
Mala et al./ Elixir Comp. Sci. & Engg. 41 (2011) 5704-5709

5704

Introduction
 Data stream mining is a challenging problem in the data

mining domain. Data stream are continuous, unbounded, come

with high speed and exhibit concept drift also. These features of

data streams make the mining of frequent patterns a difficult

task to achieve. But this is a basic task required in a large

number of applications like network monitoring and traffic

management, sensor network monitoring, transaction analysis of

e-commerce, web click stream monitoring and mining. The

above mentioned applications generate data streams of large

volume and also require frequent patterns to be mined from

them.

 Many challenges have to be overcome to mine such data

streams. The inherent challenges for mining streaming data are

discussed in detail in Babcock et al., 2002; Golab & Özsu,

2003; Jiang & Gruenwald, 2006. Some of the important issues

are

•Each element can be examined at most once

•Memory usage should be restricted even though the stream is

unbounded

•Data should be processed quickly and a real time response

should be provided to the user

•The possibility of errors is high in such quick processing, but it

should be maintained below a threshold

 To deal with these issues a single-pass mining of frequent

item sets over the data stream is needed. In most applications,

the interest is on the current data only. So, sliding windows can

be used to store the most recent transactions and mining is done

on this window only.

 In this paper, we propose an efficient one-pass algorithm for

mining frequent item sets present in a transaction-sensitive

sliding window implemented as a circular queue. The circular

queue makes the removal of oldest transaction from the sliding

 In this paper, we propose an efficient one-pass algorithm for

mining frequent item sets present in a transaction-sensitive

sliding window more efficient. The removal is accomplished by

circularly incrementing the front pointer rather than shift

operations used in previous algorithms like MFI-TransSW (Li &

Lee, 2009).

Related Work

 Efficient mining of frequent item sets over data streams

have been studied and many contributions made recently. The

research on mining data streams is broadly classified into three

categories namely landmark-window based mining (Li et al.,

2004; Li et al., 2005a; Li et al., 2005b; Manku & Montwani,

2002; Yu et al., 2006), damped-window based mining (Chang

& Lee, 2003; Gianella et al., 2003) and sliding-window based

mining (Chang & Lee, 2004; Chi et al., 2006; Lee et al., 2005).

 Landmark-window model focuses on the values between a

specific time called landmark and the current time. One of the

landmark-window based algorithms is Sticky sampling and lossy

counting which uses BTS (Manku & Montwani, 2002). Sticky

sampling and lossy counting is a two-pass algorithm which uses

a landmark-window and mines frequent patterns over data

Tele:

E-mail addresses: mala.elango@gmail.com,
message_to_ramesh@yahoo.com, kpk_73@yahoo.co.in

 © 2011 Elixir All rights reserved

Mining frequent itemsets over data streams using circular queues for efficient

maintenance of sliding windows
Mala A

1
, Ramesh Dhanaseelan F

2
 and K.Pazhani Kumar

3

1
Department of Information Technology, KNSK College of Engineering, Nagercoil, Tamilnadu, India

2
Department of Computer Applications, St. Xavier‟s Catholic College of Engineering, Nagercoil, Tamilnadu, India

3
Department of Computer Science, S.T. Hindu College, Nagercoil, Tamilnadu, India.

ABSTRACT

Mining frequent item sets from data streams is of great interest recently in many

applications. Sliding windows are used in many applications to overcome an important

problem with data streams i.e. unbound size. In this paper we propose an effective

transaction based one-pass algorithm that uses a circular queue to implement the transaction-

sensitive sliding window. The proposed algorithm, FIM_CQTransSWin has three phases

representation of transaction, maintenance of the sliding window and generation of frequent

item sets in the current sliding window. In the first phase, each transaction is read from the

data stream and is converted into a decimal number based on the items present in this

transaction. In the second phase, the decimal numbers representing the transactions are put

in a circular queue with the front pointer indicating the oldest transaction and the rear pointer

indicating the latest transaction. When the circular queue becomes full the oldest transaction

is removed using dequeue operation and then the new transaction is appended at the rear

end. The first and second phases are repeated indefinitely as long as the transactions keep

arriving in the data stream. The third phase gets activated when the user requests for the

frequent item sets. When the user request arrives, the frequent item sets in the current sliding

window are generated using the candidate generation approach of the apriori algorithm and

MASK operation.

 © 2011 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 13 September 2011;

Received in revised form:

16 November 2011;

Accepted: 28 November 2011;

Keywords

Data Streams,

Frequent item set,

Mining Streams,

Stream Mining algorithms,

Transaction-sensitivesliding windows.

Elixir Comp. Sci. & Engg. 41 (2011) 5704-5709

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Mala et al./ Elixir Comp. Sci. & Engg. 41 (2011) 5704-5709

5705

streams. BTS is a three-module method which uses a lattice-

based in-memory data structure and a landmark-window.

 Damped-window model gives more weightage to recent

transactions and less weightage to old transactions. EstDec

algorithm (Chang & Lee, 2003) is a damped-window based

algorithm for mining data streams where each transaction has a

weight that keeps decreasing with its age.

 Sliding-window model focuses on the most recent set of

transactions. This model is further classified into transaction-

sensitive and time-sensitive sliding window models. The basic

unit of processing in a transaction-sensitive sliding-window

model is a transaction. Transactions are added to the window as

they arrive and when the window is full, sliding takes place by

removing the oldest transaction and appending the latest

transaction. MFI-TransSW (Li & Lee, 2009) uses a transaction-

sensitive sliding-window model. In a time-sensitive sliding-

window model, a time unit is the basic processing unit. All

transactions belonging to a time unit is added to the window and

when it becomes full, all transactions belonging to the oldest

transaction unit are removed and all transactions belonging to

the new time unit are added. MFI-TimeSW (Li & Lee, 2009)

uses a time-sensitive sliding-window model. In this paper we

propose a one-pass algorithm FIM_CQTransSWin to mine the

set of frequent item sets within the current transaction-sensitive

sliding window. This algorithm shall use a circular queue

implementation of the sliding window to enable more efficient

sliding operation.

Problem Definition

 Let I= {i1, i2, i3 … im} be a set of items. A transaction Ti

is a subset of these items with an associated transaction

identifier that is unique to each transaction. A transaction data

stream, TDS is a continuous sequence of transactions, T1, T2,

T3 … TN. T1 is the oldest transaction and TN is the new

transaction. A transaction sensitive sliding window is

represented as TransSWin1, TransSWin2 … and so on. As the

transactions arrive, they are put in the window one-by-one. Once

the window is full, it slides forward for every new transaction

that arrives.

 A circular queue of size N is used to implement the sliding

window. The current sliding window will be the circular queue

between the front and rear pointers.

Fig. 3.1: Sliding Window of size N

When N transactions have arrived, the window (CQ)

becomes full. The arrival of the next transaction causes a sliding,

removal of the oldest transaction by means of dequeue operation

and appending the new transaction at the rear end. „s‟ is a user-

defined minimum support threshold percentage. Support(X) is

the number of transactions in the sliding window that contain

item set, X and it is said to be frequent if support(X) >= s.N/100.

The problem is to find the frequent item sets in the current

sliding window.

Example: Let the window size be 3 i.e. N=3 and support

threshold s=60% and a portion of the data stream TDS= {< T1,

(acd) >, < T2, (bce) >, < T3, (abce) >, < T4, (be) >}.

Therefore, frequency threshold = s.N/100=60x3/100 ≈ 2. And

also this leads to two sliding windows, TransSWin1=<T1, T2,

T3> and TransSWin2=<T2, T3, T4>

Fig. 3.2 Sliding Window, TransSWin1

Frequent item sets in this are {a, b, c, e, ac, bc, be, ce, bce}

Fig. 3.3 Sliding Window, TransSWin2

Frequent item sets in this are {b, c, bc, be, ce, bce}

FIM_CQTransSWin: Frequent Itemset mining within a

Circular Queue based Transaction-sensitive Sliding Window

In this section, we describe our proposed single-pass mining

algorithm, called FIM_CQTransSWin. It uses a decimal

representation of each transaction, Compared with other bit-

sequence based sliding window techniques, this algorithm shall

use less memory and shall be more fast since removal of oldest

transaction from the window requires only a pointer adjustment

instead of the costly shift operation.

Representation of Transaction

Consider that any transaction in the data stream may consist

of only items a, b, c, d, and e. Each item is represented by a

unique number 0, 1, 2, 3, and 4. Each transaction is represented

by a decimal number calculated from the representation of items

present in it. (Ramraj & Venkatesan, 2009)

< T1, (acd) >

Numeric equivalent of T1

 = 2
0
+2

2
+2

3

 = 1+4+8

 =13

Since a‟s equivalent is 0, c‟s equivalent is 2 and d‟s equivalent is

3.

< T2, (bce) >

Numeric equivalent of T2

 = 2
1
+2

2
+2

4

 = 2+4+16

 =22

< T3, (abce) >

Numeric equivalent of T3

 = 2
0
+2

1
+2

2
+2

4

 = 1+2+4+16

 =23

So before representing the transactions we should know the

number of unique items possible in any transaction in our data

stream. Then we should assign numbers to items accordingly in

some specific order. We use lexicographic order.

Window Maintenance phase of FIM-CQTransSWin

algorithm

Mala et al./ Elixir Comp. Sci. & Engg. 41 (2011) 5704-5709

5706

 The first part of this phase is window initialization where

the transactions are put into the window at the rear end as they

arrive after conversion into their corresponding decimal

representation. This continues till the window becomes full.

When the window is full the second part of this phase starts

which is the sliding of the window. The sliding is performed in

two steps: Removal of the oldest transaction by circularly

incrementing the front pointer and then adding the new

transaction (decimal representation) after incrementing the rear

pointer also circularly.

In our example, we are in the first part of our window

maintenance phase till the 4
th

 transaction arrives. When the 4
th

transaction arrives the window is already full, so we move into

the next part of this phase, the sliding of the window. First the

front pointer is incremented circularly which causes the oldest

transaction to be removed. Then the rear pointer is also

incremented circularly and new transaction is added into the

window.

Fig. 4.1: Initialization of sliding window

Fig. 4.2: Sliding After T4 arrives

Now the current window has the transactions T2, T3 and T4

with representations 22, 23 and 18.

Frequent Item set generation phase of FIM_CQTransSWin

Only when requested by the user, this phase begins and the

frequent item sets in the current sliding window are generated.

This phase uses the Apriori algorithm to find the frequent

itemsets using the candidate generation approach. The algorithm

uses the MASK operation to find the support of the candidates

generated to test whether they are frequent or not. This process

continues till no new candidates are generated.

Example: The user requests for itemsets after the arrival of 4
th

transaction. At this time the current sliding window is

TransWin2 and it has the numeric representations of the

transactions T2, T3, T4.

T2=22=10110

T3=23=10111

T4=18=10010

CI1 and FI1 formation

Initial candidates are items a, b, c, d and e. find the frequency of

each item using MASK operation as follows

T2 = 22 = 10110

Mask (a) = 00001

 00000

The result of masking operation is not Mask (a). So, we

conclude „a‟ is not present in T2.

T3= 23 = 10111

Mask (a) = 00001

 00001

The result of masking operation is equal to Mask (a). So, we

conclude „a‟ is present in T3.

T4= 18 = 10001

Mask (a) = 00010

 00000

The result of masking operation is not equal to Mask (a). So, we

conclude „a‟ is not present in T4. So support (a) =1 in the

TransSWin2. Similarly we can calculate the support of each

item.

CI2 and FI2 formation

Combinations to check are bc, be and ce. To find support of „bc‟

first find the mask of „bc‟ this is 00110.

T2= 22 = 10110

Mask (bc) = 00110

 00110

The result of masking operation is equal to Mask (bc). So, we

conclude „bc‟ is present in T2.

 T3= 23 = 10111

Mask (bc)= 00110

 00110

The result of masking operation is equal to Mask (bc). So, we

conclude „bc‟ is present in T3.

T4= 18 = 10010

Mask (bc) = 00110

Mala et al./ Elixir Comp. Sci. & Engg. 41 (2011) 5704-5709

5707

 00010

The result of masking operation is not equal to Mask (bc). So,

we conclude „bc‟ is not present in T4. So support (bc) =2 in the

TransSWin2. Similarly we can calculate the support of the other

combinations „be‟ and „ce‟.

CI3 and FI3 formation

Combinations to check are only 'bce‟.

T2= 22 = 10110

Mask (bce) = 10110

 10110

The result of masking operation is equal to Mask (bce). So, we

conclude „bce‟ is present in T2.

T3= 23 = 10111

Mask (bce) = 10110

 10110

The result of masking operation is equal to Mask (bce). So, we

conclude „bce‟ is present in T3.

T4= 18 = 10010

Mask (bce) = 10110

 10010

The result of masking operation is not equal to Mask (bce). So,

we conclude „bce‟ is not present in T4.

So support (bce) =2 in the TransSWin2.

FIM_CQTransSWin Algorithm

Input: TDS a transaction data stream

 s an user defined support

 threshold percentage

N size of circular used to

 Represent the sliding win.

Output: A table of frequent item sets and their support

Begin

1.Front = rear = -1//Cir. queue empty

2.Calculate freq. threshold= s.N/100

3.Repeat

4.For each transaction, Ti in TDS do

5.Form the decimal rep. of Ti

6.If CQ full then

7.Remove oldest transaction, T i-N from the front end and

increment front circularly

8Add Ti at rear end after incrementing rear circularly

9.Until (interrupted)

/* When user requests for frequent

 Item sets the following phase starts */

10.FI1 = {frequent 1- itemsets}

11.k=2;

12.While (FIk-1 ≠ NULL) do

13.Form candidate set CI k from

 FIk-1 using apriori property to

 form candidates and MASK

 operation to find its support

14.If CI k is NULL

15.break

16. Add the candidates in CI k to FI k

 if its support >= freq. threshold

end

This algorithm is used for finding the frequent item sets in

the current transaction-sensitive sliding window maintained as a

circular queue at the time that the user requests for the frequent

item sets. Initially till the circular queue becomes full the

initialization phase is done where each transaction gets

converted into a decimal number based on the items present in it

and it is stored in the circular queue representing the sliding

window by incrementing the rear pointer (steps 4, 5 and 8).

When the circular queue is full, slide the window to remove the

oldest transaction and then insert the new transaction. (steps

4,5,6,7 and 8). When the user requests for frequent item sets, the

current sliding window is considered and the frequency

calculation is done using steps 10-16.

Performance Evaluation

In this section, we will describe the experimental evaluation

of the proposed algorithm, FIM-CQTransSWin. The programs

are implemented in Java NetBeans version 6.8 and executed on a

system with the following configuration: Intel® Core™2 Duo

CPU, E7500 @2.93 GHz, 1.98 GB RAM and 250GB Hard Disk

running on Windows XP. For testing frequent itemset mining

over the transaction-sensitive sliding windows implemented

using circular queue concept, we generated synthetic data

streams of size approximately 1K. To simulate data streams, the

transactions were stored in a file and they were read one by one,

converted into a number and stored in the sliding window. The

parameters used in the experiments are shown in Table 5.1

below

0

500

1000

1500

2000

2500

3000

3500

3 5 7 9 11

Window Size

E
x
e
c
u

ti
o

n
 T

im
e
 i

n
 m

s

MFI_Trans

SW

FIM-

CQTransS

Win

Figure 5.1 Execution Time Vs Window Size

D=1024, I=5 and s=60%

Figure 5.1 gives the comparison of execution time in

milliseconds as the window size is varied from three to twelve.

The other parameters were no. of transactions=1024, minimum

support threshold=60% and no. of items= 5. It clearly shows that

execution time of MFI_TransSW increases faster than our

proposed algorithm FIM-CQTransSWin.

0

1000

2000

3000

4000

5000

40 50 60 70 80

Minimum support

Threshold(%)

E
x
e
c
u

ti
o

n
 T

im
e
 i

n
 m

s

MFI_TransS

W

FIM-

CQTransS

Win

Figure 5.2 Execution Time Vs Threshold

D=1024, W=5, and I=7

Figure 5.2 shows that execution time decreases as the

threshold increases. The other parameters were no. of

transactions=1024, window size=5, and no. of items= 7 and our

proposed algorithm consistently outperforms the MFI_TransSW

algorithm.

Mala et al./ Elixir Comp. Sci. & Engg. 41 (2011) 5704-5709

5708

Figure 5.3 shows that execution time increases as the

number of items in transactions increase. The other parameters

were no. of transactions=1024, minimum support

threshold=60% and window size= 5. In this case also our

proposed algorithm consistently outperforms the MFI_TransSW

algorithm.

Figure 5.4 shows that execution time decreases as the

number of transactions decrease. The other parameters were

window size =5, minimum support threshold=60% and no. of

items= 5 and in this case also our proposed algorithm

consistently outperforms the MFI_TransSW algorithm except

when the number of transactions is 800 in which case both

algorithms show the same execution time.

 Figure 5.3 Execution Time Vs Number of Items

D=1024, W=5, and s=60%

 Figure 5.4 Execution Time Vs Number of Transactions

 W=5, I=5 and s=60%

Conclusion

In this paper, we propose an efficient single-pass algorithm,

called FIM-CQTransSWin to mine the frequent item sets from

the current transaction-sensitive sliding windows. The window

is implemented using a circular queue that improves the

efficiency of the sliding operation. The entire transaction is

represented as a single number which helps to reduce the

memory usage. Experiments show that the proposed algorithm

runs faster than the existing algorithm taken for comaparison

purpose, MFI_TransSW. In future our work is to extend the

algorithm to handle time-sensitive transaction window and also

to mine closed frequent item sets rather than all frequent item

sets.

References
Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.,

“Models and issues in data stream systems”. In Proceedings of

the PODS, 2002, pp. 1–16.

Chang, J., Lee W., “Finding recent frequent itemsets adaptively

over online data streams”. In Proceedings of the ACM SIGKDD,

2003, pp. 487–492.

Chang, J., & Lee W., “A sliding window method for finding

recently frequent itemsets over online data streams”. Journal of

Information Science and Engineering, 2004, 20(4), pp. 753–762.

Chi Y., Wang H., Yu P. S., & Muntz R. R., “Catch the moment:

Maintaining closed frequent itemsets over a data stream sliding

window”. Knowledge and Information Systems, 2006, 10(3), pp.

265–294.

Giannella C., Han J., Pei J., Yan X., & Yu P. S., “Mining

frequent patterns in data streams at multiple time granularities”.

In H. Kargupta, A. Joshi, K. Sivakumar, & Y. Yesha (Eds.), Data

mining: Next generation challenges and future directions. AAAI/

MIT, 2003.

Golab L., & Özsu M. T., “Issues in data stream management”,

SIGMOD Record, 2003, 32(2), pp. 5–14.

Hua-Fu Li & Suh-Yin Lee “Mining frequent item sets over data

streams using efficient window sliding techniques”. Expert

Systems with Applications, 36(2009), pp. 1466–1477

Jiang N., & Gruenwald L., “Research issues in data stream

association rule mining”, SIGMOD Record, 2006, 35(1).

Lee C.H., Lin C.R., & Chen M.S., “Sliding window filtering: An

efficient method for incremental mining on a time-variant

database”. Information Systems, 2005, 30, pp. 227–244.

Li H.F., Lee S.Y., Shan M.K., “An efficient algorithm for

mining frequent itemsets over the entire history of data streams”,

In Proceedings of the IWKDDS, 2004.

Li H.F., Lee S.Y., Shan M.K., “Online mining (recently)

maximal frequent itemsets over data streams”, In Proceedings of

the IEEE RIDE, 2005a.

Li H.F., Lee S.Y., & Shan M.K., “Online mining changes of

items over continuous append-only and dynamic data streams”,

Journal of Universal Computer Science: Special Issue on

Knowledge Discovery in Data Streams, 2005b, 11(8), pp. 1411–

1425.

Manku G. S., Motwani R., “Approximate frequency counts over

data streams”, In Proceedings of the VLDB, 2002, pp. 346–357.

Ramraj E., Venkatesan N.: “Bit Stream Mask-Search Algorithm

in Frequent Itemset Mining”; European Journal of Scientific

Research; Vol.27 No.2, 2009, pp. 286-297

Yu J.X., Chong Z., Lu H., Zhang Z., & Zhou A., “A false

negative approach to mining frequent itemsets from high speed

transactional data streams”, Information Sciences,2006,

176(14), pp. 1986–2015.

Table 4.1 Item Equivalent Number
Item Equivalent Number

a 0

b 1

c 2

d 3

e 4

Table 4.2 Candidate itemset C1

Item Support

a 1

b 3

c 2

d 0

e 3

Prune the non-frequent items ‘a’ and‘d’.

Since frequency threshold calculated is 2,

items with support less than 2 are not

frequent.

Mala et al./ Elixir Comp. Sci. & Engg. 41 (2011) 5704-5709

5709

Table 4.6 Frequent itemset in TransSWin2

Itemset Support

b 3

c 2

e 3

bc 2

be 3

ce 2

bce 2

Table 5.1 Parameters used in the experiments
Parameter Description Value

D Number of Transactions 1000, 800, 600, 400, 200

I Number of Distinct Items 4, 5, 6, 7, 8

s Minimum Support Threshold 40%, 50%, 60%, 70%, 80%

N Window Size 3, 5, 7, 9, 11

Table 4.3 Frequent itemset F1
Item Support

b 3

c 2

e 3

 Table 4.4 Candidate item set C2

Itemset Support

bc 2

be 3

ce 2

Support of all candidates is greater than or equal to

2. So FI2 is same as CI2

 Table 4.5 Candidate itemset C3

Itemset Support

bce 2

Support of the only candidate is greater than or equal

to 2. So FI3 is same as CI3.

No further combinations are possible. So finally the

frequent item sets in TransSWin2 are

