05
0.0189, 0.0544

0.1485, 0.1496
0.2511, 0.2521
0.3244, 0.3252
0.3825

6122.02

6336.61

12

91, 91

91, 146
179, 220
276, 276
370, 371

444, 445

4.910, 4.688

4.535, 4.364
4.090, 3.789
3.404, 2.952
2.417, 1.810

1.127, 0.345

0.0045, 0.0045

0.0045, 0.0344
0.0640, 0.1069
0.1682, 0.1682
0.2646, 0.2655

0.3302, 0.3310

6085.45

6334.59

