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Introduction  

The system of differential equations have played a central 

role in every aspect of applied mathematics for every long time 

and with the advent of the computer, their importance has 

increased father. 

Thus investigation and analysis of differential equations 

cruising in applications led to many deep mathematical 

problems; therefore, there are so many different techniques in 

order to solve differential equations.   

In order to solve the system of differential equations, the 

integral    transforms were extensively used and thus there are 

several words on the theory and applications of integral 

transforms such as the Laplace, Fourier, Mellin, Hankel , 

Sumudu, and Elzaki transforms to name but a few. Recently, 

Tarig M. Elzaki introduced a new integral transform, named 

Tarig transform, and further applied it to solve ordinary and 

partial differential equations and system of partial differential 

equations 

Definition and Derivations Tarig Transform of Derivatives 
Tarig transform is defined as:  
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To obtain the Tarig transform of Partial derivatives we use 

integration by parts as follows:  
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    Integrating by parts to 

find:               
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  (i) 

we assume that f  is piecewise continuous and is of exponential 

order. 

Now, 
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Also we can find that:    
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By equation (i) we have,   
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We can easily extend this result to the nth partial derivative by 

using mathematical induction. 

The Solution System of Partial Differential Equation 

In this paper we solve the linear first and second order 

system of partial differential equations, which are fundamental 

equations in mathematical physics' and occur in many branches 

of physics, applied mathematics as well as in engineering. 

Example 1: 

Consider the general system of the first order partial 

differential equation: 
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           (1)                                             

Where , 1,2i iand i    are constants. With the initial 
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                   1 2,0 , ,0u x b x u x b x                        (2) 

Solution: 

       Taking Tarig transform of equation (1) we obtain,  
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        (3)                           

Substituting eq(2) into eq(3) yields:  
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(4)                               

Or                         
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     (5)                       

The solution of eq(5) is,  
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d

D
dx

  

     1, , ,u x t F F x u g x t                              (6)                                

Substituting  ,u x t  into eq (1) we get: 
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Example 2: 

          Consider the system given by the following first order 

initial value problem, 

                                   
   

   

, , 3

2 , 3 ,

x t

t x

u x t v x t x

u x t v x t t

  


 

          (7)                                                  

With the initial conditions: 

                                     2,0 , ,0 0u x x v x          (8)                                              

Solution:  

       By using Tarig transform into eq(7) we have:   
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       (9)                                           

Substituting eq (8) into eq (9) we have:  
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            (10)                                                 

We can written eq(10) in the form,  
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Or         
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Substituting    ,u x t  into eq (7) we get: 

     , 3 , ,t xv x t x u x then v x t xt f x      

By using  ,0 0v x   we get 

   0 , ,f x and u x t xt   

Example 3: 

           Consider the following system,  
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                  (12)                                                     

With initial conditions  

                      ,0 , ,0 xz x x w x e                 (13)                                             

Solution: 

      By using Tarig transform into eq (12) we get: 

                      

   
 

 
   

2 2 2

2 2 2

, ,0
,

1 1

, ,0
,

1 1

x

x

x

x

z x u z x xu e u
w x u

u u u u

w x u w x u e u
z x u

u u u u


   

  

    
  

    (14)                                 

Substituting eq (13) into eq(14) we have: 
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The solution of this equation with the boundary conditions is, 
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Substituting  ,z x t  into eq (12) we get:  

   ,t x t x t x t

t xw z e e e w x t e f x        

By using     ,0 xw x e  , we get:     0f x    and   

 , x tw x t e   

Example 4: 

            Consider the following system,  
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With the initial conditions:  

      ,0 0 , ,0 0 , ,0tz x z x w x x         (16)                             

Solution: 

      By applying Tarig transform to eq(15) we get: 
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Substituting eq (16) in to eq (17) we have:  
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And  

   6 2 5, , 2xxxz x u u z x u x u   

By assume that the complete solution is zero, the solution of last 

equation is, 
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Substituting  ,z x t  into eq (15) we get:  
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Substituting  ,0w x x  we get   0f x    and   

 , tw x t xe  

Example 5: 

Consider the constant   coefficients system of partial 

differential equation in the form: 
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With the initial conditions: 

        ,0 sin , ,0 cosu x x v x x                 (19)                                      

Solution: 

          By using Tarig transform in to eq (19) yields: 
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Substituting eq(19) into eq (20) we have:  
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By assume that the complete solution is zero, the solution of last 

equation is, 
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 ( , ) cos sin sin cos sinu x t x y x y x y     

Substituting  ,u x y into eq(18) we have,:  

       2 sin , cosy xxv u u x y v x y x y f x           

By using, ( ,0) cosv x x , we get:    0f x    and   

   , cosu x y x y   

Conclusion 

Application of tarig transform to solution of system of 

different partial differential equation has been demonstrated.  
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Appendix 

Tarig Transform of Some Functions 
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