Q-homomorphism in q-fuzzy subgroups

A Vethamanickam, KR Balasubramanian and K.L.Muruganantha Prasad
Department of Mathematics, H.H.The Rajahs College,Pudukkottai-622001.

ARTICLE INFO

Article history:

Received: 24 August 2011;
Received in revised form:
16 November 2011;
Accepted: 27 November 2011;

Keywords

Fuzzy subset,
Q-fuzzy subset,
Q-fuzzysubgroup,
Q-homomorphism,
Q-antihomomorphism,
Strongest Q-fuzzy relation.

Introduction

After the introdution of fuzzy sets by L.A.Zadeh [18], several researchers explored on the generalization of the notion of fuzzy set. Azriel Rosenfeld [3] defined a Fuzzy groups. Anthony.J.M. and Sherwood.H[2] defined a fuzzy groups redefined. Choudhury.F.P. and Chakraborty.A.B. and Khare.S.S.[5] defined a fuzzy subgroups and fuzzy homomorphism. A.Solairaju and R.Nagarajan[14] have introduced and defined a new algebraic structure called Q-fuzzy subgroups. We introduce the concept of Q-homomorphism in Qfuzzy subgroups and established some results.

Preliminaries:

Definition: Let X be a non-empty set. A fuzzy subset A of X is a function $\mathrm{A}: \mathrm{X} \rightarrow[0,1]$.
Definition: Let X be a non-empty set and Q be a non-empty set. A Q -fuzzy subset A of X is a function $\mathrm{A}: \mathrm{XxQ} \rightarrow[0,1]$.
Example: Let $X=\{a, b, c\}$ be a set and $Q=\{p\}$. Then $A=\{$ $\langle(\mathrm{a}, \mathrm{p}), 0.4\rangle,\langle(\mathrm{b}, \mathrm{p}), 0.2\rangle,\langle(\mathrm{c}, \mathrm{p}), 0.5\rangle\}$ is a Q-fuzzy subset of X.
Definition: The union of two Q-fuzzy subsets A and B of a set X is defined by $(A \cup B)(x, q)=\max \{A(x, q), B(x, q)\}$, for all x in X and q in Q .
Definition: The intersection of two Q-fuzzy subsets A and B of a set X is defined by $(A \cap B)(x, q)=\min \{A(x, q), B(x, q)\}$, for all x in X and q in Q.
Definition: If ($\mathrm{G},$.) and $\left(\mathrm{G}^{\prime},.\right)$ are any two groups and Q be a non-empty set, then the function $f: G x Q \rightarrow G^{1} x Q$ is called a $Q-$ homomorphism if $f(x y, q)=f(x, q) f(y, q)$, for all x and y in G and q in Q .
Definition: If ($\mathrm{G},$.) and $\left(\mathrm{G}^{\prime},.\right)$ are any two groups and Q be a non-empty set, then the function $f: G x Q \rightarrow G^{\prime} x Q$ is called a $Q-$ antihomomorphism if $f(x y, q)=f(y, q) f(x, q)$, for all x and y in G and q in Q .
Definition: Let (G, \cdot) be a group and Q be a set. A Q-fuzzy subset A of G is said to be a Q-fuzzy subgroup(QFSG) of G if the following conditions are satisfied:

Abstract

In this paper, we study the Q-homomorphism in Q-fuzzy subgroup and prove some results on these.

2000 AMS SUBJECT CLASSIFICATION: 03F55, 08A72, 20N25.
(C) 2011 Elixir All rights reserved.
(i) $\mathrm{A}(\mathrm{xy}, \mathrm{q}) \geq \min \{\mathrm{A}(\mathrm{x}, \mathrm{q}), \mathrm{A}(\mathrm{y}, \mathrm{q})\}$,
(ii) $A\left(x^{-1}, q\right) \geq A(x, q)$, for all x and y in G and q in Q.

Definition: Let (G, \cdot) and $\left(\mathrm{G}^{\prime}, \cdot \cdot\right)$ be any two groups and Q be a set. Let $\mathrm{f}: \mathrm{GxQ} \rightarrow \mathrm{G}^{\prime} \mathrm{xQ}$ be any function and A be a Q -fuzzy subgroup in G, V be a Q-fuzzy subgroup in $f(G x Q)=G^{\prime} x Q$, defined by $V(y, q)=\sup A(x, q)$, for all x in G and y in G^{\prime} and q in Q . Then A is called a preimage of V under f and is denoted by $\mathrm{f}^{-1}(\mathrm{~V})$.
Definition: Let A and B be any two Q-fuzzy subsets of sets G and H, respectively. The product of A and B, denoted by $A x B$, is defined as $A x B=\{\langle((x, y), q), \operatorname{AxB}((x, y), q)\rangle /$ for all x in G and y in H and q in $Q\}$, where $A x B((x, y), q)=\min \{A(x$, q), $B(y, q)\}$.

Definition: Let A and B be any two Q-fuzzy subgroups of a group (G, \cdot). Then A and B are said to be conjugate Q-fuzzy subgroups of G if for some g in $G, A(x, q)=B\left(g^{-1} x g, q\right)$, for every x in G and q in Q .
Definition: Let A be a Q-fuzzy subset in a set S , the strongest Q-fuzzy relation on S, that is a Q -fuzzy relation on A is V given by $V((x, y), q)=\min \{A(x, q), A(y, q)\}$, for all x and y in S and q in Q.
Proposition: Let A be a Q-fuzzy subgroup of a group G. If $A(x, q)<A(y, q)$, for some x and y in G and q in Q, then $A(x y$, $q)=A(x, q)=A(y x, q)$, for all x and y in G and q in Q.
proof: Let A be a Q-fuzzy subgroup of a group G. Also we have $A(x, q)<A(y, q)$, for some x and y in G and q in $Q, A(x y$, $q) \geq \min \{A(x, q), A(y, q)\}=A(x, q) ;$ and $A(x, q)=A\left(x y y^{-1}\right.$, $q) \geq \min \left\{A(x y, q), A\left(y^{-1}, q\right)\right\} \geq \min \{A(x y, q), A(y, q)\}=$ $A(x y, q)$. Therefore, $A(x y, q)=A(x, q)$, for all x and y in G and q in Q. And, $A(y x, q) \geq \min \{A(y, q), A(x, q)\}=A(x, q) ;$ and $A(x, q)=A\left(y^{-1} y x, q\right) \geq \min \left\{A\left(y^{-1}, q\right), A(y x, q)\right\} \geq \min \{A(y$, q), $A(y x, q)\}=A(y x, q)$.

Therefore, $A(y x, q)=A(x, q)$, for all x and y in G and q in Q. Hence $A(x y, q)=A(x, q)=A(y x, q)$, for all x and y in G and q in Q .

Tele:

E-mail addresses: dr_vethamanickam@yahoo.co.in,
balamohitha@gmail.com, lkmprasad@gmail.com

Proposition: Let A be a Q-fuzzy subgroup of a group G. If A(x, $q)>A(y, q)$, for some x and y in G and q in Q, then $A(x y, q)=$ $A(y, q)=A(y x, q)$, for all x and y in G and q in Q.
Proof: It is trivial.
Proposition: Let A be a Q-fuzzy subgroup of a group G such that $\operatorname{Im} A=\{\alpha\}$, where α in $[0,1]$. If $A=B \cup C$, where B and C are Q-fuzzy subgroups of G, then either $B \subseteq C$ or $C \subseteq B$.
Proof: Let $A=B \cup C=\{\langle(x, q), A(x, q)\rangle / x$ in G and q in $Q\}$, $B=\{\langle(x, q), B(x, q)\rangle / x$ in G and q in $Q\}$ and $C=\{\langle(x, q)$, $\mathrm{C}(\mathrm{x}, \mathrm{q})\rangle / \mathrm{x}$ in G and q in Q$\}$. Assume that $\mathrm{B}(\mathrm{x}, \mathrm{q})>\mathrm{C}(\mathrm{x}, \mathrm{q})$ and $\mathrm{B}(\mathrm{y}, \mathrm{q})<\mathrm{C}(\mathrm{y}, \mathrm{q})$, for some x and y in G and q in Q . Then, $\alpha=$ $A(x, q)=B \cup C(x, q)=\max \{B(x, q), C(x, q)\}=B(x, q)>C(x$, q). Therefore, $\alpha>C(x, q)$. And, $\alpha=A(y, q)=B \cup C(y, q)=\max \{$ $B(y, q), C(y, q)\}=C(y, q)>B(y, q)$. Therefore, $\alpha>B(y, q)$. So that, $C(y, q)>C(x, q)$ and $B(x, q)>B(y, q)$. Hence $B(x y, q)=$ $B(y, q)$ and $C(x y, q)=C(x, q)$, by Proposition 1.1 and 1.2. But then, $\alpha=A(x y, q)=B \cup C(x, q)=\max \{B(x y, q), C(x y, q)\}=$ $\max \{B(y, q), C(x, q)\}<\alpha--------(1)$. It is a contradiction by (1).

Therefore, either $\mathrm{B} \subseteq \mathrm{C}$ or $\mathrm{C} \subseteq \mathrm{B}$ is true.
Proposition: If A and B are Q-fuzzy subgroups of the groups G and H, respectively, then AxB is a Q-fuzzy subgroup of GxH. Proof: Let A and B be Q-fuzzy subgroups of the groups G and H respectively.
Let x_{1} and x_{2} be in G, y_{1} and y_{2} be in H. Then (x_{1}, y_{1}) and (x_{2}, $\left.y_{2}\right)$ are in GxH. Now, $\operatorname{AxB}\left[\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right), q\right]=\operatorname{AxB}\left(\left(x_{1} x_{2}\right.\right.$, $\left.\left.y_{1} y_{2}\right), q\right)=\min \left\{A\left(x_{1} x_{2}, q\right), B\left(y_{1} y_{2}, q\right)\right\} \geq \min \left\{\min \left\{A\left(x_{1}, q\right)\right.\right.$, $\left.\left.A\left(x_{2}, q\right)\right\}, \min \left\{B\left(y_{1}, q\right), B\left(y_{2}, q\right)\right\}\right\}=\min \left\{\min \left\{A\left(x_{1}, q\right), B\left(y_{1}\right.\right.\right.$, q) $\left.\}, \min \left\{A\left(x_{2}, q\right), B\left(y_{2}, q\right)\right\}\right\}=\min \left\{A x B\left(\left(x_{1}, y_{1}\right), q\right), A x B(\right.$ $\left.\left.\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{q}\right)\right\}$. Therefore, $\operatorname{AxB}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{q}\right] \geq \min \{\operatorname{AxB}$ $\left.\left(\left(x_{1}, y_{1}\right), q\right), \operatorname{AxB}\left(\left(x_{2}, y_{2}\right), q\right)\right\}$. And $\operatorname{AxB}\left[\left(x_{1}, y_{1}\right)^{-1}, q\right]=\operatorname{AxB}($ $\left.\left(\mathrm{x}_{1}{ }^{-1}, \mathrm{y}_{1}{ }^{-1}\right), \mathrm{q}\right)=\min \left\{\mathrm{A}\left(\mathrm{x}_{1}{ }^{-1}, \mathrm{q}\right), \mathrm{B}\left(\mathrm{y}_{1}{ }^{-1}, \mathrm{q}\right)\right\} \geq \min \left\{\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{q}\right)\right.$, $\left.B\left(y_{1}, q\right)\right\}=\operatorname{AxB}\left(\left(x_{1}, y_{1}\right), q\right)$. Therefore, $\operatorname{AxB}\left[\left(x_{1}, y_{1}\right)^{-1}, q\right] \geq$ AxB ($\left.\left(x_{1}, y_{1}\right), q\right)$. Hence AxB is a Q-fuzzy subgroup of GxH.
Proposition: Let a Q-fuzzy subgroup A of a group G be conjugate to a Q -fuzzy subgroup M of G and a Q -fuzzy subgroup B of a group H be conjugate to a Q-fuzzy subgroup N of H. Then a Q-fuzzy subgroup AxB of a group GxH is conjugate to a Q-fuzzy subgroup MxN of GxH.
Proof: Let A and B be Q-fuzzy subgroups of the groups G and H respectively.
Let $\mathrm{x}, \mathrm{x}^{-1}$ and f be in G and $\mathrm{y}, \mathrm{y}^{-1}$ and g be in H . Then (x, y), (x^{-} $\left.{ }^{1}, y^{-1}\right)$ and (f,g) are in GxH. Now, $\operatorname{AxB}((f, g), q)=\min \{A(f$, $q), B(g, q)\}=\min \left\{M\left(x f x^{-1}, q\right), N\left(\operatorname{yg~y}^{-1}, q\right)\right\}=\operatorname{MxN}\left(\left(\operatorname{xfx}^{-1}\right.\right.$, $\left.\left.y g y^{-1}\right), q\right)=\operatorname{MxN}\left[(x, y)(f, g)\left(x^{-1}, y^{-1}\right), q\right]=\operatorname{MxN}[(x, y)(f$, $\left.\mathrm{g})(\mathrm{x}, \mathrm{y})^{-1}, \mathrm{q}\right]$. Therefore, $\operatorname{AxB}((\mathrm{f}, \mathrm{g}), \mathrm{q})=\operatorname{MxN}[(\mathrm{x}, \mathrm{y})(\mathrm{f}$, $\left.\mathrm{g})(\mathrm{x}, \mathrm{y})^{-1}, \mathrm{q}\right]$. Hence a Q-fuzzy subgroup AxB of GxH is conjugate to a Q-fuzzy subgroup MxN of GxH .
Proposition: Let A and B be Q-fuzzy subsets of the groups G and H, respectively. Suppose that e and e 'are the identity element of G and H , respectively. If AxB is a Q -fuzzy subgroup of GxH , then at least one of the following two statements must hold.
(i) $\mathrm{B}\left(\mathrm{e}^{\mathrm{l}}, \mathrm{q}\right) \geq \mathrm{A}(\mathrm{x}, \mathrm{q})$, for all x in G and q in Q ,
(ii) $A(e, q) \geq B(y, q)$, for all y in H and q in Q.

Proof: Let AxB is a Q-fuzzy subgroup of GxH. By contraposition, suppose that none of the statements (i) and (ii) holds. Then we can find a in G and b in H such that $A(a, q)>$ $B\left(e^{\prime}, q\right)$ and $B(b, q)>A(e, q), q$ in Q. We have, $\operatorname{AxB}((a, b), q)=\min \{A(a, q), B(b, q)\}>\min \left\{A(e, q), B\left(e^{\prime}, q\right)=\right.$ $\operatorname{AxB}\left(\left(e, e^{\prime}\right), q\right)$.

Thus AxB is not a Q-fuzzy subgroup of GxH. Hence either $B\left(e^{\prime}\right.$, $q) \geq A(x, q)$, for all x in G and q in Q or $A(e, q) \geq B(y, q)$, for all y in H and q in Q .
Proposition: Let A and B be Q-fuzzy subsets of the groups G and H , respectively and AxB is a Q-fuzzy subgroup of GxH. Then the following are true:
(i) if $A(x, q) \leq B\left(e^{\prime}, q\right)$, then A is a Q-fuzzy subgroup of G.
(ii) if $B(x, q) \leq A(e, q)$, then B is a Q-fuzzy subgroup of H.
(iii) either A is a Q-fuzzy subgroup of G or B is a Q-fuzzy subgroup of H .
Proof: Let AxB be a Q-fuzzy subgroup of $G x H$, x and y in G and q in Q. Then (x, e^{\prime}) and (y, e^{\prime}) are in GxH. Now, using the property $\mathrm{A}(\mathrm{x}, \mathrm{q}) \leq \mathrm{B}\left(\mathrm{e}^{\prime}, \mathrm{q}\right)$, for all x in G and q in Q , we get, $A\left(x y^{-1}, q\right)=\min \left\{A\left(x y^{-1}, q\right), B\left(e^{1} e^{1}, q\right)\right\}=A x B\left(\left(\left(x y^{-1}\right),\left(e^{1} e^{\prime}\right)\right.\right.$ $), q)=\operatorname{AxB}\left[\left(x, e^{1}\right)\left(y^{-1}, e^{1}\right), q\right] \geq \min \left\{\operatorname{AxB}\left(\left(x, e^{1}\right), q\right), \operatorname{AxB}(\right.$ $\left.\left.\left(y^{-1}, e^{1}\right), q\right)\right\}=\min \left\{\min \left\{A(x, q), B\left(e^{1}, q\right)\right\}, \min \left\{A\left(y^{-1}, q\right), B\left(e^{\prime}\right.\right.\right.$, q) $\}\}=\min \left\{A(x, q), A\left(y^{-1}, q\right)\right\} \geq \min \{A(x, q), A(y, q)\}$. Therefore, $A\left(x y^{-1}, q\right) \geq \min \{A(x, q), A(y, q)\}$, for all x, y in G and q in Q.Hence A is a Q-fuzzy subgroup of G.
Thus (i) is proved.
Now, using the property $\mathrm{B}(\mathrm{x}, \mathrm{q}) \leq \mathrm{A}(\mathrm{e}, \mathrm{q})$, for all x in H and q in Q, we get, $B\left(x y^{-1}, q\right)=\min \left\{B\left(x y^{-1}, q\right), A(e e, q)\right\}=A x B(($ (ee) , $\left.\left.\left(\mathrm{xy}^{-1}\right)\right), \mathrm{q}\right)=\operatorname{AxB}\left[(\mathrm{e}, \mathrm{x})\left(\mathrm{e}, \mathrm{y}^{-1}\right), \mathrm{q}\right] \geq \min \{\operatorname{AxB}((\mathrm{e}, \mathrm{x})$, q), $\left.\operatorname{AxB}\left(\left(e, y^{-1}\right), q\right)\right\}=\min \left\{\min \{B(x, q), A(e, q)\}, \min \left\{B\left(y^{-1}\right.\right.\right.$, q), $A(e, q)\}\}=\min \left\{B(x, q), B\left(y^{-1}, q\right)\right\} \geq \min \{B(x, q), B(y, q)$ \}. Therefore, $B\left(x y^{-1}, q\right) \geq \min \{B(x, q), B(y, q)\}$, for all x and y in H and q in Q . Hence B is a Q-fuzzy subgroup of H .
Thus (ii) is proved. (iii) is clear.
Proposition: Let A be a Q-fuzzy subset of a group G and V be the strongest Q -fuzzy relation of G . Then A is a Q -fuzzy subgroup of G if and only if V is a Q -fuzzy subgroup of GxG .
Proof: Suppose that A is a Q-fuzzy subgroup of G. Then for any $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ and $\mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ are in GxG. We have, $\mathrm{V}((\mathrm{x}-\mathrm{y}), \mathrm{q})=$ $\mathrm{V}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)-\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right), \mathrm{q}\right]=\mathrm{V}\left(\left(\mathrm{x}_{1}-\mathrm{y}_{1}, \mathrm{x}_{2}-\mathrm{y}_{2}\right), \mathrm{q}\right)=\min \left\{\mathrm{A}\left(\left(\mathrm{x}_{1}-\right.\right.\right.$ $\left.\left.\left.y_{1}\right), q\right), \quad A\left(\left(x_{2}-y_{2}\right), q\right)\right\} \geq \min \left\{\min \left\{A\left(x_{1}, q\right), A\left(y_{1}, q\right)\right\}\right.$, $\left.\min \left\{A\left(x_{2}, q\right), A\left(y_{2}, q\right)\right\}\right\}=\min \left\{\min \left\{A\left(x_{1}, q\right), A\left(x_{2}, q\right)\right\}\right.$, $\left.\min \left\{A\left(y_{1}, q\right), A\left(y_{2}, q\right)\right\}\right\}=\min \left\{V\left(\left(x_{1}, x_{2}\right), q\right), V\left(\left(y_{1}, y_{2}\right), q\right)\right\}$ $=\min \{V(x, q), V(y, q)\}$. Therefore, $V((x-y), q) \geq \min \{V$ $(\mathrm{x}, \mathrm{q}), \mathrm{V}(\mathrm{y}, \mathrm{q})$ \}, for all x and y in GxG and q in Q . This proves that V is a Q-fuzzy subgroup of GxG. Conversely, assume that V is a Q-fuzzy subgroup of GxG, then for any $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ and y $=\left(y_{1}, y_{2}\right)$ are in $G x G$, we have $\min \left\{A\left(\left(x_{1}-y_{1}\right), q\right), A\left(\left(x_{2}-\right.\right.\right.$ $\left.\left.\left.y_{2}\right), q\right)\right\}=V\left(\left(x_{1}-y_{1}, x_{2}-y_{2}\right), q\right)=V\left[\left(x_{1}, x_{2}\right)-\left(y_{1}, y_{2}\right), q\right]$ $=V((x-y), q) \geq \min \{V(x, q), V(y, q)\}=\min \left\{V\left(\left(x_{1}, x_{2}\right)\right.\right.$, $\left.\mathrm{q}), \mathrm{V}\left(\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right), \mathrm{q}\right)\right\}=\min \left\{\min \left\{\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{q}\right), \mathrm{A}\left(\mathrm{x}_{2}, \mathrm{q}\right)\right\}, \min \left\{\mathrm{A}\left(\mathrm{y}_{1}\right.\right.\right.$, q), $\left.A\left(y_{2}, q\right)\right\}$.

If we put $x_{2}=y_{2}=0$, we get, $A\left(\left(x_{1}-y_{1}\right), q\right) \geq \min \left\{A\left(x_{1}, q\right)\right.$, $A\left(y_{1}, q\right)$, for all x_{1} and y_{1} in G and q in Q. Hence A is a Q-fuzzy subgroup of G.
Proposition: Let (G, \cdot) and ($\mathrm{G}^{\prime}, \cdot$) be any two groups and Q be a non-empty set. The Q -homomorphic image of a Q-fuzzy subgroup of G is a Q-fuzzy subgroup of G^{l}.
Proof: Let (G, \cdot) and ($\mathrm{G}^{\prime}, \cdot$) be any two groups and Q be a non-empty set and $f: G x Q \rightarrow G^{\prime} x Q$ be a Q-homomorphism. That is $f(x y, q)=f(x, q) f(y, q)$, for all x and y in G and q in Q. Let $\mathrm{V}=\mathrm{f}(\mathrm{A})$, where A is a Q -fuzzy subgroup of G . We have to prove that V is a Q-fuzzy subgroup of G^{\prime}. Now, for $f(x, q)$ and $f(y, q)$ in $G^{\prime} x Q$, we have $V(f(x, q) f(y, q))=V(f(x y, q)) \geq A(x y, q) \geq$ $\min \{A(x, q), A(y, q)\}$ which implies that $V(f(x, q) f(y, q)) \geq$ $\min \{V(f(x, q)), V(f(y, q))\}$. For $f(x, q)$ in $G^{\prime} x Q$, we have $V($ $\left.[f(x, q)]^{-1}\right)=V\left(f\left(x^{-1}, q\right)\right) \geq A\left(x^{-1}, q\right) \geq A(x, q)$ which implies
that $V\left([f(x, q)]^{-1}\right) \geq V(f(x, q))$. Hence V is a Q-fuzzy subgroup of a group G^{\prime}.
Proposition: Let (G, \cdot) and ($\mathrm{G}^{\prime}, \cdot$) be any two groups and Q be a non-empty set. The Q-homomorphic pre-image of a Qfuzzy subgroup of G^{\prime} is a Q-fuzzy subgroup of G .
Proof: Let (G, \cdot) and ($\left.\mathrm{G}^{\prime}, \cdot\right)$ be any two groups and Q be a non-empty set and $f: G x Q \rightarrow G^{\prime} x Q$ be a Q -homomorphism. That is $f(x y, q)=f(x, q) f(y, q)$, for all x and y in G and q in Q. Let $V=f(A)$, where V is a Q-fuzzy subgroup of G^{\prime}. We have to prove that A is a Q-fuzzy subgroup of G. Let x and y in G and q in Q. Then, $A(x y, q)=V(f(x y, q))=V(f(x, q) f(y, q)) \geq \min \{V(f(x$, q) $), V(f(y, q))\}=\min \{A(x, q), A(y, q)\}$ which implies that $\mathrm{A}(\mathrm{xy}, \mathrm{q}) \geq \min \{\mathrm{A}(\mathrm{x}, \mathrm{q}), \mathrm{A}(\mathrm{y}, \mathrm{q})\}$, for x and y in G and q in Q . And $A\left(x^{-1}, q\right)=V\left(f\left(x^{-1}, q\right)\right) \quad=V\left([f(x, q)]^{-1}\right) \geq V(f(x, q))=$ $A(x, q)$ which implies that $A\left(x^{-1}, q\right) \geq A(x, q)$, for x in G and q in Q . Hence A is a Q -fuzzy subgroup of a groupG.
Proposition: Let (G, \cdot) and ($\mathrm{G}^{\prime}, \cdot$) be any two groups and Q be a non-empty set. The Q-antihomomorphic image of a Qfuzzy subgroup of G is a Q-fuzzy subgroup of G^{\prime}.
Proof: Let (G, \cdot) and (G^{1}, \cdot) be any two groups and Q be a set and $f: G x Q \rightarrow G^{\prime} x Q$ be a Q-antihomomorphism. That is $f(x y, q)$ $=f(y, q) f(x, q)$, for all x and y in G and q in Q. Let $V=f(A)$, where A is a Q -fuzzy subgroup of G . We have to prove that V is a Q-fuzzy subgroup of G^{\prime}. Now, let $f(x, q)$ and $f(y, q)$ in $G^{\prime} x Q$, we have $V(f(x, q) f(y, q))=V(f(y x, q)) \geq A(y x, q) \geq \min \{A(x$, q), $A(y, q)\}$ which implies that $V(f(x, q) f(y, q)) \geq \min \{V(f(x$, q) $), V(f(y, q))\}$. For x in G and q in $Q, V\left([f(x, q)]^{-1}\right)=V\left(f\left(x^{-}\right.\right.$ $\left.\left.{ }^{1}, q\right)\right) \geq A\left(x^{-1}, q\right) \geq A(x, q)$ which implies that $V\left([f(x, q)]^{-1}\right) \geq$ $V(f(x, q)$), for x in G and q in Q. Hence V is a Q-fuzzy subgroup of G^{\prime}.
Proposition: Let ($\mathrm{G}, \cdot \cdot$) and ($\mathrm{G}^{\prime}, \cdot$) be any two groups and Q be a non-empty set. The Q-antihomomorphic pre-image of a Qfuzzy subgroup of G^{\prime} is a Q -fuzzy subgroup of G .
Proof: Let (G, \cdot) and $\left(\mathrm{G}^{\prime}, \cdot\right)$ be any two groups and Q be a set and $f: G x Q \rightarrow G^{\prime} x Q$ be a Q-antihomomorphism. That is $f(x y, q)$ $=f(y, q) f(x, q)$, for all x and y in G and q in Q. Let $V=f(A)$, where V is a Q-fuzzy subgroup of G^{\prime}. We have to prove that A is a Q-fuzzy subgroup of G. Let x and y in G and q in Q.
Now, $A(x y, q)=V(f(x y, q))=V(f(y, q) f(x, q)) \geq \min \{V(f(x$, q) $), V(f(y, q))\}=\min \{A(x, q), A(y, q)\}$ which implies that $A(x y, q) \geq \min \{A(x, q), A(y, q)\}$. And, $A\left(x^{-1}, q\right)=V\left(f\left(x^{-1}, q\right)\right)$ $=V\left([f(x, q)]^{-1}\right) \geq V(f(x, q))=A(x, q)$ which implies that $A\left(x^{-}\right.$ $\left.{ }^{1}, q\right) \geq A(x, q)$, for x in G and q in Q. Hence A is a Q-fuzzy subgroup of a group G.

Reference

1. Akram.M and Dar.K.H, On fuzzy d-algebras, Punjab university journal of mathematics, 37 (2005), 61-76.
2. Anthony.J.M. and Sherwood.H, Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69,124-130 (1979)
3. Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications, 35, 512-517 (1971).
4. Biswas.R, Fuzzy subgroups and Anti-fuzzy subgroups, Fuzzy sets and systems, 35,121-124 (1990).
5. Choudhury.F.P. ,Chakraborty.A.B. and Khare.S.S. , A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications, 131, 537-553 (1988).
6. Davvaz.B and Wieslaw.A.Dudek, Fuzzy n-ary groups as a generalization of rosenfeld fuzzy groups, ARXIV-0710.3884VI(MATH.RA) 20 OCT 2007, 1-16.
7. Dixit.V.N., Rajesh Kumar, Naseem Ajmal., Level subgroups and union of fuzzy subgroups, Fuzzy sets and systems, 37, 359371 (1990).
8. Gopalakrishnamoorthy.G., Ph.D Thesis, Alagappa university, Karaikudi, Tamilnadu, India, May (2000).
9. Mohamed Asaad, Groups and fuzzy subgroups, Fuzzy sets and systems, North-Holland, (1991).
10. Mustafa Akgul, Some properties of fuzzy groups, Journal of mathematical analysis and applications, 133, 93-100 (1988).
11. Prabir Bhattacharya, Fuzzy subgroups, Some characterizations, Journal of mathematical analysis and applications, 128, 241-252 (1987).
12. Rajesh Kumar, Fuzzy Algebra, Volume 1, University of Delhi Publication Division, July -1993.
13. Salah Abou-Zaid, On generalized characteristic fuzzy subgroups of a finite group, Fuzzy sets and systems, 235-241 (1991).
14. Solairaju.A and Nagarajan.R, A New Structure and Construction of Q-Fuzzy Groups, Advances in fuzzy mathematics, Volume 4 , Number 1 (2009) pp.23-29.
15. Solairaju.A and Nagarajan.R, Lattice Valued Q-fuzzy left R-submodules of near rings with respect to T-norms, Advances in fuzzy mathematics, Vol 4, Num. 2, 137-145(2009).
16. Solairaju.A and Nagarajan.R, "Q-Fuzzy left R-subgroups of near rings with respect to t-norms". Antarctica Journal of Mathematics, 5(2008) 1-2, 59-63.
17. Vasantha kandasamy.W.B, Smarandache fuzzy algebra, American research press, Rehoboth -2003.
18. Zadeh.L.A , Fuzzy sets , Information and control ,Vol.8, 338-353 (1965).
