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Introduction  

Numerical modeling of combined heat and mass transfer 

flows is important in many industrial applications including 

geothermal energy, solar energy systems, biomechanics, rocket 

propulsion, electronic circuit systems, metallurgical processing, 

chemical engineering transport phenomena and air-conditioning 

systems. Extensive studies have been reported in all these areas 

employing a wide variety of numerical simulation methods 

including finite elements, finite differences, network simulation 

and CFD (Computational Fluid Dynamics). Frequently external 

free convection boundary layer flows from simple geometries 

such as flat plates, wedges, spheres, ellipses and cylinders have 

been examined in the literature. An extensive review of these 

works is documented in Gebhart et al [13]. Transport processes 

have also been studied for the special geometry of a vertical 

cone which finds important applications in chemical processing 

operations [25] and also rocket nose thermophysical simulation 

[28]. Initial studies have dwelled on purely thermal convection 

flows only. Hering and Grosh [22] showed that the similarity 

solutions also exist when the surface temperature of the cone is a 

power function of the distance along a cone ray. Gorla and 

Stratman [17] discussed the effects of the transverse curvature 

on the free convection flow past a slender vertical cone. Pop and 

Takhar [32] made an interesting study of the laminar 

compressible natural convection about a vertical cone, showing 

that compressibility increases the heat transfer rate at the wall 

for small values of the wall-ambient temperature difference 

parameter. Hasan and Majumdar [20] studied the combined heat 

and masstransfer characteristics under mixed convective flow 

along the external surface of a vertical circular cone for cones 

with large apex angles whereby the radial curvature effects are 

negligible. They considered both buoyancy-aided and opposing 

flows for the diffusion of common gases and vapors in air.  Yih 

[39] studied numerically the free convection heat and mass 

transfer from truncated cone embedded in a saturated porous 

medium subjected with thermal and mass diffusion using the 

Keller box implicit difference method. He showed that both 

local Nusselt number and local Sherwood number increase with 

increasing buoyancy effects and increase and decrease 

respectively with decreasing Lewis number. Cheng [10] used the 

cubic spline collocation method to analyze the free convection 

heat and mass transfer from a wavy conical body embedded in a 

porous medium. Elperin and Fominykh [11] studied combined 

heat and mass transfer from a cone to a non-Newtonian fluid 

when the concentration level of the solute in the solvent is finite 

(finite dilution of solute approximation). They showed that mass 

transfer rate increases with solute concentration level. These 

studies did not consider the presence of viscous heating 

(dissipation) which can be significant in aerosol deposition 

processes [16], micro-rockets [30], polymer injection moulding 

[21],  microchannel  systems [31] etc. The effect of viscous 

dissipation on natural convection has been studied by Gebhart 

[14] for a power-law vertical wall variation. He obtained a 

perturbation solution in terms of a parameter which could not be 

expressed in terms of the Rayleigh number or the Prandtl 

number, and observed its increasing effect as the Prandtl number 

increases. Later Gebhart and Mollendorf [15] obtained the 

similarity solution for the same problem when exponential wall 

temperature variation is used and a similar trend was observed.  
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Rajasekaran and Palekar [34] studied the influence of Eckert 

number on rotating mixed convection using Merk’s series 

expansions. Mahajan and Gebhart [27] reported on the influence 

of viscous heating dissipation effects in natural convection 

flows. Béget al. [4] studied the influence of vorticity diffusion 

and viscous dissipation on thermoconvection flow in a non-

Darcian porous medium. Béget al. [5] later investigated with 

finite elements the viscous dissipation effects in viscoelastic 

convection flow in a porous regime.  Béget al [6] have also 

studied dissipation effects in biomagnetic heat transfer in porous 

media, showing that Eckert number has a significant effect on 

temperature distributions. These studies did not consider thermal 

radiation effects which attain significance in high temperature 

systems including blast furnace processes, glass manufacture, 

solar energy collector systems [23] and environmental hazards 

such as accidental radiation releases [36]. In simulating thermal 

radiation processes which are coupled with other modes e.g. 

convection, conduction, frequently highly nonlinear differential 

equations arise. To circumvent solution of such systems an 

algebraic or flux approximation is often employed. Numerous 

methodologies have been developed including the Rosseland 

diffusion approximation, Milne-Eddington approximation, 

Discrete Ordinates method, P-N differential approximation 

methods etc. An excellent summary of these approaches is 

available in Modest [29]. Numerical analysis of thermal 

convection flows coupled with thermal radiation has received 

extensive attention. Behniaet al [7] used a two-band radiative 

transfer model and a finite difference technique to study 

combined natural convection and radiation in a rectangular, two-

dimensional cavity containing a non-participating (i.e. 

transparent) fluid over an extensive range of Rayleigh numbers. 

Engelman and Jamnia [12] used the FIDAP computational fluid 

dynamics solver to simulate the effects of grey-diffuse surface 

radiation on the temperature field of fluid flows in a non-

participating medium. They decoupled the energy and radiation 

exchange equations and used a macro surface model containing 

a number of radiating boundary surfaces to convey information 

from the radiating boundary into the fluid regime. Weng   and 

Chu [38] used the P-1 differential spherical harmonics 

approximation to analyze the composite free convection and 

radiation in a vertical annulus. Béget al [2] studied the optically-

thick steady radiative-convection boundary layer flow using the 

Rossleand diffusion flux approximation and a numerical 

shooting method. Banda et al [1] used the lattice-Boltzmann 

method to simulate incompressible convection-radiation flows in 

two-dimensional enclosures with a discrete-ordinates radiative 

formulation and a non-oscillatory relaxation scheme to solve the 

coupled moment equations. Béget al [3] used the network 

simulation thermodynamic numerical method to analyze 

unsteady free convective-radiative heat and mass transfer in 

optically-thick saturated porous media. Combined dissipation 

and thermal radiation effects on free convection flows have also 

been studied in the literature. Takharet al [37] used the Cogley-

Vinceti-Giles differential approximation to study coupled non-

gray convection-radiation boundary layers in a porous medium 

using the Keller Box finite difference method. They showed that 

flow is decelerated in the boundary layer with increasing thermal 

radiation flux whereas surface heat transfer gradients are 

strongly enhanced. Viscous heating (as simulated via the Eckert 

number, Ec) was also shown to boost shear stresses for positive 

Ec but to decelerate the flow for negative Ec. Conversely heat 

transfer gradients were shown to be increased with negative Ec 

values but depressed with positive Ec values. Chamkhaet al [9] 

used the Rosseland diffusion flux model to analyze the 

buoyancy-driven dissipative natural convection-radiation 

boundary layer flow from a wedge in a porous medium. They 

showed that an increase in Boltzmann-Rosseland radiation-

conduction number and negative Eckert number enhances heat 

transfer gradients at the wedge face considerably. In the present 

study we analyze numerically the transient radiation-convection 

heat and mass transfer from a vertical cone with significant 

viscous dissipation and thermal radiation effects. Such a study 

has immediate applications in chemical process engineering and 

has to the authors’ knowledge not appeared thusfar in the 

scientific literature. A well-tested, numerically stable Crank-

Nicolson finite difference procedure is employed.  

Mathematical Model 

Consider the axi-symmetric unsteady laminar free 

convection heat and mass transfer in a viscous, incompressible, 

absorbing-emitting, non-scattering, optically-thick gas from a 

non-isothermal vertical cone with variable surface temperature 

and concentration in the presence of thermal radiation and 

viscous dissipation. Initially, it is assumed that the cone surface 

and the surrounding fluid which are at rest possess the same 

temperature T
  and concentration level C

  everywhere in the 

fluid. At time 0t  , the temperature of the cone surface and 

the concentration near the cone surface are elevated to 

,n mT T ax C C ax 
        respectively, and are sustained 

as constant thereafter. The concentration C  of the diffusing 

species in the binary mixture is assumed to be very less in 

comparison to the other chemical species, which are present. 

This leads to the assumption that the Soret and Dufour effects 

are negligible. The co-ordinate system chosen (as shown in 

Fig.1) is such that the x- coordinate is directed along the surface 

of the cone from the apex (x = 0) and the y- coordinate is 

orientated perpendicular to this i.e. at right angles to the cone 

surface,  outwards. Here,  designates the semi-vertical angle of 

the cone and r is the local radius of the cone. In compliance with 

the Boussinesq approximation, all fluid properties are assumed 

constant except for density variations, which induce buoyancy 

forces, these contributing a dominant, driving role in the free 

convection regime.  

 
 Figure 1: Physical Model 

Then under the above assumptions, the governing boundary 

layer equations of mass, momentum, energy and species 

concentration for free convective flows with Boussinesq’s 

approximation are as follows. 

   
0

ur vr

x y

 
 

                             (1) 
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The initial and boundary conditions are prescribed as: 

 

0: 0, 0, ,t u v T T C C 
          

for all x, y, 

0: 0, 0, ,n mt u v T T ax C C ax 
             

at  y = 0, 

0, ,u T T C C 
      at  x = 0,                                                                                  

                                                                                (5) 

0, ,u T T C C 
       as y  . 

 

Employing the Rosseland diffusion approximation [29], 

leads to the following expression for radiative heat flux rq in the 

energy conservation Eqn. 3: 
44

3

s
r

e

T
q

k y

 
 


            (6) 

where s  is the Stefan-Boltzmann constant and ek  is the mean 

absorption coefficient, respectively. It should be noted that by 

using the Rosseland approximation we limit our analysis to 

optically thick fluids. Refractive index of the gas medium is 

constant. Unidirectional radiation flux, Qr, is considered and it is 

assumed that 
y

qr




>>

x

qr




. This model is valid for optically-

thick media in which thermal radiation propagates only a limited 

distance prior to experiencing scattering or absorption. The local 

thermal radiation intensity is due to radiation emanating from 

proximate locations in the vicinity of which emission and 

scattering are comparable to the location of interest. For zones 

where conditions are appreciably different thermal radiation has 

been shown to be greatly attenuated before arriving at the 

location under consideration as discussed by Behniaet al. [7]. 

The energy transfer depends on conditions only in the area 

adjacent to the plate regime i.e. the boundary layer regime. 

Rosseland’s model yields accurate results for intensive 

absorption i.e. optically-thick flows which are optically far from 

the bounding surface. Implicit in this approximation is also the 

existence of wavelength regions where the optical thickness may 

exceed a value of five. As such the Rosseland model, while 

limited compared with other flux models, can simulate to a 

reasonable degree of accuracy thermal radiation in problems 

ranging from thermal radiation transport via gases at low density 

to thermal radiation simulations associated with nuclear blast 

waves. If temperature differences within the flow are sufficiently 

small, then Eq. (6) can be linearized by expanding 
4T   into the 

Taylor series aboutT
 , which after neglecting higher order 

terms takes the form: 
4 3 44 3T T T T 
                (7) 

In view of Eqs. (6) and (7), Eq. (3) reduces to: 
232 2

2 2

16

3

s

e p p

TT T T T T u
u v

t x y y k c y c y

 




           

      
      

        (8) 

where all  parameters are defined in the nomenclature. Local 

skin-friction (wall shear stress), local Nusselt number (surface 

heat transfer gradient) and local Sherwood number (surface 

species transfer gradient) are given respectively by: 

0
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Proceeding with analysis, we implement the following non-

dimensional quantities to facilitate a numerical solution to the 

boundary value problem defined by  Eqns. (1) to (4) under 

conditions (5) : 

x
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Eqs. (1), (2), (8) and (4) are thereby rendered into the following 

non-dimensional form: 

   
0

UR VR

X Y

 
 

 
         (13)  

2

2
cos cos

U U U U
U V T NC

t X Y Y
 

   
    

   
     (14)  
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2

1 4
1

Pr 3

T T T T U
U V Ec

t X Y F YY

       
             

(15)

2

2

1C C C C
U V

t X Y Sc Y

   
  

   
                    (16) 

The corresponding initial and boundary conditions are: 
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0: 0, 0, 0, 0t U V T C     for all X, Y, 

0: 0, 0, ,n mt U V T X C X     at  Y = 0, 

                                                                               (17) 

0U  , 0T  , 0C   at  X = 0, 

0,U  0,T  0C  as Y  . 

Here again all parameters have been defined earlier in the 

nomenclature. The dimensionless local values of the skin 

friction (surface shear stress), the Nusselt number (surface heat 

transfer gradient) and the Sherwood number (surface 

concentration gradient) are computed using the following 

expressions: 
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Y
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Y




 
  
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Numerical Solution  
In order to solve these unsteady, non-linear coupled 

equations (13) to (16) under the conditions (17), an implicit 

finite difference scheme of Crank-Nicolson type has been 

employed. This method has been extensively developed in 

recent years and remains one of the most reliable procedures for 

solving partial differential equation systems. It is 

unconditionally stable. It utilizes a central differencing 

procedure for space and is an implicit method. The partial 

differential terms are converted to difference equations and the 

resulting algebraic problem is solved using a triadiagonal matrix 

algorithm. For transient problems a trapezoidal rule is utilized 

and provides second-order convergence. The Crank-Nicolson 

Method (CNM) scheme has been used in numerous heat 

transfer, radiation and convection flow problems. Ransom and 

Fulton [35] discussed a modified, optimized version of the 

Crank-Nicolson method for general thermal engineering 

problems. Lin and Huang [26] studied thermal radiation effects 

on laminar forced convection in thermally developing circular 

pipe flow using an integral formulation for the divergence of 

radiative heat flux, a finite element node approximation 

technique and the Crank-Nicolson finite difference method with 

an iterative procedure. Hadley [19] used the Crank-Nicolson 

method with a new boundary condition to study beam 

propagation emitting radiation with a minimum reflection 

coefficient, considering both two and three-dimensional cases. 

Krishnaprakaset al [24] used the Chandrasekhar discrete 

ordinates method and the Crank-Nicolson method to study 

combined  conduction and radiation heat transfer in a gray 

planar nonlinearly anisotropic scattering medium bounded 

between two plane parallel surfaces reflecting both diffusely and 

specularly.  Prasad et al [33] used Crank-Nicolson scheme to 

analyze the transient convective heat and mass transfer with 

thermal radiation effects along a vertical impulsively started 

plane. Very recently GouseMohiddinet al [18] studied the 

transient natural convection heat and mass transfer in 

viscoelastic boundary layer flow along a vertical cone using the 

Crank-Nicolson method. The CNM method has been found to 

work very efficiently for parabolic type partial differential 

equations as exemplified by boundary-layer flows The finite 

difference equations corresponding to equations (13) to (16) are 

discretized using CNM as follows: 

Mass Conservation: 
1 1 1 1

, 1, , 1, , 1 1, 1 , 1 1, 1

4

k k k k k k k k

i j i j i j i j i j i j i j i jU U U U U U U U

X

   

             


1 1 1 1

, , 1 , , 1 , , 1 , , 1
0

2 4

k k k k k k k k

i j i j i j i j i j i j i j i jV V V V U U U U

Y i X

   

        
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 
, (21) 

Momentum Conservation: 
1 1 1 1 1
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 
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                                                                                             (22) 

Energy (Heat) Conservation  
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Species (Concentration) Conservation:  
1 1 1 1 1

, , , 1, , 1, , 1 , 1 , 1 , 1

, ,
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2 21
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Sc Y
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
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Here the region of integration is considered as a rectangle with 

max 1X  and max 20Y   where maxY corresponds to 

Y which lies well outside both the momentum and thermal 

boundary layers. The maximum of Y was chosen as 20, after 

some preliminary numerical experiments such that the last two 

boundary conditions of (17) were satisfied within the tolerance 

limit 
510

. The mesh sizes have been fixed as 0.05X  , 

0.05Y   with time step 0.01t  . The computations are 

executed initially by reducing the spatial mesh sizes by 50% in 

one direction, and later in both directions by 50%. The results 

are compared. It is observed that, in all the cases, the results 

differ only in the fifth decimal place. Hence, the choice of the 

mesh sizes is verified as extremely efficient. The coefficients of 

,

k

i jU  and ,

k

i jV  appearing in the finite difference equations are 

treated as constant at any one-time step. Here i  designates the 

grid point along the X-direction, j  along the Y-direction and k  

in the time variable, t. The values of U, V, T and C are known at 

all grid points when t = 0 from the initial conditions. 

The computations for U, V, T and C at a time level (k + 1), 

using the values at previous time level k are executed as follows. 

The finite-difference equation (24) at every internal nodal point 

on a particular i  level constitutes a tri-diagonal system of 

equations and is solved by the robust Thomas algorithm as 

discussed in Carnahan et al. [8]. Thus, the values of C are 
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known at every nodal point at a particular i  at (k + 1)
th

 time 

level. Similarly, the values of U and T are calculated from 

equations (22), (23) respectively, and finally the values of V are 

calculated explicitly by using equation (21) at every nodal point 

on a particular i  level at (k + 1)
th

time level. In a similar 

manner, computations are carried out by moving along i -

direction. After computing values corresponding to each i  at a 

time level, the values at the next time level are determined in a 

similar manner. Computations are repeated until the steady state 

is attained. The steady state solution is assumed to have been 

reached when the absolute difference between the values of the 

velocity U, temperature T, as well as concentration C at two 

consecutive time steps are less than 
510

 at all grid points. The 

scheme is unconditionally stable. The local truncation error is 
2 2 2( )O t X Y    and it tends to zero as ,t X   and 

Y  tend to zero. It follows that the CNM scheme is 

compatible. Stability and compatibility ensure the convergence. 

Results and Discussion 

For conservation of space, selective computations have been 

reproduced here. Default values of the parameters are as 

follows: Eckert number (Ec) = 0.1 (which corresponds to 

cooling of the cone surface i.e. conduction of heat away from the 

cone into the surrounding gas regime), buoyancy ratio parameter 

(N) = 1.0, Schmidt number (Sc) = 0.6 (oxygen diffusing in the 

primary fluid i.e. air), Prandtl number (Pr) = 0.7 (air), semi-

vertical angle of the cone () = 20
0
, radiation parameter (F) = 

3.0 (strong thermal radiation compared with thermal 

conduction), surface temperature power law exponent (n) = 0.5 

and surface concentration power law exponent (m) = 0.5. All 

graphs therefore correspond to these values unless otherwise 

indicated.  
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Fig.2(b). Steady state temperature profiles at X=1.0 for different Pr  
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Since the present implicit Crank-Nicolson numerical difference 

code has been extensively validated against other numerical 

schemes by the authors [33, 18], it is extremely reliable and we 

omit comparison solutions with previous studies here for 

brevity. In figures 1a to 1c, the influence of radiation parameter, 

F on steady-state velocity, temperature and concentration 

distributions with distance transverse to the cone surface (i.e. 

with Y-coordinate) are shown.  and this defines the ratio of  

thermal conduction contribution relative to thermal radiation.  

For radiative heat transfer dominance in the boundary layer 

regime, F  0.. For finite values of F there will be a 

simultaneous presence of thermal conduction and radiative 

transfer contributions. For F = 1 both modes will contribute 

equally. For F, in equation (15), the term 4/3F 0 and the 

energy conservation equation reduces to the  conventional 

unsteady conduction-convection equation  with dissipation i.e. 
2

2

2

Pr

1












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T
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t

T
       (25) 

An increase in F from 0 (total thermal radiation dominance) 

through 0.5, 1.0, 3.0, 5.0, 10.0 to 100.0, causes a significant 

decrease in velocity with distance into the boundary layer i.e. 

decelerates the flow. Velocities in all cases ascend from the cone 

surface, peak close to the wall and then decay smoothly to zero 

in the free stream. We also note that with increasing values of F 

the time taken to attain the steady state is reduced. Thermal 

radiation flux therefore has a de-stabilizing effect on the 

transient flow regime. This is important in polymeric and other 

industrial flow processes since it shows that the presence of 

thermal radiation while decreasing temperatures, will affect flow 

control from the cone surface into the boundary layer regime. As 

expected, temperature values are also significantly reduced with 

an increase in F as there is a progressive decrease in thermal 

radiation contribution accompanying this. All profiles are 

monotonic decays from the wall to the free stream. This trend 

concurs with the results of Bég et al [2], Chamkha et al [8] and 

Lin and Huang [26], all these studies also employing the 

Rosseland-diffusion approximation. 

The maximum reduction in temperatures is witnessed 

relatively close to the cone surface since thermal conduction 

effects will be prominent closer to the cone surface, rather than 

further into the free stream.  Concentration (C) is conversely 

boosted with an increase in F i.e. decrease in thermal radiation 

contribution. The parameter F does not arise in the species 

conservation equation (16) and therefore the concentration field 

is indirectly influenced by F via the coupling of the energy 

equation (15) with the momentum equation (16), the latter also 

being coupled with the convective acceleration terms in the 

species equation (16). However as with the response of the 

velocity and temperature fields, the increase in F decreases the 

time elapse to achieve the steady state. Therefore while greater 

thermal radiation augments diffusion of species in the regime it 

requires greater time to achieve the steady state.    

In figures 2a to 2c, the spatial response of U, T and C 

profiles to Prandtl number (Pr) is illustrated. Pr defines the ratio 

expresses the ratio of the product of dynamic viscosity and 

specific heat capacity to the thermal conductivity of the principal 

fluid.  Pr< 1 physically implies that heat will diffuse faster than 

momentum in the fluid. For Pr = 1 the diffusion rates will be the 

same for heat and momentum i.e. thermal and velocity boundary 

layer thicknesses will be equal. For Pr> 1 momentum will 

diffuse faster than heat. An increase in Pr from 0.7 (air) to 1, 5, 

10 and the maximum value of 20, clearly decreases significantly 

streamwise velocity, U (figure 2a) for some considerable 

distance into the boundary layer. Flow is therefore decelerated 

with an increase in Prandtl number. At close proximity to the 

cone surface, velocities are all maximized for any value of 

Prandtl number, and then descend gradually to zero far from the 

cone surface.  For increasing Pr values, the time, t, required to 

attain the steady state scenario is also elevated considerably. As 

such the steady state is achieved faster for gases than for 

lubricants and denser hydrocarbons (Pr> 5). Smaller Pr values 

will cause a thinner thermal boundary layer thickness and more 

uniform temperature distributions across the boundary layer. 

This is indeed observed in figure 2b,  where with an increase in 

Pr the profiles descend increasingly more sharply  from their 

maximum values at the cone surface (Y = 0) to zero. Smaller Pr 

fluids possess higher thermal conductivities so that heat can 

diffuse away from the cone surface (wall) faster than for higher 

Pr fluids (thicker boundary layers). With increasing Pr, once 

again the time taken to achieve the steady state is enhanced.  The 

trend of these results agrees closely with other studies in the 

literature for example, Hasan and Mujumdar [20], Yih [39], 

Cheng [10] and Elperin and Fominykh [11] for the appropriate 

cases of Newtonian convective heat and mass transfer from a 

cone. As with the velocity and temperature distributions, the 

concentration profiles are computed at a location close to the 

leading edge of the boundary layer i.e. the cone apex (X = 0) , 

located  at X = 1.0. Concentration is however enhanced with an 

increase in Prandtl number although the effect of Pr is much less 

pronounced in this case. The C profiles are more evenly 

distributed across the boundary layer. Increasing Pragain delays 
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the time taken, t, to achieve the steady state concentration 

distribution.  

Figures 3a, b, c depict the variation of U, T, and C variables 

with Y-coordinate, for various Schmidt numbers (Sc). It is 

apparent from figure 3a, that with an increase in Sc, the time 

taken to attain the steady state does not follow a direct increase 

or decrease. For Sc= 0.1, t = 7.44 a value which decreases to 

5.99 for Sc =.05 but then increases to 6.75 for Sc = 1.0 and then 

continues to increase to 7.49 for Sc = 3.0 and finally 7.71 for Sc 

= 5.0. The steady state is therefore achieved fastest for Sc = 0.5. 

With increasing Sc the velocity, U, is markedly depressed 

through the boundary layer i.e. the flow is retarded.  We note 

that Sc = 0.1 is representative of hydrogen (low weight 

molecular gas) diffusing in air, Sc = 0.5 corresponds to oxygen 

diffusing in air, Sc = 1.0 to denser hydrocarbon derivatives as 

the diffusing species in air and Sc = 3.0 and 5.0 to increasingly 

higher molecular weight hydrocarbons. With lower Sc values the 

gradient of  velocity profiles is greater prior to the peak velocity 

but lower  after the peak i.e. the profiles decay more gradually to 

zero in the free-stream for Sc = 0.1 than for Sc> 0.1. Conversely 

with an increase in Sc, the temperature, T, as shown in figure 3b, 

increases continuously through the boundary layer. Again the 

steady state is attained fastest for Sc = 0.5 but slowest for Sc = 

5.0. Figure 3c indicates that a rise in Sc strongly suppresses 

concentration levels in the boundary layer regime. All profiles 

decay monotonically from the cone surface (wall) to the free 

molecular diffusivity (D). For Sc> 1, momentum will diffuse 

faster than species causing progressively lower concentration 

values. For Sc< 1, species will diffuse much faster than 

momentum so that maximum concentrations will be generated in 

the boundary layer regime (Sc = 0.1). For lower Sc values there 

will be a more even distribution of concentration across the 

boundary layer. With a decrease in molecular diffusivity (rise in 

Sc) concentration boundary layer thickness is therefore 

decreased. For the special case of Sc = 1, the species diffuses at 

the same rate as momentum in the regime. For this scenario both 

concentration and velocity boundary layer thicknesses are the 

same. Higher Sc values will physically correspond to a decrease 

of molecular diffusivity (D) of the primary fluid causing a 

decrease in the rate of species diffusion. Lower Sc values will 

exert the reverse influence since they correspond to higher 

molecular diffusivities. Concentration boundary layer thickness 

is therefore considerably greater for Sc = 0.1 than for Sc= 5.  

Figures 4a,b,c, present the effects of buoyancy ratio 

parameter, N, on U, T and C profiles.  The maximum time 

elapse to the steady state scenario accompanies the only negative 

value of N i.e. N = -0.5. For N = 0 and then increasingly positive 

values of N up to 5.0, the time taken, t, is steadily reduced. As 

such the presence of aiding buoyancy forces (both thermal and 

species buoyancy force acting in unison) serves to stabilize the 

transient flow regime. The parameter  

*( )

( )

w

w

C C
N

T T








 


 
 and 

expresses the ratio of the species (mass diffusion) buoyancy 

force to the thermal (heat diffusion) buoyancy force. When N = 

0 the species buoyancy term, NC Cos  vanishes and the 

momentum boundary layer equation (14) is de-coupled from the 

species diffusion (concentration) boundary layer equation (16). 

Thermal buoyancy does not vanish in the momentum equation 

(16) since the term T cos is not affected by the buoyancy ratio. 

When N< 0 we have the case of opposing buoyancy.  An 

increase in N from -0.5, through 0, 1, 2, 3, to 5 clearly 

accelerates the flow i.e. induces a strong escalation in 

streamwise velocity, U, close to the wall; thereafter velocities 

decay to zero in the free stream. At some distance from the cone 

surface, approximately Y = 3.1, there is a cross-over in profiles. 

Prior to this location the above trends are apparent. However 

after this point, increasingly positive N values in fact decelerate 

the flow. Therefore further from the cone surface, negative N i.e. 

opposing buoyancy is beneficial to the flow regime whereas 

closer to the cone surface it has a retarding effect. A much more 

consistent response  to a change in the N parameter is observed 

in figure 4b, where with a rise from -0.5 through 0, 10.2.0, 3.0 to 

5.0 (very strong aiding buoyancy case) the temperature  

throughout  the boundary layer is strongly reduced. As with the 

velocity field (figure 4a), the time required to attain the steady 

state decreases substantially with a positive increase in N. 

Aiding (assisting) buoyancy therefore stabilizes the temperature 

distribution.  A similar response is evident for the concentration 

distribution, C, which as shown in figure 4c, also decreases with 

positive increase in N  but reaches the steady state progressively 

faster.   

In figures 5a, b, c, the spanwise spatial distributions of the 

U, T, C variables with distance, Y, for various semi-apex cone 

angles,  are presented. With wider cone angles i.e. a rise from 

20 through 30 to 55 degrees (cone apex angle = 2 =110 

degrees), the flow is considerably decelerated in the near wall 

regime i.e. streamwise velocity profiles (U) are considerably 

reduced close to the cone surface. With further transverse 

locations from the wall into the boundary layer, however this 

trend is reversed and streamwise velocity, U, is marginally 

greater for wider cone apex angles than for smaller cone angles. 

With an increase in , there is a significant increase in the time 

elapsed to attain the steady state. In figure 5b, an increasingly 

wider cone apex angle induces greater temperatures 

continuously throughout the boundary layer i.e. heat the 

boundary layer regime.  As for velocity profiles, an increase in  

causes much greater times required for the steady state to be 

achieved. In figure 5c, a similar response to the temperature 

field, is observed for the concentration field. C values are 

continuously enhanced with larger semi-apex cone angle. 

However although profiles all decay smoothly from the cone 

surface to the free stream, there is a faster descent in profiles 

than in the temperature field (figure 5b). Further from the wall, 

the influence of  is considerably reduced for both temperature 

and concentration distributions.  

Figures 6a, b, c illustrate the variation of U, T, C profiles 

with distance, Y, for various viscous dissipation parameter 

values i.e. Eckert number (Ec). Eckert number defines the ratio 

of the kinetic energy of the boundary layer flow to the enthalpy 

difference across the thermal boundary layer. Ec> 0 corresponds 

to cooling of the cone surface by convection currents. Ec< 0 

corresponds to heating of the cone surface by convection 

currents. In these respective cases therefore heat is conducted 

away from the cone surface to the fluid and away from the fluid 

to the cone surface, respectively. In the present computations we 

have considered only the first of these cases.The dissipation 

effect arises in the energy equation (15) as the term, 
2














Y

U
Ec which couples the temperature field to the velocity 

field. This term is derived from the more general viscous heating 

effect term given in Gebhart [14]. Viscous dissipation is 
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approximately the difference between the total mechanical 

output by the stress system and the smaller quantity of total 

power input which produces thermodynamically reversible 

effects e.g. elevations in kinetic and potential energy. The 

discrepancy is the amount of energy dissipated as thermal 

energy. With a positive rise in Ec, there is a small increase in 

velocity close to the cone surface; however very close and 

further from the cone surface Ecexerts negligible influence on 

velocity profiles. With a strong rise in Ec from 0.02 through 0.1, 

1.0, 2.0, 3.0 to 4.0, the time taken to attain the steady state is 

only slightly increased. There is a much more pronounced and 

consistent response in the temperature field, as shown in figure 

6b. In consistency with the progressively greater conversion of 

mechanical energy into heat (and the fact that positive Ec 

corresponds to heat conduction from the cone surface to the 

external boundary layer flow regime), the temperature, T, in the 

boundary layer is elevated with a rise in Ec. Unlike the velocity 

response, the temperature profiles (T) are all monotonic decays 

from the cone surface. Again with an increase in Ec there is a 

small rise in the time, t, to achieve the steady state. Although the 

effect of increasing Ec is to again elevate the time taken to 

achieve the steady state, there is almost no distinguishable 

influence of a change in Eckert number on the concentration 

profiles, as shown in figure 6c. Viscous dissipation therefore 

does not affect noticeably the diffusion of species in the 

boundary layer. 

In figures 7a,b,c, we have plotted the influence of the 

surface concentration power law exponent (m) and surface 

temperature power law exponent (n), on U, C,T, distributions 

with Y coordinate. For m = 0, the power-law variation of 

concentration reduces from C’= C’+ax
m
 to C’= C’+a i.e. we 

obtain an iso-species scenario (constant wall concentration). 

Similarly for n = 0 the power-law variation of temperature at the 

cone surface reduces from T’= T’+ax
n
 to T’= T’+a i.e. we 

obtain an isothermal scenario (constant wall temperature). For 

the doubly special case of m = n = 0, we observe in figure 7a 

that the velocity is maximized throughout the boundary layer. 

With an increase in m to 0.5 (non-iso-species case), but with 

isothermal wall characteristics (n = 0), the velocity is reduced in 

the boundary layer. For the doubly non-iso-species and non-

isothermal case (m = n = 0.5) a further decrease is observed. As 

such increasing power-law exponents in the cone surface 

concentration and temperature variations serve to decelerate the 

flow in the boundary layer. For m = n = 0 the lowest time is 

achieved to arrive at the steady state. This value is increased for 

m = 0.5 and n = 0, but then reduced for m = n = 0.5, although in 

the latter case it is still greater than for the classic case of m = n 

= 0. Temperature response is somewhat different to an alteration 

in m and n. For m = 0.5 and n= 0, the temperature is maximized 

in the regime. For the double iso-thermal and iso-species case, 

i.e. for m = n = 0, there is a slight reduction in temperature 

further from the cone surface (Y = 0). However temperature is 

minimized for the doubly non-isothermal and non-iso-species 

case (m = n = 0.5), a trend sustained throughout the regime for 

all Y values. In the first of these (m = 0.5, n= 0) cases the time 

needed to achieve the steady state is maximized; for m = n = 0 it 

is minimized and then elevated for the m = n = 0.5 case. 

Isothermal conditions therefore accelerate the arrival at the 

steady state whereas simultaneous non-iso-species and 

isothermal conditions delay this most. A similar pattern is 

computed for the concentration distributions in figure 7c, where 

exactly the same cases correspond to slowest and fastest 

attainment of steady state conditions. However in this case, 

concentrations are maximized for the double isothermal, iso-

species case (m = n = 0), significantly reduced for the non-

isothermal, non-iso-species case (m = n = 0) and then reduced 

further but only marginally for the non-iso-species, isothermal 

case (m = 0.5, n = 0). As with temperature profiles (figure 7b) a 

gradual descent in concentration profiles occurs from the wall 

(cone surface) to the free stream.  

Figures 8a,b,c  illustrate the shear stress (local skin friction), 

local Nusselt number  and local Sherwood number distributions 

with streamwise coordinate for various buoyancy ratio 

parameters, N. A rise in N from negative to positive values, 

accompanying a stronger increase in assisted buoyancy, strongly 

accelerates the flow i.e. enhances shear stresses. The time 

required to attain the steady state is  concomitantly  decreased 

with this increase in N. Buoyancy-assisted flow therefore 

stabilizes the regime whereas buoyancy-opposing flow 

destabilizes the regime since the maximum time needed to reach 

steady state corresponds to N = -0.5. This concurs with earlier 

discussion relating to the flow velocity response to increasing N 

(figure 4a). Inspection of figures 8b and 8c shows that an 

increase in N strongly boosts both NuX and ShX i.e. enhances 

heat transfer gradient and mass transfer gradient at the cone 

surface. This trend is accentuated with further progression along 

the cone surface from the leading edge of the boundary layer (X 

= 0) to the furthest location downstream (X = 1.2).  

Simultaneously the time required to attain the steady state is 

reduced with an increase in N for both NuX and ShX. 

Figures 9a,b,c  depict the variation of cone surface shear 

stress (local skin friction), local Nusselt number and local 

Sherwood number distributions with streamwise coordinate for 

various Schmidt numbers (Sc). Increasing Sc clearly boosts the 

edge downstream along the cone surface. The minimal time 

required to attain the steady state, as discussed earlier for 

concentration distributions, accompanies Sc = 0.5; the   

maximum time for reaching the steady state is associated with 

the maximum Schmidt number (Sc = 5, for which momentum 

diffusivity is five times the molecular diffusivity). Such results 

are important in chemical engineering process design since they 

indicate that lower molecular weight gases diffusing in air (e.g. 

Sc = 0.5 corresponds to oxygen) attain a steady state behaviour 

faster.  With increasing Sc, local Nusselt number (figure 9b) is 

consistently reduced. Hence heat transfer rate at the cone surface 

is minimized for maximum Schmidt number (Sc = 5) and 

maximized for the lowest Schmidt number.  The same 

characteristics for steady state behaviour as with the shear stress 

response (figure 9a) are observed for NuX variation in figure 9b. 

A much more dramatic response in ShX to an increase in Sc is 

observed in figure 9c. As expected surface species gradient i.e. 

mass transfer rate at the cone surface is strongly elevated with a 

rise in Sc and the profiles become increasingly divergent further 

downstream. Hence mass transfer rates are maximized further 

from the leading edge. Again the least time to attain the steady 

state arises for Sc = 0.5 and the greatest time for Sc = 5.0.     

The effect of conduction-radiation parameter, F, oncone 

variation are presented in figures 10a,b. With an increase in F, 

corresponding to progressively lower contributions of thermal 

radiation, wall shear stress is consistently reduced i.e. the flow is 

decelerated along the cone surface. However for each profile 
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= 0 i.e. the cone apex) as we progress downstream. Increasing 

thermal radiation (i.e. decreasing F) acts to effectively accelerate 

the flow, concurring with the trend in figure 1a and the 

computations for flat plate [2] and also wedge [9] radiation–

convection thermal boundary layers.  Conversely however with 

greater thermal radiation (and lesser thermal conduction) 

contribution i.e. decreasing F values, the time required to attain 

the steady state is markedly increased.  With an increase in F, 

local Nusselt number, NuX is considerably reduced; however for 

each profile NuX grows steadily in value with distance along the 

cone surface (X-coordinate). Heat transfer from the cone surface 

is therefore suppressed with increasing thermal radiation and 

enhanced with greater thermal conduction; also as before lower 

F values (stronger thermal radiation flux) necessitate greater 

times to reach the steady state.  

Finally in figures 11a, b we have plotted the influence of 

Eckert number, Ec on the cone surface skin friction(X), and  

local Nusselt number (NuX). As expected a very weak  

modification near the cone surface leading edge (X = 0) is 

experienced in X profiles with a substantial increase in Ec from 

0.02 to eventually 4.0, corresponding to a significant elevation 

in transport of heat from the cone surface to the fluid. The 

largest change is observed far downstream (X ~ 1.0) where a 

slight increase in shear stress accompanies the increment in Ec 

values i.e. there is asmall flow acceleration in this region.  A 

small increase is also computed for the time taken to arrive at 

the steady state with an increase in Ec. In figure 11b a strong 

decrease in surface heat transfer rate is associated with an 

increase in Ec from 0.02 through 0.1, 1, 2, 3 to 4. With 

increasing Ec more and more thermal energy is transferred from 

the cone surface to the fluid so that simultaneously less and less 

heat is transferred to the cone surface from the external 

boundary layer regime. This results in a depression in cone 

surface heat transfer gradient (NuX).  For low Ec values the NuX 

profiles are approximately linear growths; however with 

increasing Ec (2, 3, 4) the profiles become increasingly down-

turned far downstream. For NuX = 4, the peak value is therefore 

near the end of the X-range rather than at the furthest location 

downstream as for Ec = 0.02, 0.1, 1, 2 and 3.  As with the shear 

stress distributions, there is a small rise in time taken to arrive at 

the steady state with an increase in Ec.  

Conclusions 
A well-tested, stable, efficient Crank-Nicolson implicit 

finite difference procedure has been used to study numerically 

the transient free convective heat and mass transfer in boundary 

layer flow from a vertical cone with substantial thermal radiation 

and viscous heating effects. The computations have shown that 

increasing thermal radiation accelerates the flow, reduces 

temperature in the boundary layer and local Nusselt number but 

increases concentration values. An increase in viscous heating 

parameter as simulated via positive values of the Eckert number, 

causes very little change in velocity (principally near the cone 

surface) and shear stress distributions (principally far 

downstream from the leading edge) but considerably increases 

temperatures in the boundary layer, owing to the strong 

conversion of mechanical energy into thermal energy and 

conveyance of thermal energy from the cone surface to the fluid 

regime (wall cooling). A negative buoyancy ratio is found to 

decelerate the flow whereas the flow is considerably accelerated 

close to the wall with a positive increase in buoyancy ratio 

parameter, corresponding to the case where both thermal and 

species buoyancy forces assist each other in the regime. A 

positive increase in buoyancy ratio parameter is also found to 

markedly enhance local Nusselt number and local Sherwood 

number at the cone surface. The steady state response for the 

flow is also studied in detail. The present analysis has 

considered only the case of a Newtonian fluid and ignored 

thermal dispersion effects. The more complex case of a non-

Newtonian flow with dispersion effects will be addressed in the 

near future.  
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