
Vijay Patil et al./ Elixir Comp. Sci. & Engg. 41 (2011) 5587-5591

5587

Introduction

One of the most classical applications of the Artificial

Neural Network is the Character Recognition System. This

system is the base for many different types of applications in

various fields, many of which we use in our daily lives. Cost

effective and less time consuming, businesses, post offices,

banks, security systems, and even the field of robotics employ

this system as the base of their Operations. Handwritten

character recognition is a difficult problem due to the great

variations of writing styles, different size (length and height) and

orientation angle of the characters. Handwritten Character

recognition is an area of pattern recognition that has become the

subject of research during the last some decades. Neural network

is playing an important role in handwritten character

recognition. Many reports of character recognition in English

have been published but still high recognition accuracy and

minimum training time of handwritten English characters using

neural network is an open problem. Therefore, it is a great

important to develop an automatic handwritten character

recognition system for English language. In this paper, efforts

have been made to develop automatic handwritten character

recognition system for English language with high recognition

accuracy and minimum training and classification time.

Character Modeling

The English language consists of 26 characters (5 vowels,

21 consonants) and is written from left to right. A set of hand

written English characters is shown in Figure 1 (Lower case)

and Figure 2 (Upper case). The experiments are performing on

both the 26 Uppercase Characters and Lowercase Characters.

Fig. 1: A Set of Handwritten English Characters (Lower

Case)

Fig. 2: A Set of Handwritten English Characters (Upper

Case)

Character Recognition System

The Character Recognition System must first be created

through a few simple steps in order to prepare it for presentation

into MATLAB. The matrixes of each letter of the alphabet must

be created along with the network structure. In addition, one

must Understand how to pull the Binary Input Code from the

matrix, and how to interpret the Binary Output Code, which the

computer ultimately produces.

Character Matrixes: A character matrix is an array of black

and white pixels; the vector of 1 represented by black, and 0 by

white. They are created manually by the user, in whatever size

or font imaginable; in addition, multiple fonts of the same

alphabet may even be used under separate training sessions [3].

Creating a Character Matrix: First, in order to endow a

computer with the ability to recognize characters, we must first

create those characters. The first thing to think about when

creating a matrix is the size that will be used. Too small and all

the letters may not be able to be created, especially if you want

to use two different fonts. On the other hand, if the size of the

matrix is very big, their may be a few problems. Training may

take more time, and results may take hours.

In addition, the computer‟s memory may not be able to

handle enough neurons in the hidden layer needed to efficient

and accurately process the information. However, the number of

neurons may just simply be reduced, but this in turn may greatly

increase the chance for error. For experimental purpose a matrix

size of 8 x 5 was created, through the steps as explained above,

because it may not be able to process in real time. (See Figure 3)

Tele:

E-mail addresses: vijay_900@yahoo.com, sanjay_shimpi@yahoo.com

 © 2011 Elixir All rights reserved

Handwritten English character recognition using neural network
Vijay Patil and Sanjay Shimpi

Department of Computer Engineering, Vidyalankar Institute of Technology, Wadala, Mumbai-37.

ABSTRACT

Neural Networks are being used for character recognition from last many years. This paper

presents creating the Character Recognition System, in which Creating a Character Matrix

and a corresponding Suitable Network Structure is key. The Feed Forward Algorithm gives

insight into the enter workings of a neural network; followed by the Back Propagation

Algorithm which compromises Training, Calculating Error, and Modifying Weights. We

have made an attempt to recognize handwritten English characters by using a multilayer

perceptron with one hidden layer. In addition, an analysis has been carried out to determine

the number of hidden nodes to achieve high performance of back propagation network in the

recognition of handwritten English characters. The results showed that the MLP networks

trained by the error back propagation algorithm are superior in recognition accuracy and

memory usage. The result indicates that the back propagation network provides good

recognition accuracy of more than 70% of Handwritten English characters.

 © 2011 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 9 September 2011;

Received in revised form:

15 November 2011;

Accepted: 24 November 2011;

Keywords

Handwritten Character Recognition,

Feature Extraction,

Back propagation network,

Multilayer Perceptron Network.

Elixir Comp. Sci. & Engg. 41 (2011) 5587-5591

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Vijay Patil et al./ Elixir Comp. Sci. & Engg. 41 (2011) 5587-5591

5588

First Character

„A‟

Second Character

„B‟

Third Character

„C‟

0 0 1 0 0

0 1 0 1 0

1 0 0 0 1
1 0 0 0 1

1 1 1 1 1

1 0 0 0 1
1 0 0 0 1

1 0 0 0 1

1 1 1 1 0

1 0 0 0 1

1 0 0 0 1
1 1 1 1 0

1 0 0 0 1

1 0 0 0 1
1 0 0 0 1

1 1 1 1 0

0 1 1 1 1

1 0 0 0 0

1 0 0 0 0
1 0 0 0 0

1 0 0 0 0

1 0 0 0 0
1 0 0 0 0

0 1 1 1 1

Fig. 3: A matrix size of 8 x 5 was created for the all

alphabets

Neural Network: The network receives the 40 Boolean

values as a 40-element input vector. It is then required to

identify the letter by responding with a 26-element output

vector. The 26 elements of the output vector each represent a

letter. To operate correctly, the network should respond with a 1

in the position of the letter being presented to the network. All

other values in the output vector should be 0. In addition, the

network should be able to handle noise.

Architecture: The neural network needs 40 inputs and 26

neurons in its output layer to identify the letters. The network is

a two-layer log-sigmoid network. The log-sigmoid transfer

function was picked because its output range (0 to 1) is perfect

for learning to output Boolean values. The hidden (first) layer

has 5 neurons. This number was picked by guesswork and

experience. If the network has trouble learning, then neurons can

be added to this layer. The network is trained to output a 1 in the

correct position of the output vector and to fill the rest of the

output vector with 0's. However, noisy input vectors may result

in the network not creating perfect 1's and 0's.

Fig 4: Neural Network Architecture

Setting the Weights: There are two sets of weights; input-

hidden layer weights and hidden-output layer weights. These

weights represent the memory of the neural network, where final

training weights can be used when running the network. Initial

weights are generated randomly there, after; weights are updated

using the error (difference) between the actual output of the

network and the desired (target) output. Weight updating occurs

each iteration, and the network learns while iterating repeatedly

until a net minimum error value is achieved. First we must

define notion for the patterns to be stored Pattern p. a vector of

0/1 usually binary– valued. Inputs arrive from the left and each

incoming interconnection has an associated weight, wji. The

perception processing unit performs a weighted sum at its input

value.

The sum takes the form net 


n

i

OiWi
1

Weights associated with each inter connection are adjusted

during learning.

Training: To create a network that can handle noisy input

vectors it is best to train the network on both ideal and noisy

vectors. To do this, the network is first trained on ideal vectors

until it has a low sum squared error. Then, the network is trained

on all sets of ideal and noisy vectors. The network is trained on

two copies of the noise-free alphabet at the same time as it is

trained on noisy vectors. The two copies of the noise-free

alphabet are used to maintain the network's ability to classify

ideal input vectors. The network is again trained on just ideal

vectors. This ensures that the network responds perfectly when

presented with an ideal letter. All training is done using back

propagation [1].

Fig 5: Error back-propagation training (EBPT algorithm) :

algorithm flowchart

Training Procedure:

1. Split the data set into a training set and a test set. Normally

the training set is larger than the test set. Often the desired

outputs have to be normalized to the range [0: 1] since the

sigmoid function only returns values in this range. The input

patterns do not have to be normalized.

2. Initialize all weights, including all biases, to small random

values normally in the range of [-1: +1]. This determines the

starting point on the error surface for the gradient descent

method, whose position can be essential for the convergence of

the network.

3. Forward propagation of the first input pattern of the training

set from the input layer over the hidden layer(s) to the output

layer, where each neuron sums the weighted inputs, passes them

through the nonlinearity and passes this weighted sum to the

neurons in the next layer.

4. Calculation of the difference between the actual output of

each output neuron and its corresponding desired output. This is

the error associated with each output neuron.

5. Back propagating this error through each connection by using

the Back propagation Learning rule and thus determining the

amount each weight has to be changed in order to decrease the

error at the output layer.

6. Correcting each weight by its individual weight update.

7. Presenting and forward propagating the next input pattern.

Repeat steps 3-7 until a certain stopping criterion is reached, for

example that the error falls below a predefined value.

The one-time presentation of the entire set of training

patterns to the net constitutes a training epoch. After terminating

the training phase the trained net is tested with new, unseen

patterns from the test data set. The patterns are forward

propagated, using the weights now available from training, and

the error at the output layer is determined (no weight-update is

performed!). If performance is sufficiently good, the net is ready

for- use. If not, it has to be retrained with the same patterns and

parameters or something has to be changed (e.g. number of

hidden neurons, additional input patterns, different kinds of

information contained in the input patterns, ...).

Vijay Patil et al./ Elixir Comp. Sci. & Engg. 41 (2011) 5587-5591

5589

Fig 6: Error back propagation training (EBPT

algorithm): block diagram illustrating forward and

backward signal flow.

Figure-6 depicts the block diagram of the error back

propagation trained network operation and explains both the

flow of signal, and the flow of error within the network. The

feed forward phase is self-explanatory. The shaded portion of

the diagram refers to the feed forward recall. The blank portion

of the diagram refers to the training mode of the network. The

back propagation of error d-o from each output, for k=1,2-----K,

using the negative gradient descent technique is divided into

functional steps such as calculation of the error signal vector δ0

and calculation of the 9 weight matrix adjustment ΔW of the

output layer. The diagram also illustrates the calculation of

internal error signal vector δy and of the resulting weight

adjustment ΔV of the input layer.

Forward- pass:

The forward – pass phase is initiated when an input pattern

is presented to the network, each input unit corresponds to an

entry in the input pattern vector, and each unit takes on the value

of this entry. Incoming connection to unit J are at the left and

Originate at units in the layer below. The function F(x), a

sigmoid curve is illustrated as in fig below:

There is a transition from 0 to 1 that takes place when x is

approximately (−3 < χ < 3) the sigmoid function performs assort

at soft threshold that is rounded as shown in figure bellow.

The equation for the sigmoid function is

a. Input layer (i)

For input we have 26 inputs will be saved by the DAT file.

Input Layer at neuron = output layer of neuron Ii = Oi

b. Hidden layer (h)

Hidden Layer input h = Ik = Σ WkiOi as we have suggest

that our weight is this and we are taking the value at our input at

Character is A*I*S. Where A is the input-matrix, I is the hidden-

layer input matrix and S is the Sigmoid function matrix as

shown above figure.

Learning Factors

Necessary number of Hidden neurons: Single hidden layer

networks can form arbitrary decision regions in n dimensional

input pattern space. There exist certain useful solutions as to

number J of hidden neurons needed for the network to perform

properly. The number of hidden neurons depends on the

dimension n of the input vector and on the number of separable

regions in n dimensional Euclidean input space. Let us assume

that the n dimensional no augmented input space is linearly

separable into the M regions in the input space can be labeled as

belonging to one of the R classes, where R <=M. Let us consider

the case of input patterns of large dimension assuming that the

expected, or estimated, size of the hidden nodes is small. For

large-size input vectors compared to the numbers of hidden

nodes or when n>=j, we have a form.

M=
0

J 
 
 

+
1

J 
 
 

+
2

J 
 
 

+ --------- +
0

J 
 
 

=2
J

It follows that the hidden neuron layer with three nodes

would be capable of providing classification into up to eight

classes; but since n>=j, the size of the input vector has to be

larger than three.

The formulas can be inverted to find out how many hidden

layer neurons J need to be used to achieve classification into M

classes in n dimensional pattern space. This number constitutes

the solution of the equation

M=1 + J +

(1)

2!

J J 
+

(1)(2)

3!

J J J 
+

(1) (1)

!

J J J n

n

   
, for

J<n

For the case J<=n we have for J =log2M

For a small number of inputs (fewer than 5), approximately

twice as many hidden neurons as there are network inputs are

used. As the number of inputs increases, the ration of hidden

layer neurons to inputs decreases. The number of hidden

neurons, with their associated weights, should be minimized in

order to keep the number of free variable small, decreasing the

need for large training sets. Validation set error is often used to

determine the optimal number of hidden neurons for a given

classification problem [2]

Number of Hidden Layers: Cybenko demonstrated that a

single hidden layer, given enough neurons, can form any

mapping needed. In practice, two hidden layers are often used to

speed up convergence. While some feed forward networks have

been reported in the literature to contain as many as five or six

hidden layers, the additional layers are not necessary. The

important thing to remember is that the network learns best

when the mapping is simplest, so use good features. A network

designer should be able to solve almost any problem with one or

two hidden layers [2]. Single hidden layer is sufficient for any

desired accuracy. Network never need more than two hidden

layers. Fewer hidden nodes are preferable for better

generalization ability [16]. There is a theorem which guaranties

Vijay Patil et al./ Elixir Comp. Sci. & Engg. 41 (2011) 5587-5591

5590

that one hidden layer network can solve any problem if it has an

appropriate number of neurons in its hidden layer, so at first,

there is no reason why we must think of using two hidden layers

in a network.

Initial Weights: The weights of the network to be trained are

typically initialized at small random values. The EBP learning

based on the single pattern error reduction requires a small

adjustment of weights which follows each presentation of the

training pattern. This scheme is called incremental updating.

Case Study and Result

Case Study-1

Typical application of the Error Back-propagation algorithm

for handwritten character recognition. (Burr 1988) An input

character is first normalized so that it extends to the full height

and width of the bar mask. The handwritten alphabet character is

then encoded into 13 line segments arranges in a template as in

fig. The encoding takes the form of shadow projection. A

shadow projection operation is defined as simultaneously

projecting a point of the character into its three closest vertical,

horizontal and diagonal bars. After all points are projected,

shaded encoded bars are obtained. The shadow codes can be

understood as extracted pattern features. The shadow does need

to be normalized to within the 0,1, which is the range for

unipolar neurons used in the network. The network thus has 13

valued inputs and 26 outputs, one for each alphabetic character.

The convention used has been that the output corresponding to a

letter should be 1 if the character is detected and 0 otherwise.

According to the Burr the network has been tested with 12, 16,

20 and 24 hidden layer neurons. Networks with 20 or 24 hidden

layer neurons usually trained faster with n=0.3 and 2.0.

Case study 2
In this case study case, the network training using the EBPT

for the bit map classification of a single hidden layer network.

The task is to design a network that can classify the simplified

bit maps of characters. The matrixes if each letter of the alphabet

must be created along with network. A character matrix of 8x5

is created. The vector of 1 represented by black and 0 by white.

The network receives the 40 input Boolean values as a 40

element input vector. It is then required to identity the letter by

responding with a 26 element output vector. The convention

used has been that the output corresponding to latter should be

max if the character is detected and 0 otherwise.

Conclusion

The problem demonstrates how simple pattern recognition

can be designed. An experimental result shows that back

propagation network yields good recognition accuracy of more

than 70%. Note that the training process did not consist of a

single call to a training function. Instead, the network was

trained several times on various input vector and changing of

value of learning constants and hidden nodes till we are not get

the exact results. It is continuously learning process. The

training time may be reduced by using good feature extraction

techniques.

References

[1] Jacek M. Zurada, “Introduction to Artificial Neural

Systems”, Jaico Publishing House, Delhi.

[2] Kevin L. Priddy, Paul E. keller, “Artificial Neural Networks:

An introduction”

[3] Fakhraddin Mamedov, Jamal Fathi Abu Hasna, “Character

Recognition using Neural Network”, Near East University,

North Cyprus, Turkey via Mersin-10, KKTC

[4] Srinivasa Kumar Devireddy, Settipalli Appa Rao,

“Handwritten Character Recognition using Back Propagation

Network”, 2005-2009 JATIT

[5] Anita Pal & Dayashankar Singh, “Handwritten English

Character Recognition using Neural Network”, International

Journal of Computer Science & CommunicationVol. 1, No. 2,

July-December 2010, pp. 141-144

[6] Saleh Ali K. Al-Omari, Putra Sumari, Sadik A. Al-Taweel

and Anas J.A. Husain, “Digital Recognition using Neural

Network”, Journal of Computer Science 5 (6): 427-434, 2009

ISSN 1549-3636 © 2009 Science Publications

[7] Eric W. Brown, “Applying Neural Networks to Character

Recognition”

[8] Vamsi K. Madasu1, Brian C. Lovell2, M. Hanmandlu3,

“Hand printed Character Recognition using Neural Networks”,

1School of ITEE, University of Queensland, Australia

2NICTA and School of ITEE, University of Queensland,

Australia 3Department of Electrical Engineering, I.I.T. Delhi,

India

[9]Srinivasa Kumar Devireddy, Settipalli Appa Rao,

“Handwritten Character Recognition using Back Propogation

Network”, Nalanda Institute of Engineering & Technology,

Kantepudi , Sattenapalli (M), Guntur (Dt.), A.P., India.

[10] O Matan, R.K.Kaing, “Handwritten Character Recognition

Using Neural Network Architecture”, in Proceedings of the 4
th

USPS advanced Technology conference, Washington D.C.

PP1003-1011, November 1990.

[11]Carlos Agell, “Neural Networks for Pen Characters

Recognition”, Department of Electrical Engineering and

Computer Science University of California, Irvine Irvine, CA

96217

[12] Deepayan Sarkar,” Optical Character Recognition using

Neural Network”, Department of Statistics University of

Wisconsin, Madison UW ID: 9017174450, December 18, 2003

[13] Alexander J. Faaborg, “Using Neural Networks to create an

Adaptive Character Recognition System”, Cornell University,

Ithaca NY (May 14, 2002)

[14] Velappa Ganapathy, and Kok Leong Liew, “Handwritten

Character Recognition Using Multiscale Neural Network

Training Technique”, World Academy of Science, Engineering

and Technology 39 2008

[15] Shashank Araokar,”Visual Character Recognition using

Artificial Neural Networks”

[16] P. Mangesh Kumar (M.E. environment Engg.), Dr, S. Amal

Raj (Asst. Prof.) Centre of Environmental studies, anna

University, Chennai

Vijay Patil et al./ Elixir Comp. Sci. & Engg. 41 (2011) 5587-5591

5591

Comparison:
 Using 13 line segment Using 8 x 5 matrix

Number of
Layers

3 3

Input vectors 13 40

Feature method 13 segment bar Mapping of character image

into 8 x 5 matrix

Numberof
neurons in

hidden layers

12 5

Learning Rate 0.095 0.1

Error Rate 0.01 0.01

No of Epcohes 16000 20000

Result The network has been tested

with n=1.0 and 24 hidden

layer neurons, we get 40 to
60% result

The network has been tested

with n=0.1 and 22 hidden

layer neurons, we get 60 to
70% result

