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Introduction  
 Data stream mining is a challenging problem in the data 

mining domain. Data stream are continuous, unbounded, come 

with high speed and exhibit concept drift also. These features of 

data streams make the mining of frequent patterns a difficult 

task to achieve. But this is a basic task required in a large 

number of applications like network monitoring and traffic 

management, sensor network monitoring, transaction analysis of 

e-commerce, web click stream monitoring and mining. The 

above mentioned applications generate data streams of large 

volume and also require frequent patterns to be mined from 

them.  

 Many challenges have to be overcome to mine such data 

streams. The inherent challenges for mining streaming data are 

discussed in detail in  Babcock et al., 2002; Golab & Özsu, 

2003; Jiang & Gruenwald, 2006. Some of the important issues 

are 

•Each element can be examined at most once 

•Memory usage should be restricted even though the stream is 

unbounded 

•Data should be processed quickly and a real time response 

should be provided to the user 

•The possibility of errors is high in such quick processing, but it 

should be maintained below a threshold 

 To deal with these issues a single-pass mining of frequent 

item sets over the data stream is needed. In most applications, 

the interest is on the current data only. So, sliding windows can 

be used to store the most recent transactions and mining is done 

on this window only. 

    In this paper, we propose an efficient one-pass algorithm for 

mining frequent item sets present in a transaction-sensitive 

sliding window implemented as a circular queue. The circular 

queue makes the removal of oldest transaction from the sliding  

    In this paper, we propose an efficient one-pass algorithm for 

mining frequent item sets present in a transaction-sensitive 

sliding window more efficient. The removal is accomplished by 

circularly incrementing the front pointer rather than shift 

operations used in previous algorithms like MFI-TransSW (Li & 

Lee, 2009).  

Related Work 

 Efficient mining of frequent item sets over data streams 

have been studied and many contributions made recently. The 

research on mining data streams is broadly classified into three 

categories namely landmark-window based mining (Li et al., 

2004; Li et al., 2005a; Li et al., 2005b; Manku & Montwani, 

2002; Yu et al., 2006), damped-window based mining ( Chang 

& Lee, 2003; Gianella et al., 2003) and sliding-window based 

mining ( Chang & Lee, 2004; Chi et al., 2006; Lee et al., 2005).  

 Landmark-window model focuses on the values between a 

specific time called landmark and the current time. One of the 

landmark-window based algorithms is Sticky sampling and lossy 

counting which uses BTS (Manku & Montwani, 2002). Sticky 

sampling and lossy counting is a two-pass algorithm which uses 

a landmark-window and mines frequent patterns over data 
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ABSTRACT  

Mining frequent item sets from data streams is of great interest recently in many 

applications. Sliding windows are used in many applications to overcome an important 

problem with data streams i.e. unbound size. In this paper we propose an effective 

transaction based one-pass algorithm that uses a circular queue to implement the transaction-

sensitive sliding window. The proposed algorithm, FIM_CQTransSWin has three phases 

representation of transaction, maintenance of the sliding window and generation of frequent 

item sets in the current sliding window. In the first phase, each transaction is read from the 

data stream and is converted into a decimal number based on the items present in this 

transaction. In the second phase, the decimal numbers representing the transactions are put 

in a circular queue with the front pointer indicating the oldest transaction and the rear pointer 

indicating the latest transaction. When the circular queue becomes full the oldest transaction 

is removed using dequeue operation and then the new transaction is appended at the rear 

end. The first and second phases are repeated indefinitely as long as the transactions keep 

arriving in the data stream. The third phase gets activated when the user requests for the 

frequent item sets. When the user request arrives, the frequent item sets in the current sliding 

window are generated using the candidate generation approach of the apriori algorithm and 

MASK operation.  
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streams. BTS is a three-module method which uses a lattice-

based in-memory data structure and a landmark-window.  

 Damped-window model gives more weightage to recent 

transactions and less weightage to old transactions. EstDec 

algorithm (Chang & Lee, 2003) is a damped-window based 

algorithm for mining data streams where each transaction has a 

weight that keeps decreasing with its age. 

 Sliding-window model focuses on the most recent set of 

transactions. This model is further classified into transaction-

sensitive and time-sensitive sliding window models. The basic 

unit of processing in a transaction-sensitive sliding-window 

model is a transaction. Transactions are added to the window as 

they arrive and when the window is full, sliding takes place by 

removing the oldest transaction and appending the latest 

transaction. MFI-TransSW (Li & Lee, 2009) uses a transaction-

sensitive sliding-window model. In a time-sensitive sliding-

window model, a time unit is the basic processing unit. All 

transactions belonging to a time unit is added to the window and 

when it becomes full, all transactions belonging to the oldest 

transaction unit are removed and all transactions belonging to 

the new time unit are added. MFI-TimeSW (Li & Lee, 2009) 

uses a time-sensitive sliding-window model. In this paper we 

propose a one-pass algorithm FIM_CQTransSWin to mine the 

set of frequent item sets within the current transaction-sensitive 

sliding window. This algorithm shall use a circular queue 

implementation of the sliding window to enable more efficient 

sliding operation.  

Problem Definition 

         Let I= {i1, i2, i3 … im} be a set of items. A transaction Ti 

is a subset of these items with an associated transaction 

identifier that is unique to each transaction. A transaction data 

stream, TDS is a continuous sequence of transactions, T1, T2, 

T3 … TN. T1 is the oldest transaction and TN is the new 

transaction. A transaction sensitive sliding window is 

represented as TransSWin1, TransSWin2 … and so on. As the 

transactions arrive, they are put in the window one-by-one. Once 

the window is full, it slides forward for every new transaction 

that arrives.  

         A circular queue of size N is used to implement the sliding 

window. The current sliding window will be the circular queue 

between the front and rear pointers. 

 
Fig. 3.1: Sliding Window of size N 

When N transactions have arrived, the window (CQ) 

becomes full. The arrival of the next transaction causes a sliding, 

removal of the oldest transaction by means of dequeue operation 

and appending the new transaction at the rear end. „s‟ is a user-

defined minimum support threshold percentage. Support(X) is 

the number of transactions in the sliding window that contain 

item set, X and it is said to be frequent if support(X) >= s.N/100. 

The problem is to find the frequent item sets in the current 

sliding window. 

Example: Let the window size be 3 i.e. N=3 and support 

threshold s=60% and a portion of the data stream TDS= {< T1, 

(acd) >, < T2, (bce) >, < T3, (abce) >, < T4, (be) >}.  

Therefore, frequency threshold = s.N/100=60x3/100 ≈ 2. And 

also this leads to two sliding windows, TransSWin1=<T1, T2, 

T3> and TransSWin2=<T2, T3, T4> 

 
Fig. 3.2 Sliding Window, TransSWin1 

Frequent item sets in this are {a, b, c, e, ac, bc, be, ce, bce} 

 
Fig. 3.3 Sliding Window, TransSWin2 

Frequent item sets in this are {b, c, bc, be, ce, bce} 

FIM_CQTransSWin: Frequent Itemset mining within a 

Circular Queue based Transaction-sensitive Sliding Window 

In this section, we describe our proposed single-pass mining 

algorithm, called FIM_CQTransSWin. It uses a decimal 

representation of each transaction, Compared with other bit-

sequence based sliding window techniques, this algorithm shall 

use less memory and shall be more fast since removal of oldest 

transaction from the window requires only a pointer adjustment 

instead of the costly shift operation.  

Representation of Transaction 

Consider that any transaction in the data stream may consist 

of only items a, b, c, d, and e. Each item is represented by a 

unique number 0, 1, 2, 3, and 4. Each transaction is represented 

by a decimal number calculated from the representation of items 

present in it. (Ramraj & Venkatesan, 2009) 

< T1, (acd) >  

Numeric equivalent of T1 

 = 2
0
+2

2
+2

3 

 = 1+4+8 

 =13 

Since a‟s equivalent is 0, c‟s equivalent is 2 and d‟s equivalent is 

3.  

< T2, (bce) > 

Numeric equivalent of T2 

 = 2
1
+2

2
+2

4 

 = 2+4+16 

 =22 

< T3, (abce) > 

Numeric equivalent of T3 

 = 2
0
+2

1
+2

2 
+2

4
 

 = 1+2+4+16 

 =23 

So before representing the transactions we should know the 

number of unique items possible in any transaction in our data 

stream.  Then we should assign numbers to items accordingly in 

some specific order. We use lexicographic order. 

Window Maintenance phase of FIM-CQTransSWin 

algorithm 
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        The first part of this phase is window initialization where 

the transactions are put into the window at the rear end as they 

arrive after conversion into their corresponding decimal 

representation. This continues till the window becomes full. 

When the window is full the second part of this phase starts 

which is the sliding of the window. The sliding is performed in 

two steps: Removal of the oldest transaction by circularly 

incrementing the front pointer and then adding the new 

transaction (decimal representation) after incrementing the rear 

pointer also circularly. 

In our example, we are in the first part of our window 

maintenance phase till the 4
th

 transaction arrives. When the 4
th

 

transaction arrives the window is already full, so we move into 

the next part of this phase, the sliding of the window. First the 

front pointer is incremented circularly which causes the oldest 

transaction to be removed. Then the rear pointer is also 

incremented circularly and new transaction is added into the 

window.  

 

 

 
Fig. 4.1: Initialization of sliding window 

 
Fig. 4.2: Sliding After T4 arrives 

Now the current window has the transactions T2, T3 and T4 

with representations 22, 23 and 18. 

Frequent Item set generation phase of FIM_CQTransSWin 

Only when requested by the user, this phase begins and the 

frequent item sets in the current sliding window are generated. 

This phase uses the Apriori algorithm to find the frequent 

itemsets using the candidate generation approach. The algorithm 

uses the MASK operation to find the support of the candidates 

generated to test whether they are frequent or not. This process 

continues till no new candidates are generated. 

Example: The user requests for itemsets after the arrival of 4
th

 

transaction. At this time the current sliding window is 

TransWin2 and it has the numeric representations of the 

transactions T2, T3, T4. 

T2=22=10110 

T3=23=10111 

T4=18=10010 

CI1 and FI1 formation 

Initial candidates are items a, b, c, d and e. find the frequency of 

each item using MASK operation as follows 

T2 = 22 =  10110 

Mask (a) = 00001 

 ----------- 

     00000 

             ----------- 

The result of masking operation is not Mask (a). So, we 

conclude „a‟ is not present in T2. 

 

T3= 23    = 10111 

Mask (a) = 00001 

 ----------- 

     00001 

             ----------- 

The result of masking operation is equal to Mask (a). So, we 

conclude „a‟ is present in T3. 

 

T4= 18 =   10001 

Mask (a) = 00010 

 ----------- 

     00000 

              ----------- 

The result of masking operation is not equal to Mask (a). So, we 

conclude „a‟ is not present in T4. So support (a) =1 in the 

TransSWin2. Similarly we can calculate the support of each 

item. 

CI2 and FI2 formation 

Combinations to check are bc, be and ce. To find support of „bc‟ 

first find the mask of „bc‟ this is 00110. 

  

T2= 22     =  10110 

Mask (bc) =  00110 

 --------------- 

          00110  

             --------------- 

The result of masking operation is equal to Mask (bc). So, we 

conclude „bc‟ is present in T2. 

 T3= 23    = 10111 

Mask (bc)= 00110 

 -------------- 

       00110  

             --------------- 

The result of masking operation is equal to Mask (bc). So, we 

conclude „bc‟ is present in T3. 

    

T4= 18      = 10010 

Mask (bc) = 00110 

 -------------- 
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        00010  

             -------------- 

The result of masking operation is not equal to Mask (bc). So, 

we conclude „bc‟ is not present in T4. So support (bc) =2 in the 

TransSWin2. Similarly we can calculate the support of the other 

combinations „be‟ and „ce‟. 

CI3 and FI3 formation 

Combinations to check are only 'bce‟. 

T2= 22       = 10110 

Mask (bce) = 10110 

             ----------------- 

          10110  

             ----------------- 

The result of masking operation is equal to Mask (bce). So, we 

conclude „bce‟ is present in T2. 

T3= 23       = 10111 

Mask (bce) = 10110 

             ----------------- 

           10110  

             ---------------- 

The result of masking operation is equal to Mask (bce). So, we 

conclude „bce‟ is present in T3. 

T4= 18       = 10010 

Mask (bce) = 10110 

             ----------------- 

          10010  

             ----------------- 

The result of masking operation is not equal to Mask (bce). So, 

we conclude „bce‟ is not present in T4. 

So support (bce) =2 in the TransSWin2. 

FIM_CQTransSWin Algorithm 

Input: TDS   a transaction data stream 

 s  an user defined support  

                           threshold percentage  

N size of circular used to  

             Represent the sliding win. 

Output: A table of frequent item sets and their support 

Begin 

1.Front = rear = -1//Cir. queue empty 

2.Calculate freq. threshold= s.N/100 

3.Repeat 

4.For each transaction, Ti in TDS do 

5.Form the decimal rep. of Ti 

6.If CQ full then 

7.Remove oldest transaction,  T i-N from the front end and  

increment front circularly 

8Add Ti  at rear end after incrementing  rear circularly 

9.Until (interrupted) 

/* When user requests for frequent  

          Item sets the following phase starts */         

10.FI1 = {frequent 1- itemsets} 

11.k=2; 

12.While (FIk-1 ≠ NULL) do 

13.Form candidate set CI k from  

                     FIk-1 using apriori property to 

                     form candidates and MASK  

                    operation to find its support   

14.If CI k is NULL 

15.break     

16. Add the candidates in CI k to FI k          

                      if its support >= freq. threshold 

end 

This algorithm is used for finding the frequent item sets in 

the current transaction-sensitive sliding window maintained as a 

circular queue at the time that the user requests for the frequent 

item sets. Initially till the circular queue becomes full the 

initialization phase is done where each transaction gets 

converted into a decimal number based on the items present in it 

and it is stored in the circular queue representing the sliding 

window by incrementing the rear pointer (steps 4, 5 and 8). 

When the circular queue is full, slide the window to remove the 

oldest transaction and then insert the new transaction. (steps 

4,5,6,7 and 8). When the user requests for frequent item sets, the 

current sliding window is considered and the frequency 

calculation is done using steps 10-16. 

Performance Evaluation 

In this section, we will describe the experimental evaluation 

of the proposed algorithm, FIM-CQTransSWin. The programs 

are implemented in Java NetBeans version 6.8 and executed on a 

system with the following configuration:  Intel® Core™2 Duo 

CPU, E7500 @2.93 GHz, 1.98 GB RAM and 250GB Hard Disk 

running on Windows XP. For testing frequent itemset mining 

over the transaction-sensitive sliding windows implemented 

using circular queue concept, we generated synthetic data 

streams of size approximately 1K. To simulate data streams, the 

transactions were stored in a file and they were read one by one, 

converted into a number and stored in the sliding window. The 

parameters used in the experiments are shown in Table 5.1 

below 

0

500

1000

1500

2000

2500

3000

3500

3 5 7 9 11

Window Size

E
x
e
c
u

ti
o

n
 T

im
e
 i

n
 m

s

MFI_Trans

SW

FIM-

CQTransS

Win

 
Figure 5.1 Execution Time Vs Window Size 

D=1024, I=5 and s=60% 

Figure 5.1 gives the comparison of execution time in 

milliseconds as the window size is varied from three to twelve. 

The other parameters were no. of transactions=1024, minimum 

support threshold=60% and no. of items= 5. It clearly shows that 

execution time of MFI_TransSW increases faster than our 

proposed algorithm FIM-CQTransSWin.  
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Figure 5.2 Execution Time Vs Threshold 

D=1024, W=5, and I=7 

Figure 5.2 shows that execution time decreases as the 

threshold increases. The other parameters were no. of 

transactions=1024, window size=5, and no. of items= 7 and our 

proposed algorithm consistently outperforms the MFI_TransSW 

algorithm.
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Figure 5.3 shows that execution time increases as the 

number of items in transactions increase. The other parameters 

were no. of transactions=1024, minimum support 

threshold=60% and window size= 5. In this case also our 

proposed algorithm consistently outperforms the MFI_TransSW 

algorithm. 

Figure 5.4 shows that execution time decreases as the 

number of  transactions decrease. The other parameters were 

window size =5, minimum support threshold=60% and no. of 

items= 5 and in this case also our proposed algorithm 

consistently outperforms the MFI_TransSW algorithm except 

when the number of transactions is 800 in which case both 

algorithms show the same execution time. 

 
               Figure 5.3 Execution Time Vs Number of  Items 

D=1024, W=5,  and s=60% 

 
      Figure 5.4 Execution Time Vs Number of  Transactions 

 W=5, I=5 and s=60% 

Conclusion 

In this paper, we propose an efficient single-pass algorithm, 

called FIM-CQTransSWin to mine the frequent item sets from 

the current transaction-sensitive sliding windows. The window 

is  implemented using a circular queue  that improves the 

efficiency of the sliding operation. The entire transaction is 

represented as a single number which helps to reduce the 

memory usage. Experiments show that the proposed algorithm  

runs faster than the existing algorithm taken for comaparison 

purpose, MFI_TransSW. In future our work is to extend the 

algorithm to handle time-sensitive transaction window and also 

to mine closed frequent item sets rather than all frequent item 

sets. 
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Table 4.1 Item Equivalent Number 
Item Equivalent Number 

a 0 

b 1 

c 2 

d 3 

e 4 

 
Table 4.2 Candidate itemset C1 

Item Support 

a 1 

b 3 

c 2 

d 0 

e 3 

Prune the non-frequent items ‘a’ and‘d’. 

Since frequency threshold calculated is 2, 

items with support less than 2 are not 

frequent.  
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Table 4.6  Frequent itemset in TransSWin2 

Itemset Support 

b 3 

c 2 

e 3 

bc 2 

be 3 

ce 2 

bce 2 

 

Table 5.1 Parameters used in the experiments 
Parameter Description Value 

D Number of Transactions 1000, 800, 600, 400, 200 

I Number of Distinct Items 4, 5, 6, 7,  8 

s Minimum Support Threshold 40%, 50%, 60%, 70%, 80% 

N Window Size 3, 5, 7, 9, 11 

 

Table 4.3 Frequent itemset F1 
Item Support 

b 3 

c 2 

e 3 

 
     Table 4.4 Candidate item set C2 

Itemset Support 

bc 2 

be 3 

ce 2 

Support of all candidates is greater than or equal to 

2. So FI2 is same as CI2 

 

 Table 4.5 Candidate itemset C3 

Itemset Support 

bce 2 

Support of the only candidate is greater than or equal 

to 2. So FI3 is same as CI3. 

No further combinations are possible. So finally the 

frequent item sets in TransSWin2 are 

 

 


