A new characterization of A_{26} by their element orders

Guangju Zeng and Wenjun Xu

School of Science, Sichuan University of Science and Engineering Zigong, 643000, China.

ARTICLE INFO

Article history:

Received: 25 November 2011;
Received in revised form:
10 January 2012;
Accepted: 19 January 2012;

Keywords

Finite group,
Alternating group,
Element order.

Introduction

All groups in this paper are finite. The influence of element orders on the structure of finite groups was studied by some authors (see [1], [4], [8], [9], [11], [13], [16], [19] and [21]). A group G is recognizable by its element order set $\omega(G)$ if the equality $\omega(G)=\omega(H)$ implies that $G \cong H$. It is proved that an alternating group A_{n} of degree n, where $n=r, r+1, r+2$ and $r>5$ is a prime, is recognizable by the se of elements orders (see [5], [17]). Among the remaining alternating groups $A_{10}, A_{16}, A_{22}, A_{26}, A_{27}, A_{28}, A_{34}, \cdots, A_{10}$ was nonrecognizable (see [7, Proposition 2]), A_{16} and A_{22} were recognizable (see [17, Theorem 2], and [12, Theorem]).

Denote by $\pi(G)$ the set of prime divisors of the order $|G|$ of G. Denote by $t(G)$ the maximal number of primes in $\pi(G)$ pairwise nonadjacent in $G K(G)$. If $\rho(G)$ is some indepedent set with the maximal number of vertices in $G K(G)$ (the subset of vertices of a graph is called an independent set if its vertices in $G K(G)$ are pairwise nonadjacent), then $t(G)=\rho(G)$. Denote by $t(2, G)$ the maximal number of vertices in the independent sets of $G K(G)$ containing 2.

Further notations are standard (see [2])

Preliminaries

In this section, we given some basic results which we will use in the sequel.

Lemma 2.1 [14, Theorem, p397] Let G be a finite group satisfying the two conditions:
(a) there exist three primes in $\pi(G)$ pairwise nonadjacent in $G K(G)$; i.e., $t(G \geq 3)$;
(b) there exists an odd prime in $\pi(G)$ pairwise nonadjacent in $G K(G)$ to the prime 2; i.e., $t(G \geq 2)$.
Then there is a finite nonabelian simple group S such that $S \leq \bar{G}=G / K \leq A u t(S)$ for the maximal normal soluble

Abstract

Given an arbitrary finite group G, denote by $\omega(G)$ the set of its element orders. The group G is said to be recognizable by the set $\omega(G)$ if the equality $\omega(G)=\omega(H)$ implies an isomorphism of G and H for each finite group H. For a prime $p \geq 5$, the alternating groups A_{p}, A_{p+1}, A_{p+2} are recognizable. But for A_{p+3} are has not known. In this paper, we will give an example for $p+3$ not a prime, namely, that A_{26} is characterizable.

© 2012 Elixir All rights reserved.
subgroup K of G. Furthermore, $t(S) \geq t(G)-1$, and one of the following statements holds:
(1) $S \cong A_{7} \quad$ or $\quad L_{2}(q)$ for some odd q, \quad and $t(S)=t(2, S)=3$.
(2) For every prime $p \in \pi(G)$ nonadjacent to 2 in $G K(G)$ a Sylow p-subgroup of G is isomorphic to a Sylow p subgroup of S. In particular, $t(2, S) \geq t(2, G)$.
Lemma 2.2 ([20]) Let G be a finite simple group and $23 \in \pi(G) \subseteq\{2,3,5,7,11,13,17,19,23\}$. Then G is isomorphic to one of the following groups:
L_{2} (23), $U_{3}(23), M_{23}, M_{24}, C o_{1}, C o_{2}, \mathrm{Co}_{3}, \mathrm{Fi}_{23}$, or $A_{i}, i=23,24, \cdots, 28$.

Main results

In this section, we will give the main results and its proof.
Theorem 3.1 Let G be a finite group such that $\omega(G)=\omega\left(A_{26}\right)$, where A_{26} is the alternating group of degree 26. Then $G \cong A_{26}$
Proof. Since G does not contain any elements of order $13 \cdot 17,13 \cdot 19,17 \cdot 19$,
$\{13 \cdot 17,13 \cdot 19,17 \cdot 19\} \cap \omega(G)=\Phi$, and so from Lemma 2.5 of [3], G is insoluble. Further more, $\rho(2, G)=\{2,23\}$ from [15, Theorem 7.1, and Table 2].

Hence by Corollary 2.6 of [3], the conditions of Lemma 2.1 are satisfied.

Then there is a finite nonabelian simple group S such that $S \leq \bar{G}=G / K \leq \operatorname{Aut}(S)$ for the maximal normal soluble subgroup K of G. Furthermore, $t(S) \geq t(G)-1$, and one of the following statements holds:
(1) $S \cong A_{7}$ or $L_{2}(q)$ for some odd q, and $t(S)=t(2, S)=3$.
(2) For every prime $p \in \pi(G)$ nonadjacent to 2 in $G K(G)$ a Sylow p-subgroup of G is isomorphic to a Sylow p-subgroup of S. In particular, $t(2, S) \geq t(2, G)$.

If $S \cong A_{7}$, we have $A_{7} \leq G / K \leq S_{7}$ and $\{1,13,17,19,23\} \subseteq \pi(K)$. Since K is soluble, then there exists a Hall $\{13,17,19,23\}$-subgroup. For the subset $\rho=\{13,17,19\}$ of $\pi(G)$, the three numbers $13,17,19$ divide the product $|K| \cdot|\bar{G} / S|$, which contradicts Proposition 3 of [14].
Then $S \cong L_{2}(q)$, where $q=r^{t}, r$ is an odd prime.
Since $\pi\left(L_{2}(q)\right) \subseteq \pi(G)$, We have from [20] that $S \cong L_{2}(7), L_{2}(11), L_{2}(13), L_{2}(17)$, $L_{2}(27), L_{2}(19), L_{2}(23)$. The same reason, S is not isomorphic to $L_{2}(7), L_{2}(11), L_{2}(13)$ $L_{2}(17), L_{2}(19), L_{2}(23)$, or $L_{2}(27)$
Thus (1) does not hold and so we only think (2).
Let $S_{23} \in S y l_{2}(G)$. Then there exists a $G_{23} \in S y l_{23}(G)$ such that $S_{23} \cong G_{23}$. From Lemma 2.2 , we have that: $L_{2}(23), U_{3}(23), M_{23}, M_{24}, C o_{1}, C o_{2}, C o_{3}, F i_{23}$, or $A_{i}, i=23,24, \cdots, 28$. We have from Proposition 3 of [14] that at least two of primes $13,17,19$ must divides the order of S, \quad and \quad so $\quad S \cong C o_{1}, F i_{23}, A_{i} \quad$ where $i=23,24,25,26,27,28$.
If $S \equiv C o_{1}$, from
$\omega(S)=\{1, \cdots, 16,18,20,21,22,23,26,28,30,33,35,36,39$,
$40,42,60\}$. By Proposition 3 of [14], we have that at least two of the primes $7,11,13$ must divide the order of K. It is easy to get that $5||K|$ and 13$||K|$. Thses $5 \cdot 13 \in \omega(G)$ and $5 \cdot 13 \notin \omega(G / K)$ imply $5||K|$. And $4 \cdot 11 \in \omega(G)$ and $4 \cdot 11 \notin \omega(G / K)$. Thus we have $\{2,7\} \subseteq \pi(K)$, and the two numbers 11,13 are not prime divisors of $|K|$.

Then all subgroups of order 13 are conjugate in G, and the fact that a Hall $\{2,7\}$-subgroup of order 156 of K is nilpotent by Thompson Theorem (see [10, Theorem 10.5.4]. This implies that G contains an element of order 13 which centralizes elements of order 4 and 11 in K, Thus $4 \cdot 11 \cdot 13 \in \omega(G)$, a contradiction.
If $S \cong F i_{23}$,from [2],
$\omega\left(F i_{23}\right)=\{1, \cdots, 18,20, \cdots, 24,26,27,28,30,35,36,39,42,60\}$
.By Proposition 3 of [14], we have that at least two of the primes $11,13,17$ must divide the order of $|K|$. It is easy to get that
$7||K|$ and 17$||K|$. These $5 \cdot 17 \in \omega(G)$ and $5 \cdot 17 \notin \omega(G / K)$ imply $5||K|$. And $5 \cdot 11 \in \omega(G)$ and
$5 \cdot 11 \notin \omega(G / K)$. Thus we have $\{5,7\} \subseteq \pi(K)$, and the two numbers 11,13 are not prime divisors of $|K|$.

Then all subgroups of order 17 are conjugate in G, and the fact that a Hall $\{11,13\}$-subgroup of K is nilpotent by Thompson Theorem (see [10, Theorem 10.5.4]. This implies that G contains an element of order 17 which centralizes elements of order 11 and 13 in K, Thus $11 \cdot 13 \cdot 17 \in \omega(G)$, a contradiction.

Then S must be an alternating group and so $S \cong A_{i}, i=23,24,25,26,27,28$.

If $K \neq 1$, we take K to be an elementary abelian r-group with $r \in \pi(K)$. Since S contains a Frobenius group of order 49 with a cyclic complement of order 7, we know that $r \neq 7$; for otherwise $49 \in \omega(G)$ (see [19, Lemma 4]), a contradiction. Since S contains a Frobenius group of order $23 \cdot 11$ with a cyclic complement of order 11, we have $r \neq 11$ or 19 ; for otherwise, $11^{2} \in \omega(G)$ or $11 \cdot 19 \in \omega(G)$ (see [19, Lemma 4]), a contradiction. Since S contains a Frobenius group of order $17 \cdot 16$ with a cyclic complement of order 16 , we have $r \neq 2$ or 13 ; for otherwise, $2^{5} \in \omega(G)$ or $16 \cdot 13 \in \omega(G)$ (see [19, Lemma 4]), a contradiction. Similarly, Since S contains a Frobenius group of order 8.7 with a cyclic complement of order 7, we have $r \neq 7$; for otherwise, $7^{2} \in \omega(G)$ (see [19, Lemma 4]), a contradiction. Thus $K=1$ and $S \leq G \leq A u t(S)$.
Case 1. $S \cong A_{23}, A_{24}$, or A_{25}
In this case, $S \leq S_{25}$. But $\quad 153 \in \omega(G) \quad$ and $153 \notin \omega(G)$, a contradiction.
Case 2. $S \cong S_{27}$ or S_{28}
In this case, from [5, lemma 2], we have that $\omega\left(A_{26}\right) \subset \omega\left(A_{27}\right) \subset \omega\left(A_{28}\right)$. Then there exists an element of order 125 of A_{27}, A_{28} such that 125 belongs to both A_{27} and A_{28}, but $125 \notin \omega(G)$, a contradiction.

From Cases 1 and 2, we have $G \cong A_{26}$.

This completes the proof.

Remark 3.2 The alternating A_{26} is another example which can be recognizable. Also, the methods of this paper also can be used to A_{11}, A_{22}

Acknowledgments

The object is partial supported by the Scientific Research Fund of School of Science of SUSE (Grant Number: 09LXYB02) and NSF of SUSE(Grant No: 2010XJKYL017). The authors are very grateful for the helpful suggestions of the referee.

References

[1]R. Brandl, and W. Shi, The characterization of $\operatorname{PSL}(2, q)$ by its element orders, Journal of Algebra, 163(1)(1994), 109114.
[2]J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, ATLAS of finite groups: Maximal subgroups and ordinary characters for simple groups, Clarendon Press, Oxford, 1985.
[3]M. R. Darafsheh, and A. R. Moghaddamfar, Characterization of the groups $P S L_{5}(2), P S L_{6}(2)$ and $P S L_{7}(2)$, Communications in Algebra, 29(1)(2001), 465-475.
[4]J. Han, G. Chen, Z. Zhang, and L. Wang, A characterization of finite simple group A_{11}, Journal of Southwest Normal University (Nature Edition), 30(4)(2005), 638-641.
[5]A. S. Kondrat'ev, and V. D. Mazurov, Recognition of alternating groups or prime degree from their element orders, Siberian Mathematical Journal, 41(2)(2000), 294-302.
[6]V. D. Mazurov, Characterizations of finite groups by sets of orders of their elements, Algebra and Logic, 36(1)(1997), 23-32. [7]V. D. Mazurov, Recognition of finite groups by a set of orders of their elements, Algebra and Logic, 37(6)(1998), 371379.
[8]V. D. Mazurov, A characterization of alternating groups, Algebra and Logic, 44(1)(2005), 31-39.
[9]V. D. Mazurov, A characterization of alternating groups II, Algebra and Logic, 45(2)(2006), 117-123.
[10]D. J. S. Robinson, A course in the theory of groups, 2nd, Springer-Verlag, New York, 1996.
[11]W. Shi, and W. Yang, A new characterizaiton of A_{5} and the finite groups in which every element has prime order, Journal of Southwest Teachers College, No. 1 (1984), 36-40 (in chinese).
[12]C. Shao, and Q. Jiang, A new characterization of A_{22} by its spectrum, Commucations in Algebra, 38(2010), 2138-2141.
[13]C. Shao, and Q. Jiang, A new characterization of A_{11}, Journal of Suzhou University (Nature Edition), 24(2)(2008), 1114.
[14]A. V. Vasil'ev, Onconnection between the structure of a finite group and the properties of its prime graph, Siberian Mathematical Journal, 46(3)(2005), 396-404.
[15]A. V. Vasiliev, and E. P. Vdovin, An adjacency criterion for two vertices of the prime graph of a finite simple group, Algebra and Logic, 44(6)(2005), 381-406.
[16]L. Wang, and W. Shi, A new characterizaiton of A_{10} by its noncommuting graph, Communications in Algebra, 36(2008), 523-528.
[17]A. V. Zavarnitsin, Recognition of alternating groups of degrees $\mathrm{r}+1$ and $\mathrm{r}+2$ for prime r and the group of degree 16 by their element order sets, Algebra and Logic, 39(6)(2000), 370377.
[18]A. V. Zavarnitsine, Recognition by the set of element orders of symmetric groups of degree r and $r+1$ for prime r, Siberian Mathematical Journal, 43(5)(2002), 808-811.
[19]A. V.Zavarnitsin, and V. D. Mazurov, Element orders in coverings of symmetric and alternating groups, Algebra and Logic, 38(3)(1999),159-170.
[20]A. V. Zavarnitsine, Finite groups with narrow prime spectrum, Siberian Electronic Mathematical Reports, 6(2009), 112.
[21]L.Zhang, W. Shi, C.Shao,and L.Wang, OD-characterization of A_{16}, Journal of Suzhou University(Nature Edition), 24(2)(2008), 7-10.

