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Introduction  

The warm standby repairable system model is one of the 

more important in the reliability theory and application. In the 

reliability study, the assumption that components are as good as 

new. In practical problems, the component after repair is often to 

be worse in performance than before. With the growth in using, 

the life of the component will be shorter and shorter, and the 

repair time after fault will be longer and longer. Therefore, the 

study the "repair of non-new" component of the system has 

some theoretical and practical significance. Literature [3] 

considers a deteriorating cold standby repairable system 

consisting of two dissimilar components and one repairman.  

This paper is the application of the geometric process theory 

to consider a warm standby system consisting of two different 

components and one repairman. Assume that two components of 

working time, standby time, the repair time after fault and the 

repair time after standby fault are subject to different 

exponential distribution and the repair of the component 1 is a 

geometry repair and the repair of the component 2 is as good as 

new, and component 1 has priority in use and repair. By using 

geometric process theory, the supplementary variable method 

and Laplace transform, the reliability indices of model are 

obtained. 

Assumption Model 

We studied a warm standby repairable system of two 

components and one repairman with priority by making the 

following assumptions. 

Assumption 1. Initially, the two components are both new, and 

component 1 is in working state while component 2 is in warm 

standby state. 

Assumption 2. Assume that component 1 after repair are not 

‘‘as good as new’’ and follow a geometric process repair. When 

both components are good, component 1 has the higher use 

priority than component 2. Even if component 2 is working, it 

must be switched into the warm standby state as soon as 

component 1 after failure has been repaired, and it becomes the 

working state immediately. When both components fail (i.e. the 

system is down), component 1 has the higher repair priority than 

component 2. Even if the repairman is repairing component 2 at 

this state, he must switch to component 1. He will work on the 

repair of component 2 after completing the repair on component 

1.  

Assumption 3. Assume that the time interval between the 

completion of the (n-1)th repair and the completion of the nth 

repair of component 1 is called the nth cycle(i.e. the nth repair 

cycle)of component i ,where 1, 2i  , 1,2,n   . Let 

( )i

n
X ,

( )i

n
A ,

( )i

n
Y and 

( )i

n
B ( 1, 2)i   be, respectively, working time, 

standby time, the repair time after fault and the repair time after 

standby fault of component i in the nth cycle, their distributions 

are 
(1) 1 1

1( ) ( ) 1 exp{ }n n

nF t F a t a t      

(1)

1( ) 1 exp{ }nV t v t    

(1) 1 1

1( ) ( ) 1 exp{ }n n

nG t G b t b t      

(1)

1( ) 1 exp{ }nW t wt    

(2)

2( ) 1 exp{ }nF t t    

(2)

2( ) 1 exp{ }nV t v t    

(2)

2( ) 1 exp{ }nG t t    

(2)

2( ) 1 exp{ }nW t w t    

All the random variables  
( )i

n
X ,

( )i

n
A ,

( )i

n
Y and 

( )
( 1, 2)

i

n
B i  , 1,2,n   are mutually independent. 

System Analysis 

Let ( )N t denote the state of the system at time t th, the system 

states are as following:  

( ) 0N t  , the component 1 is working and the component 2 is 

in warm standby;  

( ) 1N t  , the component 1 is working and the component 2 is 

due to failure in the repair standby;  
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( ) 2N t  , the component 1 is working and the component 2 is 

due to failure of the repair work;  

( ) 3N t  , the component 2 is working and the component 1 is 

due to failure of the repair work;  

( ) 4N t  , the component 1 is due to failure in the repair work 

and the component 2 is due to failure in the suspending repair 

work; 

( ) 5N t  , the component 2 is due to failure in the repair 

standby and the component 1 is failure;  

( ) 6N t  , the component 2 is due to failure of the repair work 

and the component 1 is failure.  

Obviously, { ( ), 0}N t t  is a random process, 

{0,1, 2,3, 4,5, 6}  is a state space, {0,1, 2,3}W  is the 

working state set, {4,5, 6}F  is the fault state set. So it is not a 

Markov process, but it can be extended to Markov process by  

using the supplementary variable method. Let ( )S t be the 

number of the cycle of component 1 at time t th, 

{ ( ), ( ), 0}N t S t t  constitute two-dimensional Markov process, 

the state probability denote  

( ) { ( ) , ( ) }, , 1,2,jkp t P N t j S t k j k       

Through analysis, the state probability can be solved from the 

following differential equation 

1 2

1 2 0 2 1 2 2 1 3 1( ) ( ) ( ) ( ) ( ), ( 2)k k

k k k k

d
a v p t w p t p t b p t k

dt
   

       

1 2

2 1 1 2 0 1 5( ) ( ) ( ) ( ), ( 2)k k

k k k

d
w a p t v p t b p t k

dt
      

1 2 2

2 1 2 1 4 1 1 6( ) ( ) ( ) ( ), ( 2)k k k

k k k

d
a p t b p t b p t k

dt
     

    

1 1

2 1 3 1 0( ) ( ) ( ), ( 2)k k

k k

d
b p t a p t k

dt
        

1

1 4 2 3( ) ( ) ( ), ( 2)k

k k

d
b p t p t k

dt
     

1 1

1 5 1 1( ) ( ) ( ), ( 2)k k

k k

d
b p t a p t k

dt
      

1 1

1 6 1 2( ) ( ) ( ), ( 2)k k

k k

d
b p t a p t k

dt
      

1 2 01( ) ( ) 0
d

v p t
dt

    

2 1 11 2 01( ) ( ) ( )
d

w p t v p t
dt

    

21( ) 0p t   

1 2 31 2 01( ) ( ) ( )
d

p t p t
dt

      

1 41 2 31( ) ( ) ( )
d

p t p t
dt

    

1 51 1 11( ) ( ) ( )
d

p t p t
dt

    

1 61 2 21( ) ( ) ( )
d

p t p t
dt

    

Initial conditions 

01 0(0) 1, (0) 0( 2), (0) 0, 1,2,3,4,5,6; 1,2k jkp p k p j k        

Let ( )jkp t denote to the Laplace transform 

of
0

( ) ( )
st

jk jk
p s e p t dt


 

  , and on the differential equation of 

both sides for the Laplace transform respectively,  
1 2

1 2 0 2 1 2 2 1 3 1( ) ( ) ( ) ( ) ( ),( 2)       

     k k

k k k ks a v p s w p s p s b p s k   

       (1)         
1 2

2 1 1 2 0 1 5( ) ( ) ( ) ( ),( 2)k k

k k ks w a p s v p s b p s k         

                                                                                      (2)            
1 2 2

2 1 2 1 4 1 1 6( ) ( ) ( ) ( ),( 2)k k k

k k ks a p s b p s b p s k        

               

                                                                                       (3) 
1 1

2 1 3 1 0( ) ( ) ( ),( 2)k k

k ks b p s a p s k           (4)                

 
1

1 4 2 3( ) ( ) ( ),( 2)k

k ks b p s p s k                       (5) 

1 1

1 5 1 1( ) ( ) ( ),( 2)k k

k ks b p s a p s k                   (6) 

1 1

1 6 1 2( ) ( ) ( ),( 2)k k

k ks b p s a p s k                  (7) 

               
1 2 01( ) ( ) 1s v p s                                    (8) 

              
1 2 11 2 01( ) ( ) ( )s w p s v p s                        (9) 

           
21( ) 0p s                                                          (10) 

            
2 1 31 1 01( ) ( ) ( )s p s p s                         (11) 

              
1 41 2 31( ) ( ) ( )s p s p s                             (12) 

            
1 51 1 11( ) ( ) ( )s p s p s                                (13) 

            
1 61 1 21( ) ( ) ( )s p s p s                               (14) 

Substituting Eqs.(2)- (7) into Eq.(1), then we have   
2 2 1

1 1 1 2 2 0 1
0 2 2 1 1

2 1 1 1 2 2 2 1

( )( ) ( )
( )

( )( )[( ) ( )]

      

      

   
 

   

  


      

k k k

k
k k k k k

b a s b p s
p s

s b s b s a v w v s b

                                                                                      (15) 

and we make a mark: 
2 1 1 1

2 1 1 2 1( )k k ks s sa sb b            , 

2 1 1 1

2 1 1 2 1( )k k ks sw sa sb w b           

According to Eqs.(1)-(14), we have,  

1 2 1 2 1 1 1 1 1 2
02

1 2 2 1 1 2 1 1 2 2 1

{ ( ) ( ) }
( )

( )( )( )( ) [ ( )]

s b s
P s

s a v s s v s v s b

         

       

   


        

                                                                                      (16) 

and 

1 1 2 1 1 1( )( )s a s b a          ,  

2 1 2 1 1 1( )( )s a w s b a          

Substituting Eqs.(15) - (16) into Eqs.(1) - (7), then we have 

0 02( ) ( ) ,( 3)k kp s p s A k     

1 1

2 1 2 1
1 021

1 2

( )( )
( ) ( )

( )

k k

k kk

v s a w s b
p s p s A

s a w

 

 

 
 



  
  

 
 

2 2 1

1 2 1 1
2 02 12 2

2 1 1

( )
( ) ( )

( )( )

k k k

k kk k

b a s b
p s p s A

s b s b

   

   

  
 

 


  

  
 

1

1
3 021

2 1

( ) ( )
( )

k

k kk

a
p s p s A

s b



 


 


  

 
 

1

1 2
4 021 1

1 2 1

( ) ( )
( )( )

k

k kk k

a
p s p s A

s b s b

 

  


 

 
  

  
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1

1 2
5 02( ) ( )

k

k k

a v
p s p s A






     

1 2 2

1 1 2 1
6 02 11 2 2

1 2 1 1

( ) ( )
( ) ( )( )

k k k

k kk k k

a a b
p s p s A

s b s b s b

   

    

  
 

  
  

   

and  
2 2 1

1 1 1 2 2

1 2 1 1
3 2 1 1 1 2 2 2 1

( )( )

( )( )[( ) ( )]

i i ik

k i i i i
i

b a s b
A

s b s b s a v w v s b

      

      

  

   


 


      
  

Important Result and Proof 

Theorem 1. Let ( )A t be the availability of the system in time 

t th,  

0 1 2 3

1

( ) { ( ) } [ ( ) ( ) ( ) ( )]
k k k k

k

A t P N t W p t p t p t p t




      . 

So the system’s steady state availability is  

    
0

lim ( ) lim ( ) 0
t s

A A t sA s

 
                       (17) 

Proof . The Laplace transform of ( )A t is 

0 1 2 3 01 11 12 13

1

02 12 22 32 0 1 2 3

3

( ) [ ( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )]

k k k k

k

k k k k

k

A s p t p t p t p t p t p t p t p t

p t p t p t p t p t p t p t p t


        




       



       

       





 

According to Eqs. (8)-(11),  we have 

01

1 2

1
( )p s

s v

 
 

,   2
11

1 2 1 2

( )
( )( )

v
p s

s v s w 

 
   

 

21( ) 0p s  ,   1
31

1 2 2 1

( )
( )( )

p s
s v s



  

 
   

 

According to Eqs. (2) - (7), when 2k  , we have 

2 1
12 02

1 2 1 1 1

( )
( ) ( )

( )( )

v s b
p s P s

s a w s b a



   

 
 

   
 

1 2 1 1
22

1 2 1 1 2 1 2 1 1 1

( )
( )

( )( )( )[( )( ) ]

s b
p s

s s s s a s b a

   

         

 


        
1

1
32 02

2 1

( ) ( )
ka

p s p s
s b



 


  

 
 

By using the Tauberian theorem, we get (17). This completes the 

proof. The steady state availability is 0, and it is consistent with 

physical intuition. In fact, as component 1 "repair of non-new", 

the work time is shorter and shorter, and the repair work will be 

longer and longer, which means that the time ( t  ) limit 

availability tends to 0. 

Theorem 2. Let ( )R t be system reliability and the Laplace 

transform of ( )R t be 

01

2 1

1 2 1 2 1 2 1 2 1 2

1

2 1

1 1

2 1 2 1 2

1
( ) [ ]

( (

[1 ] ( )

)( ) )( )

k

kk k

k

v
R s

s v s w s v s s v

v a
B q s

s a w s b



     



  







 



  
         

    
   


           

                                                                                   (18) 

Proof. In order to work out the system reliability ( )R t , we 

consider the states with absorption followed by two-dimensional 

continuous Markov process { ( ), ( ), 0}N t s t t % . The system of 

failure states in { ( ), ( ), 0}N t S t t  are absorbing states, we 

get { ( ), ( ), 0}N t s t t % . The state probability denote 

{ ( ) , ( ) }, , 1,2ijq P N t j s t k j k    % L  

Then 

0 1 3

1

( ) ( ) [ ( ) ( ) ( )]
k k k

k

R t P T t q t q t q t




     

Similar to the preceding discussion, the corresponding 

differential equations are 

1 2

1 2 0 2 1 1 3 1( ) ( ) ( ) ( ), ( 2)k k

k k k

d
a v q t w q t b q t k

dt
  

    

1

1 2 1 2 0( ) ( ) ( ), ( 2)k

k k

d
a w q t v q t k

dt
     

1 1

2 1 3 1 0( ) ( ) ( ), ( 2)k k

k k

d
b q t a q t k

dt
        

1 2 01( ) ( ) 0
d

v q t
dt

    

2 2 11 2 01( ) ( ) ( )
d

w q t v q t
dt

    

2 1 31 1 01( ) ( ) ( )
d

q t q t
dt

      

Initial conditions 

01 11 31 0 1 3(0) 1, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0, 2,3,k k kq q q q q q k         

Laplace transform of the above equations, we have  
1 2

1 2 0 2 1 1 3 1( ) ( ) ( ) ( ),( 2)k k

k k ks a v q s w q s b q s k     

    
1

1 2 1 2 0( ) ( ) ( ),( 2)k

k ks a w q s v q s k       

1 1

2 1 3 1 0( ) ( ) ( ),( 2)k k

k ks b q s a q s k          

011 2( ) ( ) 1s v q s     

11 011 2 2( ) ( ) ( )s w q s v q s      

31 012 1 1( ) ( ) ( )s q s q s       

Then we have 
2 2 1

1 1 1 2
0 0 1 012 1 1

2 1 1 1 2 2

( )
( ) ( ) ( )

( )( )( )

  

   

  
  

  

 
   

     

k k k

k k kk k k

a b s a w
q s q s B q s

s b s a s a v w
 

2
1 011

2 1

( ) ( )k kk

v
q s B q s

s w a 

 


  

 
, 

1

1
3 011

2 1

( ) ( )
k
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and             
2 2 1

1 1 1 2

2 1 1
2 2 1 1 1 2 2

( )

( )( )( )

k k kn

n k k k
k

a b s a w
B

s b s a s a v w

  

   

  

  


 


     


According to the initial conditions, we have 

01

1 2

1
( )q s

s v




 
, 

2

11

1 2 1 2

1
( )

v
q s

s w s v 


 

   
, 

1

31

1 2 1 2

1
( )q s

s s v



  


 

   
. 

Then we get (18).This completes the proof. 

Theorem 3. The mean time to the first failure
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   

       
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    


   
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                                                                                 (19)  

Proof. We can easily complete the proof by use the nature of 

Laplace transform 

0 0

( ) lim ( )
s

MTTF R t dt R s






  . 

Theorem 4. Let ( )I t to be the probability of the repairman idle, 

and the repairman of the steady state idle probability is  

0
lim ( ) lim ( ) 0
t s

I I t sI s

 
                              (20) 

Proof. When the component 1 is working and component 2 is 

warm standby, the repairman will not be idle, so the probability 

of repairman idle at time t  is 

0

1

( ) { ( ) 0} ( )
k

k

I t P N t p t




   . 

Laplace transform of ( )I t is   

0 01 02 0

1 3

( ) ( ) ( ) ( ) ( )
k k

k k

I s p s p s p s p s
 

    

 

      

By the Tauberian theorem, we get (20). This completes the 

proof. The probability of repairman idle tends to 0. This result is 

also consistent with intuition, because component 2 can not 

repair as good as new, and its successive repair time is 

increasing random. Finally, it almost can not repair and 

repairman had to go on forever. This also means when t   

that the probability of repairman idle is 0. 

 

 

Conclusion 

For the "repair of non-new" component of the warm 

standby system with priority, the model has some theoretical and 

practical significance. In this paper, by using the geometric 

process theory,a warm standby repairable system of two 

different components and one repairman with priority is studied. 

It has some practical value. Especially, 

When
1 2

0w w  , the system considers a geometric process 

model for two different components of the warm standby system 

with priority’s other situation, which the repair time of the 

component after fault and the standby time after fault are subject 

to the same exponential distribution. 

When
1 2 1 2

0, 0v v w w    , the system considers a 

geometric process repair model for a repairable cold standby 

system with priority in use and repair. Literature [3] has been 

discussed. 
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