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Introduction  

All groups in this paper are finite. The influence of element 

orders on the structure of finite groups was studied by some 

authors (see [1], [4], [8], [9], [11], [13], [16], [19]  and [21]). A 

group G  is recognizable by its element order set )(G  if the 

equality )()( HG    implies that HG  . It is proved that 

an alternating group nA  of degree n , where 

2,1,  rrrn  and 5r  is a prime, is recognizable by 

the se of elements orders (see [5], [17]). Among the remaining 

alternating groups ,,,,,,, 34282726221610 AAAAAAA , 10A  

was nonrecognizable (see [7, Proposition 2] ), 16A  and 22A  

were recognizable (see  [17, Theorem 2], and [12, Theorem]). 

Denote by )(G  the set of prime divisors of the order 

|| G  of G . Denote by )(Gt  the maximal number of primes in 

)(G  pairwise nonadjacent in )(GGK . If )(G  is some 

indepedent set with the maximal number of vertices in )(GGK  

(the subset of vertices of a graph is called an independent set if 

its vertices in )(GGK  are pairwise nonadjacent), then 

)()( GGt  . Denote by ),2( Gt  the maximal number of 

vertices in the independent sets of )(GGK  containing 2. 

Further notations are standard (see [2]) 

Preliminaries 

In this section, we given some basic results which we will 

use in the sequel. 

Lemma 2.1 [14, Theorem, p397] Let G  be a finite group 

satisfying the two conditions: 

(a) there exist three primes in )(G  pairwise nonadjacent in 

)(GGK ; i.e.,  )3( Gt ; 

(b) there exists an odd prime in )(G  pairwise nonadjacent in 

)(GGK  to the prime 2; i.e., )2( Gt . 

Then there is a finite nonabelian simple group S  such that  

)(/ SAutKGGS   for the maximal normal soluble 

subgroup K  of G . Furthermore, 1)()(  GtSt , and one of 

the following statements holds: 

(1) 7AS   or )(2 qL  for some odd q , and 

3),2()(  StSt . 

(2) For every prime )(Gp   nonadjacent to 2 in )(GGK  a 

Sylow p -subgroup of G  is isomorphic to a Sylow p -

subgroup of S . In particular, ),2(),2( GtSt  . 

Lemma 2.2 ([20]) Let G  be a finite simple group and 

}23,19,17,13,11,7,5,3,2{)(23  G . Then G  is 

isomorphic to one of the following groups: 

23321242332 ,,,,,),23(),23( FiCoCoCoMMUL , or 

28,,24,23, iAi . 

Main results 

In this section, we will give the main results and its proof. 

Theorem 3.1 Let G  be a finite group such that 

)()( 26AG   , where 26A  is the alternating group of 

degree 26.  Then 26AG   

Proof. Since G  does not contain any elements of order 

1917,1913,1713  , 

 )(}1917,1913,1713{ G , and so from Lemma 

2.5 of [3], G  is insoluble. Further more, }23,2{),2( G  

from [15, Theorem 7.1, and Table 2]. 

Hence by Corollary 2.6 of  [3], the conditions of Lemma 2.1 

are satisfied. 

Then there is a finite nonabelian simple group S  such that 

)(/ SAutKGGS   for the maximal normal soluble 

subgroup K  of G . Furthermore, 1)()(  GtSt , and one of 

the following statements holds: 

(1) 7AS   or )(2 qL  for some odd q , and 

3),2()(  StSt . 
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 (2) For every prime )(Gp   nonadjacent to 2 in 

)(GGK  a Sylow p -subgroup of G  is isomorphic to a Sylow 

p -subgroup of S . In particular, ),2(),2( GtSt  . 

If 7AS  , we have 77 / SKGA   and  

)(}23,19,17,13,1{ K . Since K  is soluble, then there 

exists a Hall }23,19,17,13{ -subgroup. For the subset 

}19,17,13{  of )(G ,   the three numbers 13, 17, 19 

divide the product |/||| SGK  , which contradicts 

Proposition 3 of [14]. 

Then  )(2 qLS  , where 
trq  , r  is an odd prime. 

Since )())(( 2 GqL   , We have from [20] that 

),17(),13(),11(),7( 2222 LLLLS   

)23(),19(),27( 222 LLL . The same reason, S is not 

isomorphic to  )13(),11(),7( 222 LLL  

),23(),19(),17( 222 LLL  or )27(2L  

Thus (1) does not hold and so we only think (2). 

Let )(223 GSylS  . Then there exists a )(2323 GSylG   

such that 2323 GS  . From Lemma 2.2, we have that: 

23321242332 ,,,,,),23(),23( FiCoCoCoMMUL , or 

28,,24,23, iAi .  We have from Proposition 3 of [14] 

that at least two of primes 19,17,13  must divides the order of 

S , and so iAFiCoS ,, 231  where 

28,27,26,25,24,23i . 

 If 1CoS  ,from  [2],  

39,36,35,33,30,28,26,23,22,21,20,18,16,,1{)( S , 

}60,42,40 . By Proposition 3 of [14], we have that at least two 

of the primes 13,11,7  must divide the order of K . It is easy to 

get that ||5 K  and |||13 K . Thses )(135 G   and 

)/(135 KG  imply ||5 K . And )(114 G  and 

)/(114 KG . Thus we have )(}7,2{ K , and the 

two numbers 11,13 are not prime divisors of || K . 

Then all subgroups of order 13 are conjugate in G , and the 

fact that a Hall  }7,2{ -subgroup of order 156 of K  is nilpotent 

by Thompson Theorem (see [10, Theorem 10.5.4].  This implies 

that G  contains an element of order 13 which centralizes 

elements of order 4 and 11 in K , Thus  )(13114 G , a 

contradiction. 

If 23FiS  ,from  [2],  

}60,42,39,36,35,30,28,27,26,24,,20,18,,1{)( 23 Fi

.By Proposition 3 of [14], we have that at least two of the primes 

11,13,17 must divide the order of || K . It is easy to get that 

||7 K  and |||17 K . These )(175 G  and 

)/(175 KG  imply ||5 K . And  )(115 G   and 

)/(115 KG . Thus we have )(}7,5{ K , and the 

two numbers 11,13 are not prime divisors of || K . 

Then all subgroups of order 17 are conjugate in G , and the 

fact that a Hall {11,13}-subgroup of K  is nilpotent by 

Thompson Theorem (see [10, Theorem 10.5.4].  This implies 

that G  contains an element of order 17 which centralizes 

elements of order 11 and 13 in K , Thus )(171311 G , a 

contradiction. 

Then S  must be an alternating group and so 

28,27,26,25,24,23,  iAS i . 

If 1K , we take K  to be an elementary abelian r -group 

with )(Kr  . Since S  contains a Frobenius group of order 

49 with a cyclic complement of order 7, we know that 7r ; 

for otherwise )(49 G  (see [19, Lemma 4]), a contradiction. 

Since S  contains a Frobenius group of order 1123   with a 

cyclic complement of order 11, we have 11r  or 19; for 

otherwise, )(112 G  or )(1911 G  (see [19, Lemma 

4]), a contradiction.  Since S  contains a Frobenius group of 

order 1617   with a cyclic complement of order 16, we have 

2r  or 13; for otherwise, )(25 G  or )(1316 G  

(see [19, Lemma 4]), a contradiction.  Similarly, Since S  

contains a Frobenius group of order 78   with a cyclic 

complement of order 7, we have 7r ; for otherwise, 

)(72 G (see [19, Lemma 4]), a contradiction. Thus 1K  

and  )(SAutGS  . 

Case 1. ,, 2423 AAS   or 25A  

In this case, 25SS  . But )(153 G  and 

)(153 G , a contradiction. 

Case 2. 27SS   or 28S  

In this case,  from [5, lemma 2], we have that 

)()()( 282726 AAA   . Then there exists an element 

of order 125 of 2827 , AA   such that 125 belongs to both 27A  

and 28A , but )(125 G ,  a contradiction. 

From Cases 1 and 2, we have 26AG  . 

This completes the proof.  

Remark 3.2 The alternating 26A  is another example which 

can be recognizable. Also, the methods of this paper also can be 

used to 2211, AA  
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