
P.Suresh/ Elixir Network Engg. 42 (2012) 6499-6502

6499

Introduction

The Internet protocol suite supports a connectionless

transport protocol, UDP (User Datagram Protocol). UDP

provides a way for applications to send encapsulated IP

datagrams and send them without having to establish a

connection. UDP is described in RFC 768. UDP transmits

segments consisting of an 8-byte header followed by the

payload. The header is shown in Fig. 1. The two ports serve to

identify the end points within the source and destination

machines. When a UDP packet arrives, its payload is handed to

the process attached to the destination port. This attachment

occurs when BIND primitive or something similar is used, in

TCP (the binding process is the same for UDP). In fact, the main

value of having UDP over just using raw IP is the addition of the

source and destination ports. Without the port fields, the

transport layer would not know what to do with the packet. With

them, it delivers segments correctly.

Figure 1. The UDP header

The source port is primarily needed when a reply must be

sent back to the source. By copying the source port field from

the incoming segment into the destination port field of the

outgoing segment, the process sending the reply can specify

which process on the sending machine is to get it.

The UDP length field includes the 8-byte header and the

data. The UDP checksum is optional and stored as 0 if not

computed (a true computed 0 is stored as all 1s). Turning it off is

foolish unless the quality of the data does not matter (e.g.,

digitized speech).

It is probably worth mentioning explicitly some of the

things that UDP does not do. It does not do flow control, error

control, or retransmission upon receipt of a bad segment. All of

that is up to the user processes. What it does do is provide an

interface to the IP protocol with the added feature of

demultiplexing multiple processes using the ports. That is all it

does. For applications that need to have precise control over the

packet flow, error control, or timing, UDP provides just what the

doctor ordered.

One area where UDP is especially useful is in client-server

situations. Often, the client sends a short request to the server

and expects a short reply back. If either the request or reply is

lost, the client can just time out and try again. Not only is the

code simple, but fewer messages are required (one in each

direction) than with a protocol requiring an initial setup.

Remote Procedure Call

In a certain sense, sending a message to a remote host and

getting a reply back is a lot like making a function call in a

programming language. In both cases you start with one or more

parameters and you get back a result. This observation has led

people to try to arrange request-reply interactions on networks to

be cast in the form of procedure calls. Such an arrangement

makes network applications much easier to program and more

familiar to deal with. For example, just imagine a procedure

named get_IP_address (host_name) that works by sending a

UDP packet to a DNS server and waiting for the reply, timing

out and trying again if one is not forthcoming quickly enough. In

this way, all the details of networking can be hidden from the

programmer.

In a nutshell, what Birrell and Nelson suggested was

allowing programs to call procedures located on remote hosts.

Tele:

E-mail addresses: sur_bhoo71@rediffmail.com

 © 2012 Elixir All rights reserved

Transport Layer and UDP
P.Suresh

Department of Computer Science, Salem Sowdeswari College, Salem, Tamilnadu, India.

ABSTRACT

The User Datagram Protocol (UDP) is one of the core members of the Internet Protocol

Suite, the set of network protocols used for the Internet. With UDP, computer applications

can send messages, in this case referred to as datagrams, to other hosts on an Internet

Protocol (IP) network without requiring prior communications to set up special transmission

channels or data paths. UDP uses a simple transmission model without implicit handshaking

dialogues for providing reliability, ordering, or data integrity. Thus, UDP provides an

unreliable service and datagrams may arrive out of order, appear duplicated, or go missing

without notice. UDP assumes that error checking and correction is either not necessary or

performed in the application, avoiding the overhead of such processing at the network

interface level. Time-sensitive applications often use UDP because dropping packets is

preferable to waiting for delayed packets, which may not be an option in a real-time system.

The Internet has two main protocols in the transport layer, a connectionless protocol and a

connection-oriented one. The connectionless protocol is UDP. The connection-oriented

protocol is TCP. Because UDP is basically just IP with a short header added.

 © 2012 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 20 November 2011;

Received in revised form:

19 January 2012;

Accepted: 30 January 2012;

Keywords

Transport Layer,

User Datagram Protocol (UDP),

Remote Procedure Call.

Elixir Network Engg. 42 (2012) 6499-6502

Network Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

http://en.wikipedia.org/wiki/Internet_Protocol_Suite
http://en.wikipedia.org/wiki/Internet_Protocol_Suite
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Datagram
http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/Handshaking

P.Suresh/ Elixir Network Engg. 42 (2012) 6499-6502

6500

When a process on machine 1 calls a procedure on machine 2,

the calling process on 1 is suspended and execution of the called

procedure takes place on 2. Information can be transported from

the caller to the callee in the parameters and can come back in

the procedure result. No message passing is visible to the

programmer. This technique is known as RPC (Remote

Procedure Call) and has become the basis for many networking

applications. Traditionally, the calling procedure is known as the

client and the called procedure is known as the server.

The idea behind RPC is to make a remote procedure call

look as much as possible like a local one. In the simplest form,

to call a remote procedure, the client program must be bound

with a small library procedure, called the client stub, that

represents the server procedure in the client's address space.

Similarly, the server is bound with a procedure called the server

stub. These procedures hide the fact that the procedure call from

the client to the server is not local.

The actual steps in making an RPC are shown in Fig. 2.

Step 1 is the client calling the client stub. This call is a local

procedure call, with the parameters pushed onto the stack in the

normal way. Step 2 is the client stub packing the parameters into

a message and making a system call to send the message.

Packing the parameters is called marshaling. Step 3 is the kernel

sending the message from the client machine to the server

machine. Step 4 is the kernel passing the incoming packet to the

server stub. Finally, step 5 is the server stub calling the server

procedure with the unmarshaled parameters. The reply traces the

same path in the other direction.

Figure 2. Steps in making a remote procedure call. The stubs

are shaded

The key item to note here is that the client procedure,

written by the user, just makes a normal (i.e., local) procedure

call to the client stub, which has the same name as the server

procedure. Since the client procedure and client stub are in the

same address space, the parameters are passed in the usual way.

Similarly, the server procedure is called by a procedure in its

address space with the parameters it expects. To the server

procedure, nothing is unusual. In this way, instead of I/O being

done on sockets, network communication is done by faking a

normal procedure call.

A big one is the use of pointer parameters. Normally,

passing a pointer to a procedure is not a problem. The called

procedure can use the pointer in the same way the caller can

because both procedures live in the same virtual address space.

With RPC, passing pointers is impossible because the client and

server are in different address spaces.

In some cases, tricks can be used to make it possible to pass

pointers. Suppose that the first parameter is a pointer to an

integer, k. The client stub can marshal k and send it along to the

server. The server stub then creates a pointer to k and passes it to

the server procedure, just as it expects. When the server

procedure returns control to the server stub, the latter sends k

back to the client where the new k is copied over the old one,

just in case the server changed it. In effect, the standard calling

sequence of call-by-reference has been replaced by copy restore.

Unfortunately, this trick does not always work, for example, if

the pointer points to a graph or other complex data structure. For

this reason, some restrictions must be placed on parameters to

procedures called remotely.

The RPC need not use UDP packets, but RPC and UDP are

a good fit and UDP is commonly used for RPC. However, when

the parameters or results may be larger than the maximum UDP

packet or when the operation requested is not idempotent (i.e.,

cannot be repeated safely, such as when incrementing a counter),

it may be necessary to set up a TCP connection and send the

request over it rather than use UDP.

The Real-Time Transport Protocol

Client-server RPC is one area in which UDP is widely used.

Another one is real-time multimedia applications. In particular,

as Internet radio, Internet telephony, music-on-demand,

videoconferencing, video-on-demand, and other multimedia

applications became more commonplace, people discovered that

each application was reinventing more or less the same real-time

transport protocol. It gradually became clear that having a

generic real-time transport protocol for multiple applications

would be a good idea. Thus was RTP (Real-time Transport

Protocol) born.

The position of RTP in the protocol stack is somewhat

strange. It was decided to put RTP in user space and have it

(normally) run over UDP. It operates as follows. The multimedia

application consists of multiple audio, video, text, and possibly

other streams. These are fed into the RTP library, which is in

user space along with the application. This library then

multiplexes the streams and encodes them in RTP packets,

which it then stuffs into a socket. At the other end of the socket

(in the operating system kernel), UDP packets are generated and

embedded in IP packets. If the computer is on an Ethernet, the

IP packets are then put in Ethernet frames for transmission. The

protocol stack for this situation is shown in Fig. 3(a). The packet

nesting is shown in Fig. 3(b).

Figure 3. (a) The position of RTP in the protocol stack. 3. (b)

Packet nesting

As a consequence of this design, it is a little hard to say

which layer RTP is in. Since it runs in user space and is linked to

the application program, it certainly looks like an application

protocol. On the other hand, it is a generic, application-

independent protocol that just provides transport facilities, so it

also looks like a transport protocol. Probably the best description

is that it is a transport protocol that is implemented in the

application layer.

The basic function of RTP is to multiplex several real-time

data streams onto a single stream of UDP packets. The UDP

stream can be sent to a single destination (unicasting) or to

multiple destinations (multicasting). Because RTP just uses

P.Suresh/ Elixir Network Engg. 42 (2012) 6499-6502

6501

normal UDP, its packets are not treated specially by the routers

unless some normal IP quality-of-service features are enabled. In

particular, there are no special guarantees about delivery, jitter,

etc.

Each packet sent in an RTP stream is given a number one

higher than its predecessor. This numbering allows the

destination to determine if any packets are missing. If a packet is

missing, the best action for the destination to take is to

approximate the missing value by interpolation. Retransmission

is not a practical option since the retransmitted packet would

probably arrive too late to be useful. As a consequence, RTP has

no flow control, no error control, no acknowledgements, and no

mechanism to request retransmissions.

Each RTP payload may contain multiple samples, and they

may be coded any way that the application wants. To allow for

interworking, RTP defines several profiles (e.g., a single audio

stream), and for each profile, multiple encoding formats may be

allowed. For example, a single audio stream may be encoded as

8-bit PCM samples at 8 kHz, delta encoding, predictive

encoding, GSM encoding, MP3, and so on. RTP provides a

header field in which the source can specify the encoding but is

otherwise not involved in how encoding is done.

Another facility many real-time applications need is

timestamping. The idea here is to allow the source to associate a

timestamp with the first sample in each packet. The timestamps

are relative to the start of the stream, so only the differences

between timestamps are significant. The absolute values have no

meaning. This mechanism allows the destination to do a small

amount of buffering and play each sample the right number of

milliseconds after the start of the stream, independently of when

the packet containing the sample arrived. Not only does time

stamping reduce the effects of jitter, but it also allows multiple

streams to be synchronized with each other. For example, a

digital television program might have a video stream and two

audio streams. The two audio streams could be for stereo

broadcasts or for handling films with an original language

soundtrack and a soundtrack dubbed into the local language,

giving the viewer a choice. Each stream comes from a different

physical device, but if they are timestamped from a single

counter, they can be played back synchronously, even if the

streams are transmitted somewhat erratically.

The RTP header is illustrated in Fig. 4. It consists of three

32-bit words and potentially some extensions. The first word

contains the Version field, which is already at 2. Let us hope this

version is very close to the ultimate version since there is only

one code point left (although 3 could be defined as meaning that

the real version was in an extension word). 32 bits.

Figure 4. The RTP header

The P bit indicates that the packet has been padded to a

multiple of 4 bytes. The last padding byte tells how many bytes

were added. The X bit indicates that an extension header is

present. The format and meaning of the extension header are not

defined. The only thing that is defined is that the first word of

the extension gives the length. This is an escape hatch for any

unforeseen requirements.

The CC field tells how many contributing sources are

present, from 0 to 15. The M bit is an application-specific

marker bit. It can be used to mark the start of a video frame, the

start of a word in an audio channel, or something else that the

application understands. The Payload type field tells which

encoding algorithm has been used. Since every packet carries

this field, the encoding can change during transmission. The

Sequence number is just a counter that is incremented on each

RTP packet sent. It is used to detect lost packets.

The timestamp is produced by the stream's source to note

when the first sample in the packet was made. This value can

help reduce jitter at the receiver by decoupling the playback

from the packet arrival time. The Synchronization source

identifier tells which stream the packet belongs to. It is the

method used to multiplex and demultiplex multiple data streams

onto a single stream of UDP packets. Finally, the Contributing

source identifiers, if any, are used when mixers are present in the

studio. In that case, the mixer is the synchronizing source, and

the streams being mixed are listed here.

Realtime Transport Control Protocol

RTP has a little sister protocol (little sibling protocol?)

called RTCP (Realtime Transport Control Protocol). It handles

feedback, synchronization, and the user interface but does not

transport any data. The first function can be used to provide

feedback on delay, jitter, bandwidth, congestion, and other

network properties to the sources. This information can be used

by the encoding process to increase the data rate (and give better

quality) when the network is functioning well and to cut back

the data rate when there is trouble in the network. By providing

continuous feedback, the encoding algorithms can be

continuously adapted to provide the best quality possible under

the current circumstances. For example, if the bandwidth

increases or decreases during the transmission, the encoding

may switch from MP3 to 8-bit PCM to delta encoding as

required. The Payload type field is used to tell the destination

what encoding algorithm is used for the current packet, making

it possible to vary it on demand.

RTCP also handles interstream synchronization. The

problem is that different streams may use different clocks, with

different granularities and different drift rates. RTCP can be

used to keep them in sync. Finally, RTCP provides a way for

naming the various sources (e.g., in ASCII text). This

information can be displayed on the receiver's screen to indicate

who is talking at the moment.

Conclusion

UDP can provide many advantages over TCP

communication, depending on the application in question. The

decision regarding whether to select UDP or TCP as your

communication protocol comes down to speed versus reliability.

With Lab Windows/CVI, you have built-in support for the most

commonly used network protocols, such as TCP, Network

Variables, and now UDP, which gives you the flexibility to

choose which protocol is right for your application.

Reference

1. J.Postel, "User Datagram Protocol,", August 1980.

P.Suresh/ Elixir Network Engg. 42 (2012) 6499-6502

6502

2. R. Braden, D. Borman, C. Partridge, "Computing The Internet

Checksum,", September 1988.

3. J. Mahdavi and S. Floyd, "The TCP-Friendly Website,"

http://www.psc.edu/networking/tcp_friendly.html

4. Andrew S. Tanenbaum “Computer Networks” Fourth Edition,

August 19, 2002.

5. A. Okmianski “Transmission of Syslog Messages over UDP”,

March 2009

6. J.Postel., "Internet Protocol", STD 5, September 1981.

http://www.psc.edu/networking/tcp_friendly.html

