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In this work a new integral transform, namely Tarig transform was applied to solve linear
system of partial differential equations with constant coefficients. We derive the formulate
for Tarig transform of partial derivatives and apply them to solve initial value problems. Our
purpose here is to show the applicability of this interesting new transform and its effecting to
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Introduction

The system of differential equations have played a central
role in every aspect of applied mathematics for every long time
and with the advent of the computer, their importance has
increased father.

Thus investigation and analysis of differential equations
cruising in applications led to many deep mathematical
problems; therefore, there are so many different techniques in
order to solve differential equations.

In order to solve the system of differential equations, the
integral  transforms were extensively used and thus there are
several words on the theory and applications of integral
transforms such as the Laplace, Fourier, Mellin, Hankel |,
Sumudu, and Elzaki transforms to name but a few. Recently,
Tarig M. Elzaki introduced a new integral transform, named
Tarig transform, and further applied it to solve ordinary and
partial differential equations and system of partial differential
equations
Definition and Derivations Tarig Transform of Derivatives
Tarig transform is defined as:

T[f (t)]=ule (t)e“%dt=F(u) , t>0,u=0

To obtain the Tarig transform of Partial derivatives we use

integration by parts as follows:
[ of 17of —
T|—(x,t)|= = | —e “dt Integrating by parts to

find:

fof ] 1 S
T E}:J l:f (x,t)ev L +u—2.(|;e v (x,t)dt

(i)
:uizT [f (x,t)]—ulf (x,0)

we assume that f
order.
Now,

is piecewise continuous and is of exponential
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Also we can find that:

o°f

e (x t)} Let

Tofind: T {

[ o2 ¢ og(xt)| Tlag(x,H)] 1
T_?(X,t)}ZT{ (6': ):|: [ u2 ]—Jg(X,O)
By equation (i) we have,

T _Zz_i(x’t)}:uiﬁ [f (x ,t)]—uiaf (x,O)—ulgf (x,0)

We can easily extend this result to the nth partial derivative by
using mathematical induction.
The Solution System of Partial Differential Equation

In this paper we solve the linear first and second order
system of partial differential equations, which are fundamental
equations in mathematical physics' and occur in many branches
of physics, applied mathematics as well as in engineering.
Example 1:

Consider the general system of the first order partial
differential equation:

au, (X, t)+a,v, (x,t)=a,(x,t)
Bou, (x,t)+8,v, (x,t)=a,(x,t)

Where ¢, and g , i =12 are constants. With the initial
Conditions:

1)
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u(x,0)=by(x) , u(x0)=b;(x) @
Solution:
Taking Tarig transform of equation (1) we obtain,
alu (xz,u)_ @ (x,0) +a7, (x,u)=a(x,u)
u u 3)

BV (x.u) By (x,0

Biu, (x,u)+ % " ' ):éz(x,u)

Substituting eq(2) into eq(3) yields:

)u a (x,u)+uab,(x)
X,U)=u’a,(x,u)+u B, (x)

o, f, U+a, Py, :ﬁza_1u2+ﬂ2a1Ub1(x)
2 (&), u* +a, Bu’h,(x)

(4)

_ _ ©®)
az ﬂ1u4ux>< +(12ﬂ2U2\/X =a

The solution of eq(5) is,
ﬂzua1+ﬂ2a1Ub ( ) (az) u au3ﬂ2b2 (X)
o f-a, fu u*D’

=F(x,u).

Where D = i
dx

u(x,t)=F*[F(x,u)]=g(x.t)
Substituting U (X ,t) into eq (1) we get:

(6)

v, 00t = [, -ag, (¢ O] = H (1)
= v(x,t):m(t)+j[H (x,t)dx ]=N (x,t)
Example 2:

Consider the system given by the following first order
initial value problem,

u (X t)+v, (xt)=3x
()
2u, (x,t)=3v, (x,t) =t
With the initial conditions:
u(x,0)=x* , v(x,0)=0 (@)
Solution:
By using Tarig transform into eq(7) we have:
v(x,u) v(x0
0, (x,u)+ ( . )_v(x0) =3xu
u u )
o(xu) 2u(x,0) __ )
2 — -3V (x,u)=u
S-S, (xu)
Substituting eq (8) into eq (9) we have:
ul, +V =3xu®
(10)
20 —3uV, =u® +2ux?
We can written eq(10) in the form,
3u't, +3u’v, =9u®
11
20 —3uV, =u® + 2ux’
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T, +20 =10u° +2ux ?
Or _ 10u®

a(x,u)=

( ) 2+3u‘D?

2

2ux 2

+
2+3u°'D?

Where D? = 5
X

4

1
a(x,u)=5u°+u {1+3UTD2} X2 =2u’+ux?

= u(x,t):F’l[Zuf’+ux2}:t2+x2
Substituting U (X ,t) into eq (7) we get:
v (x,t)=3x—-u,=x , then v(x,t)=xt+f(x)
v(x,0)=0
u(x,t)=xt

By
f(x)=0,

Example 3:
Consider the following system,

z,+w, = xe' +e*"
ZX _\Nt :et _ex+t
With initial conditions
w (x,0)=

z(x,0)=x

Solution:
By using Tarig transform into eq (12) we get:

Z(x,u) z(x,0) _
() _2(x0) g
_ wW(xu) w(x,0) u e’u
Z () @0 1-d? -
Substituting eq (13) into eq(14) we have:

Z(x,u)+uiw, (x,u)zl_u2+1_ -

using we

and

(12)

(13)

X u)— X,
' - 2
1-u (14)

u’z, -w(x,u)= -

X

Or

Z(x,u)+udw, (x,u

u‘z, (x,u

)—uiw, (x,u)=

Or

— ux

7(xu)=—2
1-u

The solution of this equation with the boundary conditions is,

u*z, (x,u)+

get
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D2_£
dx 2

_ u X ux
Z(xu)= 1-u? \1+u'D? ) 1-u?’
LI
z (x,t)=xF 1{1_u2}:xet

Substituting z (X ,t) into eq (12) we get:

X +t

w o=z, —e' +e*" =" = w(x,t)=e""+f (x)
f

By using w (X,O)zeX , We get: (X):0 and
w(x,t)=e*"
Example 4:

Consider the following system,
o°z(x,t) ow(xt)

e p =2x%—¢'
ow(x,t 622():(t (9

( ’)+ 2'):2t2+xet

ot 19)4

With the initial conditions:
z(x,0)=0 , z,(x,0)=0 ,w(x,0)=x  (16)

Solution:
By applying Tarig transform to eq(15) we get:

T(X,U)_ Z(X,O) B Zt(X’O)_V—V (X u):2X2U——u

ut u’ u o 1-v° 17)
W(leu)—w(x’o)-I—ZXX(X,U)=4US+ XU2

J U 1-u

Substituting eq (16) in to eq (17) we have:
5

i(x,u)—u“v_vx(x,u):2x2u5—1 . 5

-u
W(x,u)+u’Z, (x,u)=4u’ + xu2
1-u
Or
5
Z (x,u)-uW, (x,u)=2xu°-
Z(x,u)-uWw, (x,u)=2x" o7
W °7 o (XU = u’
u'W, (x,u)+u’z,,, (x, =15
And
Z(X,u)+u°Z, (x,u)=2x"®

By assume that the complete solution is zero, the solution of last
equation is,

2
7=2u51+l)j76D3 = Z(x,u)=2u’x* then, z(x,t):sz’l[Zuﬂ:xzt2
Substituting z (X ,t) into eq (15) we get:

2 . 02 t t
W, =2t + xe et w(x,t)=xe"+ f (x)
X

Substituting W(X,O): X we get f (X ) =0 and
w(x,t)=xe'
Example 5:

Consider the constant
differential equation in the form:

coefficients system of partial

u, +v, =-2u
{ XX y (18)
VytU, =0
With the initial conditions:
u(x,0)=sinx , v(x,0)=cosx (19)
Solution:
By using Tarig transform in to eq (19) yields:
_ V(x,u) v(x0) _
U (X, U)+———— =20 (x,u)
u u
~ 0) (20)
v, (x,u)+5—2(x,u)—u(+ =0

Substituting eq(19) into eq (20) we have:
Ul +V = 2u’0 +U Ccos X
{UZVXX +0 =usinx
Or
u'm,, +u’v, =-2u'l, —u’cosx
u’v, +0 =usinx
u'l,, +2u'd, —T =-u’cosx—usinx

By assume that the complete solution is zero, the solution of last
equation is,

_ —u*cosx—usinx —u®cos—usinx
u(xu)= =

ALY U LT S R WY
a(x,u)=(cosx) u” +(sinx ) u
' 1+u* 1+u*

3

_ 4| U . L) u
u(x,t)=cosxF [1+u4}+(smx)F [1+u4}

u(x,t) =cosxsiny +sinxcosy =sin(x+y)

Substituting U (X Y ) into eq(18) we have,:
V, =-2U-U, ==sin(x+y) = v(xy)=cos(x+y)+f(x)

By using, V(X,0)=cosX, we get: f(X)zO and
u(x,y)=cos(x +y)
Conclusion

Application of tarig transform to solution of system of
different partial differential equation has been demonstrated.
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Appendix
Tarig Transform of Some Functions
S.NO. f (t) F (U)
1 1 u
t ul
3 eat u
1-au’
tn n' u2n+1
t? r(a+1)u®
6 sinat au’
1+au’
7 cosat u
1+au’
8 sinhat au 3
1-au’
9 coshat u
1-auu’




