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Introduction  

Preamble 

Super-resolution (SR) is the task of creating an high 

resolution image from a sequence of several lower resolution 

frames. It has many purposes, such as producing high quality 

stills from a video sequence or up-scaling a movie to an higher 

resolution. The main intuition to SR methods is to exploit sub-

pixel motions between the frames of the input sequence to infer 

the missing data on the target high resolution grid. While initial 

work involved the fusion of several image spectra, this approach 

was then replaced by an inverse problem formulation, which is 

less sensitive to noise and does naturally handle arbitrary 

motion. In this context, SR can be stated as an inverse problem, 

where the Low Resolution (LR) image sequence (I is 

obtained by applying a blur B, a downsampling D and geometric 

warping Wk to the unknown High Resolution (HR) image IHR : 

  

 

 

 

The function ρ(·, ·) measures the error between the k-th 

frame in the sequence and the solution, while κ(·) penalizes 

solutions that are too far away from the chosen prior. Standard 

choices are the L2 norm for the error term ρ(·), and the Tikhonov 

regularization : κ(IHR ) = ║IHR║
2
 , for the prior. Eq.(1) can then 

be solved using various frameworks : gradient descent, Iterated 

Back-Projection (IBP) [1], maximum likelihood estimation [2] 

and various other techniques [3]. Although they lead to well 

known resolution schemes, these choices have inherent 

drawbacks. The L2 norm is not robust to misalignments between 

the images. Also, the Tikhonov regularization is known to 

produce over-smoothed results by penalizing abrupt changes in 

the gradient of the solution, actually blurring the boundaries of 

the objects. Hence, further works [4] [5] considered using the 

more robust L1 norm and the Total Variation (TV) regularization 

to produce sharper outputs. However, these methods still rely on 

the accuracy of the motion estimation step. 

Non-neighbourhood super-resolution 

Related work 

To bypass the limitations of motion estimation methods, 

recent works take advantage of example-based regularization, 

successfully introduced by [6] for the SR of a single image. This 

algorithm however required the training of a Markov random 

field on a huge database, limiting its practical interest. Since a 

movie contains many redundancies, a subsequent work [7] 

followed the same intuition as the Non-neighbourhood Means 

(NL-Means) image and movie denoising algorithm [8]. The 

intuition at the heart of NL-Means is to exploit self-similarities 

anywhere in the image. Pixels are described by a patch, which is 

simply all the values comprised in a small square neighborhood. 

If two patches are very similar, then the two pixels are very 

likely to represent the same phenomenon and should be 

exploited together, even when they are spatially far from each 

other. Hence, the algorithm in [7] uses non-neighbourhood 

averaging when fusing together the LR frames interpolated to 

the final resolution. However, the authors limit the search of self 

similarities to a small learning window around each pixel to 

limit the computational overhead. In [9], the authors adapt this 

approach to the IBP algorithm, again considering non-

neighbourhoodity as a post-processing constraint on the up-

scaled images, and within the limits of a search window. In this 

work, we propose to enforce the non-neighbourhood constraints 

on the low resolution images (Sec. 2.2). This has two main 

advantages. First, the weights are fixed by the input LR 

sequence, which allows to compute the gradient of the non-

neighbourhood error term. Second, since there are less LR 

pixels, this makes fewer weights to compute. Furthermore, we 

propose to use an efficient image hashing algorithm called 

Phantom Hashing [10] to sort all the input LR patches in a single 

table, hence leveraging fully non-neighbourhood SR at a 

moderate computational cost. 
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ABSTRACT  

Super-resolution is the process of creating an high resolution image from a low resolution 

input sequence. To overcome the difficulties of good image registration, several methods 

have been proposed exploiting the non-neighbourhood intuition, i.e. any data-point can 

contribute to the final result if it is relevant. These algorithms however limit in practice the 

search region for relevant points in order to lower the corresponding computational cost. 

Furthermore, they define the non-neighbourhood relations in the high resolution space, 

where the true images are unknown. In this work, we introduce the use of phantom hashing 

to efficiently compute fully non-neighbourhood neighbours. We also restate the super-

resolution functional using fixed weights in the low resolution space, allowing us to use 

resolution schemes that avoid many artifacts. 
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Variational TV non-neighbourhood super-resolution 

We consider that the immutable, and hence reliable, non-

neighbourhood information is contained in the LR frames. 

Consequently, we do not proceed with a standard SR process 

followed by an NL-Means like enhancement step, but compute 

instead a non-neighbourhood error on the LR frames. Hence, our 

SR functional to be minimized is: 

 

 

 

 

 

Note that  is not a geometric warping anymore, but a 

weighting matrix. Writing  the patch extracted at the location i 

in the image k,  is defined by: 

 

 

 

 

where the superscript *  is the index of the reference LR frame 

to be upscaled. The constant K ensures that each line of  

sums to 1. The parameter h is a similarity parameter: for small 

values of h, a candidate patch 𝘹j needs to be very similar to the 

reference patch  to have a significant contribution. Following 

[4, 7], we solve Eq. (2) in two steps iteratively: 

1. We first look for an HR blurred estimate ZHR = BIHR using 

non-neighbourhood back-projection; 

2. Then, we compute IHR by TV deblurring of ZHR. 

The TV deblurring subproblem is solved using the Monotonous 

FISTA (MFISTA) algorithm described in [11]. Our specific 

form of the SR objective function in Eq. (2) calls for several 

comments: 

 Since the weight matrices  are fixed throughout the 

minimization process, it is possible to define the gradient of the 

non-neighbourhood error. Hence, we can use a procedure similar 

to the FISTA algorithm [11] to iteratively solve the two steps 

non-neighbourhood error minimization- TV minimization. This 

minimization process has the advantages of faster convergence 

and a tighter control of the solution; 

 The normalization of each line of the matrix  leads to a 

straightforward interpretation of non-neighbourhood SR as a 

standard SR process with a probabilistic motion estimation 

instead of the usual univocal motion model : each line (i, .) 

is indeed the motion probability density of the pixel i with 

respect to the k-th image; 

 Finally, remark that it is possible to separate the constant from 

the similarity score in Eq. (3). The matrix  can then be 

written as the product of a diagonal matrix (storing the constants 

1/ K by a similarity matrix. This will be useful for the Phantom 

Hashing (Sec. 2.3). 

Patch phantom hashing 

The bottleneck of non-neighbourhood algorithms is the 

huge number of computations needed to compute the 

matrices . In the context of denoising, it is possible to pre-

compute some values (integral images, pre-selection criterion) to 

reduce the final cost. These techniques however can hardly be 

used in our case, since we need to find the nearest neighbors to a 

given patch, and not infer a final value. This is a problem of 

nearest neighbors in high dimensions: typical patch sizes are 25 

or 49 (5-by-5 or 7-by-7 patches). A naive approach like 

Principal Component Analysis (PCA) followed by sorting in a 

kd-tree does not help, because the performance of kd-trees 

quickly decreases when the dimension of the space is greater 

than 5, which is too small to correctly describe a patch. We 

considered instead hashing based techniques. Hash tables are 

highly efficient: the access to the bucket containing a given 

element is a simple array lookup, hence done in constant time. 

The main problem then becomes to design a sorting efficient and 

computationally fast code to distribute the patches over the 

table. Recently, Locality Sensitive hashing (LSH) [12] has 

become very popular for high dimensional data. However, it 

relies on the choice of several random projections. These 

projections need to be carefully chosen to ensure that they cover 

the whole space spanned by the data. This makes LSH 

unsuitable to sort image patches, since patches in a limited 

number of locations: many of the random projections become 

useless. On the other hand, Phantom Hashing (SH), introduced 

in [10], was specifically designed to produce compact codes 

grouping images or parts of images by similarity. Let us 

consider first scalar points uniformly distributed in the interval 

[a, b], and a similarity matrix C defined by: 

 

which is our patch similarity measure (excluding the 

normalization constant, as explained in the previous section). 

Under these hypotheses, one has a closed form solution for the 

eigenfunctions and eigenvalues of C [13]: 

 
 

Then, retaining the k the smallest eigenvalues, SH simply 

consists in thresholding the k corresponding eigenfunctions to 

form binary codes by concatenation. In the case of vector data 

(such as image patches) of dimension d, one can see that 

  

 
Hence, one can simply apply the scalar result on each 

component and the take the product. While the assumption of 

uniform distribution seems to be restrictive, SH is surprisingly 

robust to its violations [10]. Furthermore, the PCA basis 

provides a coordinate system in which the data follows roughly 

this distribution along each axis. Finally, this gives us a simple 

algorithm to compute binary codes associated to a set of patches: 

1. Find the principal components of the patches from the LR 

frames. They form the reference (or   learning) data; 

2. Compute the single-dimension eigenfunctions (Eq. (5)); 

3. Retain the k eigenfunctions corresponding to the smallest 

scalar eigenvalues given by Eq. (6). 

The concatenation of the binary thresholded eigenfunctions 

gives the code associated to any patch x, which in turn 

corresponds to a bucket index in the hash table. At runtime, one 

simply needs to project the current patch onto the PCA basis (a 

matrix-vector multiplication), then threshold k obtained by Eq. 

(5) values which are also fast to compute. This returns all the 
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patches that have a Hamming distance of 0 with the query patch, 

which is usually enough. If one wants to find more neighbors, 

then simple bit offsets produce the codes of the buckets with 

Hamming distance 1. Fig. 1 shows the outputs of several queries 

(with Hamming distance 0) using codes of 8 and 16 bits. Note 

how the nearest neighbours concentrate along geometrically and 

radiometrically similar image features. Codes of length 16 bits 

seem to be a good compromise between finding very similar 

patches while not being too specific. The computations are very 

fast: each patch is read only twice during the training, then the 

lookup procedure simply projects the query patch on the PCA 

basis and reads an index in a table. 

Non-neighbourhood super-resolution algorithm 

Putting Sec. 2.2 and 2.3 together, we obtain the SR algorithm: 

Initialization:  

1. Form all the patches from the LR sequence, and compute their 

PCA. 

2. Compute the desired number of eigenfunctions of the 

similarity matrix. 

3. Sort all the input patches in a table, using the retained eigen 

functions to obtain binary codes. 

Super-resolution:  

1. Select the frame to upsample and form an initial estimate by 

interpolation. 

2. Apply the degradation model (blur and downsampling) to the 

current solution. 

3. For each point in the downsampled solution, compute the 

non-neighbourhood error using the corresponding    patch in the 

selected frame and its non-neighbourhood neighbors retrieved 

by SH. 

4. Back-project the non-neighbourhood error and deblur the 

updated solution with MFISTA. 

Note that, since the hash table contains patches from the 

whole input sequence, our algorithm is fully non-

neighbourhood: we do not limit the search of relevant patches to 

a space-time search window. Furthermore, unlike bilateral 

regularization, there is no additional attenuation factor due to the 

space or time distance between the patch to update and its 

neighbours. 

Experiments 

Implementation details 

The algorithm described in Sec. 2.4 is implemented on a 

standard laptop using C++. Although a Matlab implementation 

of Phantom Hashing is available online1, we did re-implement it 

using the OpenCV library. In the nearest neighbour search, we 

did not use all the patches returned by a query, but only those 

with a similarity score above 0.9.  

The parameter h is fixed depending on the noise level of the 

input sequence. For clean movies without noise, we used a small 

value of 0.08, and values between 0.5 and 1 for noisy inputs. In 

all our experiments, we have chosen patches of size 5-by-5 

pixels.  

The initialization of the algorithm is very fast: computing 

the PCA of a whole LR sequence is the longest part and takes 

only a few seconds on a laptop for the patch size considered. 

Then, we used a naive implementation of the algorithm 

described in Sec. 2.4. Note however that the operations for each 

pixel are independent: this parallelism can be exploited to design 

faster multithreaded implementations. 

 

 
Fig. 1. Query examples by Patch Phantom Hashing.  

The green square is the query. Red squares are the patches 

of the same bucket (Hamming distance 0) in the hash table, 

whose similarity score is greater than 0.5. The length of the 

codes is 8 bits in the top row, 16 bits in the bottom row 

Super-resolution results 

We have tested the proposed algorithm on several 

sequences and reference data available on the internet23. Fig. 2 

shows the interest of our functional: having fixed weights on the 

LR input avoids the apparition of the high frequency bright 

artifacts around the mouth. On the other hand, since we have 

numerous non-neighbourhood neighbors from the whole 

sequence, this is counter-balanced by a more pronounced visual 

blur with respect to [7]. 

 
Fig. 2. Comparison with related work 

Left : original image. Middle: result of Generalized Non-

neighbourhood Means [7] for a zoom factor of 3 along each 

dimension. Right : our result. Our minimization scheme avoided 

the artifacts around the mouth. While we used a fully non-

neighbourhood approach, there are very few artifacts coming for 

learning the defects of other frames in the sequence. 

Fig. 3 illustrates the application of our algorithm to other 

noise free sequences. Finally, since accurate and near real time 

optical flow algorithms are becoming available [5], one may 

wonder why we should still perseverate with non-neighbourhood 

SR. If there is only one reason, it should be to deal with noisy 

sequences. In the presence of noise, the precision of optical flow 

diminishes quickly. Non-neighbourhood algorithms, on the other 

hand, are able to integrate information all along the sequence 

without explicitly needing any motion estimation, and are 

designed to naturally deal with independent random noise. This 

is demonstrated in Fig. 4, using either wider patches or relaxed 

similarity conditions. 
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Fig. 3. Results in the noise free case 

In both experiments, we used a zoom factor of 3 along each 

dimension and patches of size 5-by-5 pixels. 

 
Fig. 4. Noisy example 

The input sequence was corrupted with a Gaussian noise of 

variance 0.05 (the images were rescaled between 0 and 1). In the 

first case (middle image), we took wider patches (of size 7-by-7 

pixels) to make the patch comparison process more robust, 

which also removed some details with the noise. In the second 

experiment (right image), we considered a lower threshold to 

declare a reference patch meaningful, preserving more detail. 

Conclusion and future work 

In this work, we have demonstrated the interest of phantom 

hashing for non-neighbourhood methods, and applied it to the 

super-resolution problem. Phantom hashing allows the 

development of fully non-neighbourhood algorithms; hence 

exploiting all the information of the input sequence, while 

maintaining a low computational complexity. We also presented 

a new non local SR functional, where the non-neighbourhood 

weights are fixed. Hence, we can then compute the gradient of 

the functional and insert it inside algorithms where the 

optimization path is controlled, preventing from the apparition 

of spurious artifacts. Future work will include two main 

directions: first, the adaptation of the proposed algorithm to the 

single image SR task, when no input sequence is available. 

Second, we also plan to apply phantom hashing to previously 

proposed non-neighbourhood algorithms, starting with 

inpainting [14], to study the effects of full non-neighbourhoodity 

on these specific problems: as can be seen from our results, there 

is clearly a trade-off to be found between the amount of non-

neighbourhoodity and the over-regularization of the result. 
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