Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 41 (2011) 5863-5866

On product of intuitionistic L – fuzzy H-ideals of BF-algebras

P.Muralikrishna¹ and M.Chandramouleeswaran²

¹Department of Mathematics, Fatima Michael College of Engineering & Technology, Madurai-625 020, Tamilnadu, India. ²Department of Mathematics, Saiva Bhanu Kshatriya College, Aruppukkottai - 626 101, Tamilnadu, India.

ABSTRACT

ARTICLE INFO

Article history: Received: 15 November 2011; Received in revised form: 22 November 2011; Accepted: 12 December 2011;

Keywords

BF-algebra,
H-ideals,
Intuitionistic L-fuzzy BF-subalgebra,
Intuitionistic L-fuzzy H-ideal and
Product on Intuitionistic L-fuzzy H-
ideal.
AMS Classification: 08A72,
03E72.

Introduction

Lofti A. Zadeh[9] introduced the notion of a fuzzy subset of a set as a method for representing uncertainty in real physical world. As a generalization of this, Intuitionistic Fuzzy Subset was defined by K.T.Atanassov [2] in 1986. BF-Algebras were introduced by Andrzej Walendziak[1] introduced in 2007. The Fuzzy BF_subalgebras of were developed by A. Borumand Saeid and M. A. Rezvani[3] in 2009. Motivated by this, we have introduced the notions Intuitionistic L-fuzzy BFsubalgebras^[5] and Intuitionistic L-fuzzy ideals of BFalgebras[6]. Intuitionistic L-fuzzy ideals of H-ideals of BFalgebras[8] and the Product[7] on Intuitionistic L-fuzzy ideals of a BF-algebras. In this paper, we discuss the Product on Intuitionistic L-fuzzy H-ideals of two BF-algebras and study some results.

Preliminaries

Definition 2.1.[2] Let $L = (L, \leq)$ be complete lattice with an involutive order reversing operation $N: L \rightarrow L$. Then an Intuitionistic L-fuzzy Subset (ILFS) A in a non-empty set X is defined as an object of the form $A = \left\{ < x, \mu_A(x), \nu_A(x) > / \ x \in X \right\} \text{ where } \mu_A : X \to L$ is the degree membership and $v_A: X \to L$ is the degree nonmembership element $x \in X$ of the satisfying $\mu_A(x) \leq N(\nu_A(x))$.

Definition 2.2 [1] A BF-algebra is a non-empty set X with a consonant 0 and a binary operation * satisfying the following axioms:

i.
$$x * x = 0$$

ii. $x * 0 = x$
iii. $0 * (x * y) = y * x \quad \forall x, y \in X$

Tele: E-mail addresses: pmkrishna@rocketmail.com, moulee59@gmail.com

(1) A non-empty subset S of a BF-algebra X is said to be a BF-subalgebra if

 $x^* y \in S \quad \forall x, y \in S.$

This paper introduces the notion of the Generalization of Cartesian Product on Intuitionistic

L-fuzzy H-ideals of BF-algebra and deals some simple but interesting results.

(2) A non-empty subset I of a BF-algebra X is said to be a Ideal of X if

$$(i) 0 \in I$$

(*ii*)
$$x * y \in I$$
 and $y \in I$

imply that
$$x \in I \forall x, y \in I$$
.

(3) An ideal I of X is called closed

if
$$0 * x \in I \quad \forall x \in I.$$

(4) A non-empty subset I of a BF-algebra X is said to be a H-ideal of X $% \left(X_{1}^{A}\right) =0$

(*i*)
$$0 \in I$$

(ii)
$$x^*(y^*z) \in I$$
 and $y \in I$

imply that
$$x * z \in I \forall x, y z \in I$$
.

 $0 * x \in I \qquad \forall x \in I$

Definition.2.4. Let $(X, *_X, 0_X), (Y, *_Y, 0_Y)$ be two BFalgebras. The Cartesian product of X × Y is defined to be the set $X \times Y = \{(x, y) | x \in X, y \in Y\}$

In X × Y we define the product x × y as follows: $(x_1, y_1)^*_{X \times Y} (x_2, y_2) = (x_1^*_X x_2, y_1^*_Y y_2)$

One can easily verify that the Cartesian product of two BF-algebras is again a BF-algebra.

Definition.2.5.[6] An Intuitionistic L-fuzzy Subset A in a BFalgebra X is said to be an Intuitionistic L-fuzzy BF-ideal of X if 1) $\mu_A(0) \ge \mu_A(x)$

© 2011 Elixir All rights reserved.

2)
$$v_A(0) \le v_A(x)$$

3) $\mu_A(x) \ge \mu_A(x^*y) \land \mu_A(y)$.
4) $v_A(x) \le v_A(x^*y) \lor v_A(y) \quad \forall x, y \in X$
Definition 2.6 [6] An Intritingiation 1. forms Subset A in a

Definition.2.6.[6] An Intuitionistic L-fuzzy Subset A in a BFalgebra X is said to be an Intuitionistic L-fuzzy closed BF-ideal of X if

1)
$$\mu_{A}(0 * x) \ge \mu_{A}(x)$$

2) $\nu_{A}(0 * x) \le \nu_{A}(x)$
3) $\mu_{A}(x) \ge \mu_{A}(x * y) \land \mu_{A}(y)$
4) $\nu_{A}(x) \le \nu_{A}(x * y) \lor \nu_{A}(y) \quad \forall x, y \in X.$

Definition.2.7. [8] An intuitionistic L-fuzzy subset A of a BFalgebra X is said to be an intuitionistic L-fuzzy H-ideal of X if 1) $\mu_A(0) \ge \mu_A(x)$

2)
$$v_A(0) \le v_A(x)$$

3) $\mu_A(x * z) \ge \mu_A(x * (y * z)) \land \mu_A(y)$
4) $v_A(x * z) \le v_A(x * (y * z)) \lor v_A(y)$
 $\forall x, y, z \in X$

Definition.2.8. [8] An Intuitionistic L-fuzzy subset A of a BF - algebra X is said to be an Intuitionistic L-fuzzy Closed H-ideal of X if

1)
$$\mu_{A}(0 * x) \ge \mu_{A}(x)$$

2) $\nu_{A}(0 * x) \le \nu_{A}(x)$
3) $\mu_{A}(x * z) \ge \mu_{A}(x * (y * z)) \land \mu_{A}(y)$
4) $\nu_{A}(x * z) \le \nu_{A}(x * (y * z)) \lor \nu_{A}(y) \quad \forall x, y, z \in X$

Product on intuitionistic L-fuzzy H-ideals of BF-algebras In this section we introduce the notion of Cartesian Product of two Intuitionistic L-fuzzy H-ideals of two BF-algebras X and Y. We start with the following definition.

Definition.3.1.[7] For any two Intuitionistic L-fuzzy sets A and B of X, their Cartesian Product is defined to be the set $A \times B = (X \times X, \mu_A \times \mu_B, \nu_A \times \nu_B)$ with the membership and non-membership functions $\mu_A \times \mu_B : X \times X \to L$ and $\nu_A \times \nu_B : X \times X \to L$ such

$$(\mu_A \times \mu_B)(x, y) = \mu_A(x) \wedge \mu_B(y)$$
 and

 $(V_A \times V_B)(x, y) = V_A(x) \vee V_B(y)$ where $\forall x, y \in X$.

In the following we extend the above definition to the Cartesian product of two Intuitionistic L-fuzzy sets of any two BF-algebras X and Y.

Definition.3.2.[7] For any two Intuitionistic L-fuzzy sets A and B of X and Y, their Cartesian Product is defined to be the set $A \times B = (X \times Y, \mu_A \times \mu_B, \nu_A \times \nu_B)$ with the membership and non-membership functions $\mu_A \times \mu_B : X \times Y \to L$ and

$$\begin{array}{l} \nu_A \times \nu_B : X \times Y \to L \qquad \text{such} \qquad \text{that} \\ (\mu_A \times \mu_B)(x, y) = \mu_A(x) \wedge \mu_B(y) \qquad \text{and} \\ (\nu_A \times \nu_B)(x, y) = \nu_A(x) \vee \nu_B(y) \end{array}$$

where $\forall x \in X \text{ and } y \in Y$.

Theorem.3.3. Let A and B be any two Intuitionistic L-fuzzy Hideals of X and Y. Then $A \times B$ is an Intuitionistic L-fuzzy Hideal of $X \times Y$.

Proof. Take
$$(x, y) \in X \times Y$$
.
Then $(\mu_A \times \mu_B)(0, 0) = \mu_A(0) \wedge \mu_B(0)$
 $\geq \mu_A(x) \wedge \mu_B(y)$
 $= (\mu_A \times \mu_B)(x, y)$
 $\forall x \in X \text{ and } y \in Y$
And $(v_A \times v_B)(0, 0) = v_A(0) \vee v_B(0)$
 $\leq v_A(x) \vee v_B(y)$
 $= (v_A \times v_B)(x, y)$
 $\forall x \in X \text{ and } y \in Y$
Now take $(x_1, y_1), (x_2, y_2)$ and $(x_3, y_3) \in X \times Y$.
Then $(\mu_A \times \mu_B)[(x_1, y_1)^*(x_3, y_3)]$
 $= (\mu_A \times \mu_B)[(x_1 * x_3), (y_1, * y_3)]$
 $= (\mu_A \times \mu_B)[(x_1 * x_3), (y_1, * y_3)]$
 $= (\mu_A (x_1^*(x_2^*x_3)) \wedge \mu_B(y_1^*(y_2^*y_3))) \wedge (\mu_A(x_2) \wedge \mu_B(y_2))$
 $= (\mu_A(x_1^*(x_2^*x_3)) \wedge \mu_B(y_1^*(y_2^*y_3))) \wedge (\mu_A(x_2) \wedge \mu_B(y_2))$
 $= (\mu_A \times \mu_B)[(x_1, y_1)^*(x_2, y_2)^*(x_3, y_3)] \wedge (\mu_A \times \mu_B)(x_2, y_2)$
 $= (\mu_A \times \nu_B)[(x_1, y_1)^*(x_3, y_3)]$
 $= (v_A \times v_B)[(x_1^*x_3), (y_1, * y_3)]$
 $= (v_A (x_1^*(x_2^*x_3)) \vee v_B(y_1^*(y_2^*y_3))) \vee (v_A(x_2) \vee v_B(y_2))$
 $= (v_A(x_1^*(x_2^*x_3)) \vee v_B(y_1^*(y_2^*y_3))) \vee (v_A(x_2) \vee v_B(y_2))$
 $= (v_A (x_1^*(x_2^*x_3)) \vee v_B(y_1^*(y_2^*y_3))) \vee (v_A(x_2) \vee v_B(y_2))$
 $= (v_A (x_1^*(x_2^*x_3)) \vee v_B(y_1^*(y_2^*y_3))) \vee (v_A (x_2) \vee v_B(y_2))$
 $= (v_A \times v_B)[(x_1^*(x_2^*x_3)) \vee (y_1^*(y_2^*y_3))] \vee (v_A \times v_B)(x_2, y_2)$
 $= (v_A \times v_B)[(x_1, y_1)^*(x_2, y_2)^*(x_3, y_3)] \vee (v_A \times v_B)(x_2, y_2)$
 $= (v_A \times v_B)[(x_1, y_1)^*(x_2, y_2)^*(x_3, y_3)] \vee (v_A \times v_B)(x_2, y_2)$
 $= (v_A \times v_B)[(x_1, y_1)^*(x_2, y_2)^*(x_3, y_3)] \vee (v_A \times v_B)(x_2, y_2)$
 $= (v_A \times v_B)[(x_1, y_1)^*(x_2, y_2)^*(x_3, y_3)] \vee (v_A \times v_B)(x_2, y_2)$
 $= (v_A \times v_B)[(x_1, y_1)^*(x_2, y_2)^*(x_3, y_3)] \vee (v_A \times v_B)(x_2, y_2)$
 $= (v_A \times v_B)[(x_1, y_1)^*(x_2, y_2)^*(x_3, y_3)] \vee (v_A \times v_B)(x_2, y_2)$
 $= (v_A \times v_B)[(x_1, y_1)^*(x_2, y_2)^*(x_3, y_3)] \vee (v_A \times v_B)(x_2, y_2)$
 $= (v_A \times v_B)[(x_1, y_1)^*(x_2, y_2)^*(x_3, y_3)] \vee (v_A \times v_B)(x_2, y_2)$
 $= (v_A \times v_B)[(x_1, y_1)^*(x_2, y_2)^*(x_3, y_3)] \vee (v_A \times v_B)(x_2, y_2)$
 $= (v_A \times v_B)[(x_1, y_1)^*(x_2, y_2)^*(x_3, y_3)] \vee (v_A \times v_B)(x_2, y_2)$
 $= (v_A \times v_B)[(x_1, y_1)^*(x_2, y_2)^*(x_3, y_3)] \vee (v_A \times v_B)(x_2, y_2)$
 $= (v_A \times v_B)[(x_1, y_2)^*(x_3, y_3)] \vee (y_A \times v_B$

And it can be extended for any n BF-algebras.

Lemma 3.4. Let A and B be two intuitionistic L-fuzzy subsets of X and Y. If A \times B is an intuitionistic L-fuzzy H-ideal of X \times Y then following are true.

(i)
$$\mu_A(0) \ge \mu_B(y)$$
 and $\mu_B(0) \ge \mu_A(x)$
for all $x \in X$, $y \in Y$.
(ii) $\mu_A(0) \le \mu_B(y)$ and $\mu_B(0) \le \mu_A(x)$

(ii)
$$V_A(0) \le V_B(y)$$
 and $V_B(0) \le V_A(x)$
for all $x \in X$, $y \in Y$.

Proof Assume $\mu_B(y) > \mu_A(0)$ and $\mu_A(x) > \mu_B(0)$ for some $x \in X$, $y \in Y$.

Then $(\mu_A \times \mu_B)(x, y) = \mu_A(x) \wedge \mu_B(y) \ge \mu_B(0) \wedge \mu_A(0) = (\mu_A \times \mu_B)(0,0)$ which is a contradiction. Similarly, assume $\nu_A(x) < \nu_B(0)$ and $\nu_B(y) < \nu_A(0)$ for

some $x \in X$, $y \in Y$.

Then $(v_A \times v_B)(x, y) = v_A(x) \lor v_B(y) \le v_B(0) \lor v_A(0) = (v_A \times v_B)(0,0)$ which is also a contradiction, thus proving the result. Theorem.3.5. Let A and B be any two Intuitionistic L-fuzzy subsets of X and Y such that $A \times B$ is an intuitionistic L-fuzzy H-ideal of $X \times Y$. Then either A is an intuitionistic Lfuzzy H-ideal of X or B is an intuitionistic L-fuzzy H-ideal of Y. Proof. Now by lemma 3.4 if we take $\mu_A(0) \ge \mu_B(y)$ and $\nu_A(0) \le \nu_B(y)$ then $(\mu_A \times \mu_B)(0, y) = \mu_A(0) \wedge \mu_B(y) = \mu_B(y)$ and $(v_A \times v_B)(0, y) = v_A(0) \vee v_B(y) = v_B(y)$(1) Since $A \times B$ is an intuitionistic L-fuzzy H-ideal of $X \times Y$. $(\mu \times \mu)((x - y)) * (x - y))$

$$\begin{array}{l} (\mu_A \times \mu_B)((x_1, y_1) \cdot (x_3, y_3)) \\ \geq (\mu_A \times \mu_B)[(x_1, y_1) * ((x_2, y_2) * (x_3, y_3))] \\ & \wedge (\mu_A \times \mu_B)(x_2, y_2) \\ & \dots \end{array}$$

Putting $x_1 = x_2 = x_3 = 0$ in (2) we get,

$$(\mu_{A} \times \mu_{B})((0, y_{1})*(0, y_{3})) \geq (\mu_{A} \times \mu_{B})[(0, y_{1})*((0, y_{2})*(0, y_{3}))]_{i.e.} \land (\mu_{A} \times \mu_{B})(0, y_{2}) (\mu_{A} \times \mu_{B})(0, y_{1}* y_{3})$$

$$\geq (\mu_A \times \mu_B)[0, (y_1 * (y_2 * y_3)] \land (\mu_A \times \mu_B)(0, y_2)$$

Using equation (1) in (3) we

Using equation (1) in (3) we have $\mu_B(y_1 * y_3) \ge \mu_B(y_1 * (y_2 * y_3)) \land \mu_B(y_2)$ In the similar way we can prove

In the similar way we can prove $v_B(y_1 * y_3) \le v_B(y_1 * (y_2 * y_3)) \lor v_B(y_2)$

This proves that B is an Intuitionistic L- fuzzy H-ideal of Y.

Theorem.3.6. Let A and B be any two Intuitionistic L-fuzzy Hideals X and Y. Then $A \times B$ is an Intuitionistic L-fuzzy Hideal of $X \times Y$ if and only if $(\mu_A \times \mu_B)(x, y)$ and $(\overline{\nu_A \times \nu_B})(x, y)$ are L-fuzzy H-ideals of $X \times Y$.

Proof. Let $A \times B$ is an Intuitionistic L-fuzzy H-ideal of $X \times Y$.

Clearly $(\mu_A \times \mu_B)(x, y) = \mu_A(x) \wedge \mu_B(y)$ is L-fuzzy Hideal of $X \times Y$.

We have

$$(v_A \times v_B)(x, y) = v_A(x) \vee v_B(y)$$

$$\Rightarrow 1 - (v_A \times v_B)(x, y) = (1 - v_A(x)) \vee (1 - v_B(y))$$

$$\Rightarrow 1 - \{(1 - v_A(x)) \vee (1 - v_B(y))\} = (v_A \times v_B)(x, y)$$

$$\Rightarrow (v_A \times v_B)(x, y) = v_A(x) \wedge v_B(y).$$

Thus $(v_A \times v_B)(x, y) = v_A(x) \wedge v_B(y)$ is L-fuzzy H-ideal of $X \times Y$.

Conversely, assume $(\mu_A \times \mu_B)(x, y)$ and $(\overline{\nu_A \times \nu_B})(x, y)$ are L-fuzzy H-ideal of $X \times Y$.

Now
$$A \times B = (X \times Y, \mu_A \times \mu_B, \nu_A \times \nu_B)$$

Since
 $(\overline{\nu_A} \times \overline{\nu_B})(x, y) = \overline{\nu_A(x)} \wedge \overline{\nu_B(y)}$
 $\Rightarrow (\nu_A \times \nu_B)(x, y) = \nu_A(x) \vee \nu_B(y)'$

we can easily observe that $A \times B$ is

an Intuitionistic L-fuzzy H-ideal of $X \times Y$. **Theorem.3.7.** Let A and B be any ILFS of X and Y. A and B are Intuitionistic L-fuzzy H-ideals of X and Y if and only if

 $\Box(A \times B) = (X \times Y, \mu_A \times \mu_B, \overline{\mu_A} \times \overline{\mu_B}) \text{ and}$ $\diamondsuit(A \times B) = (X \times Y, \overline{\nu_A} \times \overline{\nu_B}, \nu_A \times \nu_B) \text{ are Intuitionistic L-fuzzy H-ideals of } X \times Y.$

Proof. Since
$$(\mu_A \times \mu_B)(x, y) = \mu_A(x) \wedge \mu_B(y)$$

$$\Rightarrow (\mu_A \times \mu_B)(x, y) = \mu_A(x) \vee \mu_B(y)$$

and

$$(v_A \times v_B)(x, y) = v_A(x) \vee v_B(y) \Rightarrow (\overline{v_A} \times \overline{v_B})(x, y) = \overline{v_A(x)} \wedge \overline{v_B(y)}$$

the proof is clear.

Theorem.3.8. Let A and B be any two Intuitionistic L-fuzzy Closed H-ideals of X and Y. Then $A \times B$ is an Intuitionistic L-fuzzy Closed H-ideal of $X \times Y$.

Proof. Take $(x, y) \in X \times Y$. Then $(\mu_A \times \mu_B)((0,0)^*(x, y)) = (\mu_A \times \mu_B)(0^*x, 0^*y)$ $= \mu_A(0^*x) \wedge \mu_B(0^*y)$ $\geq \mu_A(x) \wedge \mu_B(y)$ $= (\mu_A \times \mu_B)(x, y)$ $\forall x \in X \text{ and } y \in Y$

Now

$$(\nu_A \times \nu_B)((0,0)^*(x, y)) = (\nu_A \times \nu_B)(0^*x, 0^*y)$$

= $\nu_A(0^*x) \vee \nu_B(0^*y)$
 $\leq \nu_A(x) \vee \nu_B(y)$
= $(\nu_A \times \nu_B)(x, y)$
 $\forall x \in X \text{ and } y \in Y$

Thus $A \times B$ is an Intuitionistic L-fuzzy Closed H-ideal of $X \times Y$.

And it can be extended for any n BF-algebras.

One can easily prove theorem 3.6 and 3.7 for Intuitionistic L-fuzzy Closed H-ideals.

Conclusion

In this paper, we have extended the notion of the Cartesian product of Intuitionistic L-fuzzy sets to the notion of the generalized Cartesian product of Intuitionistic L-fuzzy H-ideals of BF-algebras. In [4] we have discussed the concept of Intuitionistic L-fuzzy subalgebras of BG-algebras. We expect that all the results proved in this paper can be proved for BG-algebras.

References

1. Andrzej Walendziak, On BF-algebras, Mathematica Slovaca, Vol.57 (2007), No.2, [119]128

2. K.T. Atanassov, Intuitionistic Fuzzy sets, Fuzzy Sets and Systems (1986).

3. Borumand Saeid and M. A. Rezvani On Fuzzy *BF*-Algebras, International Mathematical Forum, 4, 2009, no.1,13–25.

4. M.Chandramouleeswaran and P.Muralikrishna, On Intuitionistic L-Fuzzy Subalgebras of BG-algebras, International Mathematical Forum, 5, 2010, no.20, 995 – 1000.

5. M.Chandramouleeswaran and P.Muralikrishna, The Intuitionistic L-Fuzzy *BF*_Subalgebras, Global Journal Pure and Applied Mathematics, Vol 6, No.1 (2010), pp. 1–6.

6. P.Muralikrishna and M.Chandramouleeswaran, Intuitionistic L-Fuzzy ideals of BF_algebras, International Journal of Engineering Science and Technology, Vol. 2(10), 2010, 5413-5418.

7. P.Muralikrishna and M.Chandramouleeswaran, Generalaisation Of Cartisean Product of Intuitionistic L-Fuzzy Bf-Ideals, International Journal of Contemporary Mathematical Sciences, Vol. 6, 2011, no. 14, 671-679

8. P.Muralikrishna and M.Chandramouleeswaran, A Note on Intuitionistic L-Fuzzy H-ideals of BF-Algebras,(Accepted in International Review of Fuzzy Mathematics)

9. L.A.Zadeh, Fuzzy sets, Inform.Control. 8(1965), 338-353.