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Introduction  

A spam filter is a program that is used to detect unsolicited 

and unwanted email and prevent those messages from getting 

into user's inbox. A spam filter looks for certain criteria on 

which it stands decisions. For example, it can be set to look for 

particular words in the subject line of messages and to exclude 

these from the user's inbox. This method is not effective, 

because often it is omitting perfectly legitimate messages and 

letting actual spam through.  The strategies used to block spam 

are diverse and includes many promising techniques. Some of 

the strategies like black list filter, white list / verification filters 

rule based ranking and naïve bayesian filtering are used to 

identify the spam. 

A Bloom filter presents a very attractive option for string 

matching (Bloom 1970). It is a space efficient randomized data 

structure that stores a set of signatures efficiently by computing 

multiple hash functions on each member of the set. It queries a 

database of strings to verify for the membership of a particular 

string. The answer to this query can be a false positive but never 

be a false negative.  The computation time required for 

performing the query is independent of the number of signatures 

in the database and the amount of memory required by a Bloom 

filter for each signature is independent of its length (Feng et al 

2002). 

This paper presents a BBF which allocates different false 

positive rates to different strings depending on the significance 

of spam words and gives a solution to make the total 

membership invalidation cost minimum. BBF groups strings 

into different bins via smoothing by bin means technique. The 

number of strings to be grouped and false positive rate of each 

bin is identified through SA which minimizes the total 

membership invalidation cost. This paper examines different 

number of bins for given set of strings, their false positive rates 

and number of strings in every bin to minimize the total 

membership invalidation cost. 

The organization of this paper is as follows. Section 2 deals 

with the standard BF. Section 3 presents the SA technique. 

Section 4 explains the optimized BBF using SA. Performance 

evaluation of the BBF with standard BF  is discussed in section 

5.  

Bloom Filter 

 Bloom filters (Bloom 1970) are compact data structures for 

probabilistic representation of a set in order to support 

membership queries. This compact representation is the payoff 

for allowing a small rate of false positives in membership 

queries which might incorrectly recognize an element as 

member of the set.   

 Given a string S the BF computes k hash functions on it 

producing k hash values and sets k bits in an m-bit long vector at 

the addresses corresponding to the k hash values. The value of k 

ranges from 1 to m. The same procedure is repeated for all the 

members of the set. This process is called programming of the 

filter. The query process is similar to programming, where a 

string whose membership is to be verified is input to the filter. 

The bits in the m-bit long vector at the locations corresponding 

to the k hash values are looked up. If at least one of these k bits 

is not found in the set then the string is declared to be a 

nonmember of the set. If all the bits are found to be set then the 

string is said to belong to the set with a certain probability. This 

uncertainty in the membership comes from the fact that those k 

bits in the m-bit vector can be set by any other n-1 members. 

Thus finding a bit set does not necessarily imply that it was set 

by the particular string being queried. However, finding a bit not 

set certainly implies that the string does not belong to the set.   

 In order to store a given element into the bit array, each 

hash function must be applied to it and, based on the return 
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value r of each function (r1, r2, … , rk), the bit with the offset r is 

set to 1. Since there are k hash functions, up to k bits in the bit 

array are set to 1 (it might be less because several hash functions 

might return the same value). Figure 1 is an example where 

m=16, k=4 and e is the element to be stored in the bit array. 

 

Figure 1 Bloom Filter 

 One important feature of BF is that there is a clear tradeoff 

between the size of the filter and the rate of false positives. The 

false positive rate  of BF is  

  ))eln(1exp(ke1 f kn/mkkn/m  
 (1)

 
Let )eln(1kg kn/m . Minimizing the false positive 

probability f is equivalent to minimizing with respect to k. 

   (2) 

The derivative equals 0 when kmin=(1n2)(m/n). In this case the 

false positive probability f is: 

  (3) 

of course k should be an integer, so k is  

The BF has been widely used in many database applications 

(Mullin 1990 ; Mackert   and Lohman, 1986). It is applied in 

networking literature (Broder and Mitzenmacher, 2005).  

A BF can be used as a summarizing technique to aid global 

collaboration in peer-to-peer networks (Kubiatowicz et al., 2000 

; Li et al, 2002 ; Cuena-Acuna  et al, 2003). It supports 

probabilistic algorithms for routing and locating resources (Rhea 

and Kubiatowicz 2004; Hodes et al, 2002; Reynolds and Vahdat, 

2003; Bauer et al, 2004) and share Web cache information (Fan 

et al,2000). BFs have great potential for representing a set in 

main memory (Peter and Panagiotis, 2004) in stand-alone 

applications.  

BFs have been used to provide a probabilistic approach for 

explicit state model checking of finite-state transition systems 

(Peter and Panagiotis, 2004). It is used to summarize the 

contents of stream data in memory (Jin et al,2004; Deng  and 

Rafiei,2006), to store the states of flows in the on-chip memory 

at networking devices (Bonomi  et al,2006), and to store the 

statistical values of tokens to speed up the statistical-based 

Bayesian filters (Li  and Zhong,2006). The variations of BFs are 

compressed Bloom filters (Mitzenmacher,2002), counting 

Bloom filters (Fan et al,2000), distance-sensitive Bloom filters 

(Kirsch and Mitzenmacher,2006), Bloom filters with two hash 

functions (Kirsch  and Mitzenmacher,2006), spacecode Bloom 

filters (Kumar et al,2004), spectral Bloom filters (Cohen and 

Matias,2003), generalized Bloom filters (Laufer et al,2005), 

Bloomier filters (Chazelle et al,2004), and Bloom filters based 

on partitioned hashing (Hao et al,2007).  

 

Simulated annealing 

In an optimization problem, often the solution space has 

many local minima. A simple local search   algorithm proceeds 

by choosing random initial solution and generating a neighbor 

from that solution. If it is a minimum fitness transition then the 

neighboring solution is accepted. Such an algorithm has the 

drawback of often converging to a local minimum. The SA 

(Dowsland 1995) avoids getting trapped in a local minimum by 

accepting cost increasing neighbors with some probability. It 

solves this problem by allowing worse moves (lesser quality) to 

be taken some of the time. That is, it allows some uphill steps so 

that it can escape from local minima. In SA, first an initial 

solution is randomly generated, and a neighbor is found and is 

accepted with a probability of min (1, exp (-∆E/T)), where ∆E is 

the cost difference and T is the control parameter corresponding 

to the temperature of the physical analogy and will be called 

temperature On slow reduction of temperature, the algorithm 

converges to the global minimum. Among its advantages are the 

relative ease of implementation and the ability to provide 

reasonably good solutions for many combinatorial problems. 

Simulated Annealing is inherently sequential and hence very 

slow for problems with large search spaces.  

Algorithm 

Set X a initial configuration 

Set E as Eval(X) 

Set T as high temperature and frozen is false 

while (!frozen) 

repeat  

Choose a random move i from the move set 

Set Ei as Eval(move(X, i)) 

if E < Ei then 

set X as move(X, i) 

set E as Ei 

else accept the move  with probability exp(-(∆E/T)  even though 

things get worse 

until the s stem is in thermal equilibrium at T 

if ((E is stil  decreasing over the last few temperatures) 

 reduce T 

else 

 assign frozen is true 

Bloom Filter Optimization using SA 

Bin bloom filter  

A BBF is a date structure considering weight for spam 

word.  It groups spam words into different bins depending on 

their weight. It incorporates the information on the spam word 

weights and the membership likelihood of the spam words into 

its optimal design. In BBF a high cost bin lower false positive 

probability and a low cost bin has higher false positive 

probability. The false positive rate and number of strings to be 

stored is identified through optimization technique SA which 

minimize the total membership invalidation cost.  Figure 3 

shows Bin Bloom filter with its tuple <n,f,w> configuration. 

 
Figure 3 Bin Bloom Filter 
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Problem Definition 

Consider a standard supervised learning problem with a set 

of training data D = {<Y1,Z1 >,..., <Yi, Zi>, … ,< Yr ,Zr >} , 

where Yi is an instance represented as a single feature vector, Zi 

= C(Yi ) is the target value of  Yi , where C is the target function. 

Where Y1, Y2,… , Yr set of text document collection C is a class 

label  to classify into  spam or legitimate (non-spam). The 

collection is represented into feature vector by the text 

documents are converted to normalized case, and tokenized 

them, splitting on non-letters. The stop words are eliminated. 

The spam weights for words are calculated from the set.   This 

weight value indicates its probable belongings to spam or 

legitimate.  The weight values are discretized and assigned for 

different Bins. The tuple to describe the Bin Bloom Filter is, 

{{n1, n2,, …,  nL}, {w1, w2,…, wL}, m, {k1, k2, …, kL}, {f1, f2, …, 

fL}}. It is an optimization problem to find the value of  n and f 

that to minimize the total membership invalidation cost.  For 

membership testing   the total cost of the set is the sum of the 

invalidation cost of each subset. The total membership 

invalidation cost (Xie et al., 2005) is given as, 
E= n1f1w1 + n2f2w2  +……+ nLfLwL 

The total membership invalidation cost or the Evaluation 

function is  

E(L) =      

 (4) 

.where Nn
L

1i

i 


  

        N- Total number of strings in a spam set. 

 
Weight assignment 

 The first step for assigning weight to spam words is 

estimating the word probability that depends on word frequency.  

Word frequency is measured by the number of occurrences of a 

specific word in the document. Estimating probabilities is 

achieved using Bayes conditional probability theorem according 

to which the probability of a word given that the message is 

spam can be estimated as follows: 

 (5) 

 

                           (6) 

Ps is the probability of a word given the mail is spam. 

Pns is the probability of a word given the mail is legitimate. 

fs is the frequency of word in the spam documents. 

fns is frequency of words in the legitimate documents. 

Ns is the total spam documents. 

 Nns is the total legitimate documents. 

The next step is calculating word weights. Estimating a 

weight for each word is based on its frequency and its 

probability in spam mail documents and non-spam mail 

documents. The weight of every word is estimated using the 

formula: 

    (7) 

This weight value is based on text collection containing 

spam messages and non-spam messages. The word weights are 

estimated for spam list during the training process and stored in 

a separate text document.  

Initial solution  

In the context of Bin bloom filter, a chromosome represents 

number of bloom filters with its number of words to be stored, 

false positive rate and its weight. That is, each chromosome  Xi, 

is constructed as follows: 

 
Figure 4 Initial Solution 

where nj fj and  wj  refer respectively the  number of words, false 

positive rate and average weight of the jth bin. A set of 3 genes 

<n,f,w> encodes a protein – a trait, that is a single bin.  The false 

positive rate fj can be obtained from equation (6) where n j is 

drawn from the particle dimension, m is known in advance and k 

is calculated from equation (8).  

SA solves problem by allowing worse moves to be taken 

some of the time. That is, it allows some uphill steps so that it 

can escape from local minima. 

The maximum cost function difference between one 

neighbour and another may be taken as a starting temperature. 

Another method, suggested in (Rayward-Smith, 1996), is to start 

with a very high temperature and cool it rapidly until about 60% 

of worst solutions are being accepted. This forms the real 

starting temperature and it can now be cooled more slowly. 

Dowsland (1995) suggested for heating the system until a certain 

proportion of worse solutions are accepted and then slow 

cooling can start.  

The decrement of temperature is important to the success of 

SA.  One way to decrement the temperature is a simple linear 

method. An alternative is a geometric decrement is  t = tα  where 

α < 1. 

Experimental results 

 The total number of strings taken for testing is 3000 and 

their weights are ranging from 0.0005 to 5. The size of the BF is 

1024. These experimental values are tested for bin size 10,11 

and 12. The Temperature T is assigned to BF size 1024 and T is 

decremented using the formula  t = tα   where α=0.9. 

Since Bloom Filter allows false positive, the membership 

invalidation cost is unavoidable. For BBF, the total membership 

invalidation cost is expressed in  equation (4). In standard BF, 

different weights in different bins into consideration, the total 

membership invalidation cost is then as follows.  

Fstandard= (n1w1 + n2w2  +……+ nLwL)f 





L

1i

iistandard wnf(L)F   

Figures 5,6 and 7 show the membership invalidation cost for 

standard BF with BBF using SA for the bin sizes 10,11 and 12 

respectively.  

  
Figure 5 Membership invalidation cost for bin size 10 
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Figure 6 Membership invalidation cost for bin size 11 

 

Figure 7 Membership invalidation cost for bin size 10 

Table 1 shows the values obtained at 100
th

 iteration of the 

proposed work.  The first column represents the bin size; the 

second column, number of strings in each bin; the third column, 

average weight of the strings present in a bin; the fourth column, 

false positive rate of each bin. The fifth and sixth column show 

the total membership invalidation cost of each bin in BBF and 

standard BF respectively.  The experimental results exhibit that 

the total membership invalidation cost of the BBF remarkably 

less value compared with the original standard BF. 

Conclusion 

Bloom filters are simple randomized data structures that are 

useful in practice. The BBF is an extension of BF, and inherits 

the best feature of BF such as time and space saving. The BBF 

treats strings in a set in a different way depending on their 

significance, groups the strings into bins and allocates different 

false positive rate to different bins.  Important spam words have 

lower false positive rate than less significant words. SA is an 

optimization technique which chooses a random move from the 

neighbourhood. If the move is better than its current position 

then simulated annealing will always take it. If the move is 

worse then it will be accepted based on some probability. SA 

technique is applied in this paper to minimize the total 

membership invalidation cost. Experiment results show that the 

total membership invalidation cost in spam filtering with  

different false positive rate of BBF performs better than standard 

BF.  
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Table 1: Values obtained from SA at 100th iteration 

Bin size Number of Strings Average String weight False positive rate Cost of BBF Cost of Standard BF 

10 

96, 129 
174, 212 

319, 321 
383, 385 
490, 491 

4.906, 4.663 
4.424, 4.101 

3.694, 3.190 
2.607, 1.966 
1.250, 0.385 

0.0059, 0.0221, 
0.0592, 0.0982 

0.2139, 0.2159, 
 0.2767, 0.2786 
0.3664, 0.3671 

6119.99 

 

6340.83 

 

11 

45, 45 
124, 169 

258, 259 
356, 357 
437, 438 
512 

4.956, 4.757 
4.677,  4.445 

4.095, 3.691 
3.211, 2.619 
1.961, 1.242 
0.402 

1.79E-05, 1.79E-05 
0.0189, 0.0544 

0.1485, 0.1496 
0.2511, 0.2521 
0.3244, 0.3252 
0.3825 

6122.02 
 

6336.61 
 

12 

91, 91 

91, 146 
179, 220 
276, 276 
370, 371 

444, 445 

4.910, 4.688 

4.535, 4.364 
4.090, 3.789 
3.404, 2.952 
2.417, 1.810 

1.127, 0.345 

0.0045, 0.0045 

0.0045, 0.0344 
0.0640, 0.1069 
0.1682, 0.1682 
0.2646, 0.2655 

0.3302, 0.3310 

6085.45 
 

6334.59 
 

 


