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Introduction  

The application of single-crystal X-ray diffraction 

techniques to several specimens that are being compressed 

within a single, hydrostatic pressure chamber offers a precise 

method for determining the relative compressibility’s of 

different crystals [1-4]. In this way, it is possible to resolve the 

effects on the equation of state of varying composition, 

nonstoichiometry, site disordering, or other subtle factors. 

Hence, the finite-strain theory of equations of state has been 

extended to the analysis of such data [5-7] . 

The purpose of this paper is to illustrate the finite-strain 

analysis of relative compressibility by applying it to the recently 

published data for the high-pressure superconducting phase. In 

geophysics and high-pressure research, experimental or 

theoretical data consisting of pressure, temperature, and volume 

triplets PVT are parameterized to a functional form for ease of 

interpolation and extrapolation. These equations of state are then 

used to compute phase diagrams, or are used in geodynamic or 

shock compression modeling, etc. [8], comprehensively reviews 

equation-of-state formulations, and comprehensive reviews and 

comparisons of equations of state are given by Hama and 

Suito[9], Stacey [10], and Duffy and Wang [11]. The primary 

purpose of this paper is to discuss the reasons for the accuracy of 

the most-used formulation, based on finite strain theory and 

compare with the available experimental data for 

superconductors. Here we show that at high compressions, and 

for highly compressible materials the third order Birch 

Murnaghan equation of state is considerably more accurate. The 

above equations of state are appropriate for isothermal data. To 

include thermal expansivity there are main approaches to fit 

isotherms, and then tabulate or fit the parameters V0, K0, and 

K0´as functions of temperature. Since experimental data are not 

always collected along isotherms, that method is most amenable 

to analysis of theoretical results. 

The equation of state (EOS) is fundamentally important in 

studying the high pressure properties of solids, which causes 

structural transition. The importance of high pressure 

investigations for high TC superconductors was recognized after 

the discovery of superconductivity at 30K in La-Ba-Cu-O 

system by Bednorz and Muller [12]. The superconducting 

transition temperature of this system increases by 10K under the 

pressure of 15Kbar, which was not observed in any known 

superconductors [13]. In fact this led to the successful idea of 

replacing La by smaller Y, resulting to YBa2Cu3O7 

superconductors [14] with Tc at 90K. 

Since the discovery of the high-temperature 

superconductors, there have been an enormous number of 

studies designed to increase the critical temperature and to 

provide an understanding of the mechanical responsible for 

superconductivity. It has been conformed that, in the mineral 

YBa2Cu3O7, a single phase YBa2Cu3O9-x (x≈2) is responsible 

for the high transition temperature. Borges et a [15] observed 

that pressure has a positive effect on superconducting transition 

temperature (Tc) and is enhanced at a rate of about 0.09 K/kbar 

for YBa2Cu3O6 and 0.19 K/kbar for YbBa2Cu3Ox. 

In order to test equation-of-state formulations, it is 

important to study large compressions, because most common 

equations of state will work reasonably over small compression 

ranges. Thus we choose to study the very compressible 

superconducting materials YBa2Cu3O6.6,YBa2Cu3O6.93, 

YBa2Cu3O7, Bi2Sr2CaCu2O8 and Nd1.32Sr0.41Ce0.27CuO3.96.The 

results turn out to be significant, not only as an illustrative 

example but also because they address empirical conclusions 

that have been emerging from research in Geophysics and 

condensed matter physics. 

Theoretical 

Finite-strain theory has been applied extensively to 

problems in geophysics. The resulting equations are called semi
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empirical because they contain parameters that have to be 

determined from experiment. The theory relates strain, or 

compression, to pressure. 

It is well known result [16,17] of continuum mechanics that 

the finite strain theory may be written equivalently in terms of 

any of an infinite number of different definitions of the ‘strain’. 

For the case of an elastic solid (i.e. one possessing a free energy 

function which is uniquely defined in terms of deformation and 

temperature), this result implies, specifically, that the stress-

strain relation may be written equivalently in an infinite number 

of ways. 

R-R0≡ eR0              (1) 

Then the stress-strain relation is 

V
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Here R is a vector to a point in the deformed lattice; R0 is 

the vector to the same point in the undeformed reference state, 

denoted in this section by a subscript zero. The components of 

both are referred to the same set of cartesian axes. e is the finite 

strain tensor defined by equation (1). ζ is the homogeneous 

stress at the point R. 1 is the unit 3×3 tensor. (1)ij=δij. F is the 

Helmholtz free energy, or ‘elastic energy’ function. η is the 

symmetric finite strain tensor defined in relation to e by  

ηij = (1/2)(eij+eji+emjemi)                       (3) 

Equation (2) is exact, i.e. independent of the size of e. It is 

derived by Leibfried and Ludwig [18] and Murnaghan [19]. 

Alternatively, the strain f can be defined implicitly by 

                     R - R0= f R          (4) 

And then the  stress-strain relation is  
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Where the symmetric tensor Є defined in relation to f by 

                Єij = (1/2)(fij+fji-fmjfmi)             (6) 

Equation (5) is also exact, though its generality is restricted 

to special situations, including the important cases of isotropic 

bodies and of pure strains unaccompanied by rotations [20]. The 

relations between strain and volume change is: 

(V/V0)
2
det (1+2η)|              (7)׀ = 

  

                (V0/V)
2
 det(1-Є)|                           (8)׀ = 

V is specific volume and V0 is volume at zero pressure. 

The difference between these two definitions of strain given 

by equation (1) and equation (4) is clearly in the selection of the 

characteristic lengths used as coefficients of the strain. In the 

first case, the characteristic lengths are taken from the reference 

state where as in the second, from the deformed state. Because 

of this essential difference, the strains e and η are called 

‘Lagrangian’ or ‘material’ definitions of strain, the strain f and ε 

are called ‘Eulerian’ or ‘spatial’ definitions of strain. An elegant 

and exhaustive discussion of finite strain has been given by 

Truesdell [16]. 

Although equations (2) and equation (5) are exact, there 

usefulness is limited by the need for expressions for the free 

energy as a function of strain. In general, the physical 

description of the free energy in terms of interatomic forces, 

etc.will imposes requirements on the choice of a definition of 

strain [21].  

Also, any approximations made in F will affect the results 

of the choice of a definition of strain. Hence, the application of 

equations (2) and (5) to real solids will not be exact and further 

will depend critically upon choice of definition of strain. 

Different choices lead to non equivalent equations of state. 

Eulerian and Hencky measures of strain 

The commonly used Eulerian measure of finite strain is 

based on the consideration of the distance element ds
2
 and on the 

analysis of its change during deformation, the final deformed 

state being the reference state. The result is usually expressed in 

terms of displacement field ui as [22,23] 
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Hydrostatic pressure produces an isotropic (negative) 

compressional Eulerian strain εE [24], which can be written as 
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The Lagrangian strain, εL referred to the initial sate is      
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It may be noticed that if V goes to zero (i.e., for very large 

compressions), the langrangian strain tends to find the value       

-1/2, which makes its use in appropriate at high pressure. 

Structural geologists and materials scientists use a different 

definition of strain [25, 26]. The reference state is neither the 

initial nor the final configuration, but the instantaneous 

configuration of the body being deformed. In uniaxial 

deformation, as the instantaneous length l of the body is 

increased by an infinitesimally small increment dl, the ratio dl/l 

is considered as an increment of the current state of strain 

l

dl
d                                  (12) 

When the body goes from length l0 to length l the total finite 

strain or natural strain, also called the Hencky measure of strains 

[27-29], is obtained by integration, 
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The Hencky strain is not generally used because the integration 

is considered possible only when the increment principal axes do 

not rotate during the deformation Malvern [29]. As this is the 

case for deformation under hydrostatic pressure [30], we can 

write 

0
H V

V
ln

3

1
                                 (14) 

Equation of state 

The practical expression for Finite strain were developed by 

Birch [31,32]. The classical theory of infinitesimal elasticity is 

based on two assumptions: 

 (1). The strains are uniquely determined by stresses and are 

reversible.  

 (2). The strains are limited to linear elasticity. 

Birch used Murnaghan's basic theory, but restricted it to the 

case where the initial stress is a   large hydrostatic pressure. 

The crucial assumption in finite strain theory is in the formal  

relationship between compressions and co-ordinate displacement 

[33], one form is                    
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0

)21(
V

V
                                          (15) 

 where ε is strain. The relation ship between η and ε is not 

unique. Another alternative is [34] 

              
2/3)21(                                          (16) 

Equation (15) is Lagrangian formulations where as (16) is 

Eulerian formulation. 

A series in strain (ε) for the energy function 

 A simple relationship between the compression η and strain 

variable [34] is given by 

                                            ε = f(η) 

   Let the symbol ε' denote dε/dv , ε"=d
2
ε/dv

2
  etc. Take the 

expansion in the potential as a Taylor's series in the equation 
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where P denotes a power. The condition P(1)=P0=0 is satisfied 

by ignoring the term P=1 the factor KT0V0 has the dimensions of 

energy so that all coefficients CP and ε are dimensionless. 

Further E'=P where  E
'
 = (∂E/∂V)T,   Further      

                              E" = -(K/V)                                              (18)  

                           









 1

'

2

'''

K

VK

V

K
E             (19) 

The derivatives of equation (17) is  
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(22) 

 For P=0, є=є0=0  

      since                                      E'' = KT/V                         

      Then                                      E0" = (KT0/V0)                     (23)        

Another expression for E0" is found from equation (21) for n=2 

and є0=0 the terms behind the summation sign in equation (21) 

vanishes& E0
"
 becomes 
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From equation (23) and equation (24) 
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Equating equation (25) and equation (26), C3 becomes 
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The pressure equation to third order is  
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The energy equation for third order is  











32

2

00T
C

3

1
CEVK

2

1
)(E  

      































2'

0

'''

0

3

00

3

00

'

0

2

0

'

0

2

00

31

3

1

2

1












VV

K

V
VKT

 

  
  










































2'

0

0

00

'

0

2

0

2

00T

)(

3

V

K1

3
1

V'

VK

2

1
             (29)           

Equation of state based on Eulerian Strain 

The Eulerian strain for  
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where є'=(∂ε/∂V) and є"=(∂є'/∂v)  

Now from equations (27), (31a), (31b) and (31c) the third order 

coefficient can be written as   
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and the EOS is     
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Equation of state based on Lagrangian Strain 

The Lagrangian strain is given by 
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Now from equation (28) the pressure equation for third order is 
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using above, the EOS in third order 
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In terms of compression η it is [35] 
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Birch - Murnaghan Isothermal Equation of state 

Birch original derivations were based on Murnaghan's 

theory of finite elasticity. The EOS presented by Birch in terms 

of parameter є is Birch original derivations were based on 

Murnaghan's theory of finite elasticity. The EOS presented by 

Birch in terms of parameter є is 

    '

0
K4

4

3
  

In terms of the compression η and the experimentally 

determined KT0 and 
'

0
K  the isothermal B-M EOS to second 

order is  

   3/53/7

0T
K

2

3
0,P      (36)                 

  

Isothermal B-M equation of state to the third order  
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The Bardeen EOS 

Bardeen's EOS arises from an assumption of an interatomic 

potential between atoms. The potential function is given by 
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The Third order Bardeen EOS is  

P(η,0)=-3KT0(η
-4/3

-η
-5/3

)[1-(3/2)(K0'-3)(1-η
-1/3

)]               (41) 

Results and Discussion 

The variation of pressure with unit cell volume of five high 

temperature superconductors viz. YBa2Cu3O6.6, YBa2Cu3O6.93, 

YBa2Cu3O7, Bi2Sr2CaCu2O8, Nd1.32Sr0.41Ce0.27CuO3.96 have 

been computed by using third order Eulerian EOS (P1), third 

order Lagrangian EOS (P2), second order B-M EOS (P3), third 

order B-M EOS (P4) and Bardeen EOS (P5) and compared with 

their experimental values [36-39]. The values of isothermal bulk 

modulus (K0) and its first pressure derivative ( '

0K ) at zero 

pressure are for these superconductors  are used as input 

parameter, given in table (1) which are obtained from neutron 

diffraction measurements methods, taken from the literature [39-

42]. The values of pressure computed by using equations (33), 

(35), (36), (37) and (41) at different compressions with their 

percentage deviation from experimental values are listed in 

tables (2-6). It is evident from the table (2-6) that the third order 

Lagrangian and third order Birch-Murnaghan EOS give the best 

agreement with experimental values. The maximum deviation 

from experimental values is only up to 3.67 %. It is also 

observed from the tables that compression values upto the 0.995, 

calculated values of pressure for five EOS are almost same as 

experimental values for all the superconductors, but as the 

compression increases after 0.995, the deviation in values of 

pressure increases. The second order Birch-Murnaghan EOS 

yields poor results at increased compressions. The order of 

superiority can be arranged as follows on the basis of EOS used 

in present study for the calculation of pressure at different 

compressions for superconductors. 

Third order Birch-Murnaghan EOS > Third order 

Lagrangian EOS > Bardeen EOS > Third order Eulerian EOS > 

Second order Birch-Murnaghan EOS. 

It is crystal clear from table (2-6) that the compounds with 

larger value of oxygen content (δ) value is more compressible, 

in agreement with experimental observation.  

The study of Gravari et al. [38] for Bi2Sr2CaCu2O8 at 

pressure 0 and 10 kbar, V/V0=0.985 is in good agreement with 

the present approach. A neutron diffraction study of 

compression performed by Izumi et al.  [39] for 

Nd1.32Sr0.41Ce0.27CuO3.96. They have studied for variation of unit 

cell volume at different pressure varying form 0 to 0.637GPa. 

The result thus obtained by Izumi are compared with the 

calculated value of pressure computed by third order Lagrangian 

EOS and third order Bardeen EOS.  

The results shows an excellent agreement with maximum 

percentage deviation of 2.31% at V/V0=0.990. The experimental 

value of pressure at high compressions could not available. 

More generally Anderson OL [8] and Stacey et al. [10] note that 

second order Birch Murnaghan equation is subjected to a 

truncation problem due to the fact that the coefficient of the term 

of degree 2 of the polynomial expansion of the free energy is 

larger than that of the degree 3 leading to bad convergence for 

large strains. Due to this shortcomings the second order Birch 

Murnaghan equation of state fails hopelessly. 

        When the finite strain is defined by the change in distance 

between two neighbouring points during deformation, the 

problem arises of choosing between the Eulerian and Lagrangian 

schemes. Now the Lagrangian and Eulerian strains behave very 

different for large extension and compression and are equivalent 

only for small strains.  

 The essential difference between the two kinds of strain is 

that the Lagrangian approach uses the original and unstrained 

state as the reference, whereas, the Eulerian approach uses the 

deformed state as the reference.  

 It is easily seen from equation (30) and (30a) that for 

infinite extension (V→∞) the Eulerian strain takes the finite 

value (1/2) while for infinite compression (V→∞) the 

Lagrangian strain takes the finite value (-1/2). This obviously 

makes the Lagrangian strain is most suitable for large 

compression. 
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Table-1  Input values of isothermal bulk modulus (K0) and its first pressure derivative (
'

0K ) at zero   pressure 

for Superconductors 
S.No Superconductors K0(GPa) '

0K  

1 YBa2Cu3O6.6 112 5.16 

 
 

2 YBa2Cu3O6.93 123 5.16 

 

 

3 YBa2Cu3O7 150 5.15 

 

 

4 Bi2Sr2CaCu2O8 61 5.16 
 

 

5 Nd1.32Sr0.41Ce0.27CuO3.96 143 5.18 
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Table – 3: Comparison of Variation of pressure P (in GPa)  versus unit cell volume ratio (V/V0) calculated 

by (1) Third degree Eulerian EOS (2) Third degree Lagrangian EOS (3) Second order B-M EOS 

(4) Third order B-M EOS (5) Bardeen EOS with experimental value for YBa2Cu3O6.93 with 

corresponding percentage deviation with experimental values 
 
V/V0 P (1) 

 
ΔP(1) % div. P(2) 

 
ΔP(2) % div. P(3) 

 
ΔP(3) % div. P(4) 

 
ΔP(4) % div. P(5) 

 
ΔP(5) % div. P(exp) 

 

1.000 0.00 

 

-- 0.00 

 

-- 0.00 

 

-- 0.00 

 

-- 0.00 

 

-- 0.00 

0.999 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 

0.998 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 

0.997 0.37 0.00 0.37 0.00 0.37 0.00 0.37 0.00 0.37 0.00 0.37 

0.996 0.50 0.00 0.50 0.00 0.50 0.00 0.50 0.00 0.50 0.00 0.50 

0.995 0.62 0.00 0.62 0.00 0.62 0.00 0.62 0.00 0.62 0.00 0.62 

0.990 1.27 2.31 1.27 2.31 1.26 3.08 1.27 2.31 1.27 2.31 1.30 

0.985 1.93 1.58 1.93 1.58 1.92 1.05 1.93 1.58 1.93 1.58 1.90 

0.980 2.61 0.38 2.62 0.77 2.59 0.38 2.62 0.77 2.62 0.77 2.60 

0.970 4.04 0.50 4.05 0.75 3.98 1.00 4.05 0.75 4.05 0.75 4.02 

0.960 5.54 1.07 5.58 0.36 5.45 2.68 5.58 0.36 5.58 0.36 5.60 

0.950 7.13 0.97 7.20 0.00 6.99 2.92 7.20 0.00 7.19 0.14 7.20 

0.940 8.80 1.12 8.93 0.34 8.61 3.26 8.93 0.34 8.91 0.11 8.90 

 

Table – 2: Comparison of Variation of pressure P (in GPa)  versus unit cell volume ratio (V/V0) calculated by 

(1) Third degree Eulerian EOS (2) Third degree Lagrangian EOS (3) Second order B-M EOS (4) 

Third order B-M EOS (5) Bardeen EOS with experimental value for YBa2Cu3O6.6 with 

corresponding percentage deviation 

V/V0 
 
ΔP(1) % div. P(1) 

 
ΔP(1) % div. P(2) 

 
ΔP(1) % div. P(3) 

 
ΔP(1) % div. P(4) 

 
ΔP(5) % div. P(5) P(exp) 

 

1.000 -- 0.00 

 

-- 0.00 

 

-- 0.00 

 

-- 0.00 

 

-- 0.00 0.00 

0.999 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.11 

0.998 0.00 0.23 0.00 0.23 0.00 0.23 0.00 0.23 0.00 0.23 0.23 

0.997 0.00 0.34 0.00 0.34 0.00 0.34 0.00 0.34 0.00 0.34 0.34 

0.996 0.00 0.45 0.00 0.45 0.00 0.45 0.00 0.45 0.00 0.45 0.45 

0.995 0.00 0.57 0.00 0.57 0.00 0.57 0.00 0.57 0.00 0.57 0.57 

0.990 0.00 1.15 0.87 1.16 0.00 1.15 0.87 1.16 0.87 1.16 1.15 

0.985 1.12 1.76 1.12 1.76 2.25 1.74 1.12 1.76 1.12 1.76 1.78 

0.980 0.83 2.38 0.83 2.38 1.67 2.36 0.83 2.38 0.83 2.38 2.40 

0.970 0.54 3.68 0.27 3.69 1.89 3.63 0.27 3.69 0.27 3.69 3.70 

0.960 0.98 5.05 0.39 5.08 2.75 4.96 0.39 5.08 0.39 5.08 5.10 

0.950 1.67 6.49 0.61 6.56 3.48 6.37 0.61 6.56 0.76 6.55 6.60 

0.940 1.11 8.01 0.37 8.13 3.21 7.84 0.37 8.13 0.25 8.12 8.10 
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Table – 4: Comparison of Variation of pressure P (in GPa)  versus unit cell volume ratio (V/V0) calculated by (1) 

Third degree Eulerian EOS (2) Third degree Lagrangian EOS (3) Second order B-M EOS (4) Third 

order B-M EOS (5) Bardeen EOS with experimental value for YBa2Cu3O7 with corresponding 

percentage deviation with experimental values 

V/V0 P (1) 
ΔP(1) % div. 

P(2) 
ΔP(2) % div. 

P(3) 
ΔP(3) % div. 

P(4) 
ΔP(4) % div. 

P(5) 
ΔP(5) % div. 

P(exp) 

 

1.000 0.00 

 

-- 0.00 

 

-- 0.00 

 

-- 0.00 

 

-- 0.00 

 

-- 0.00 

0.999 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 

0.998 0.30 0.00 0.30 0.00 0.30 0.00 0.30 0.00 0.30 0.00 0.30 

0.997 0.45 0.00 0.45 0.00 0.45 0.00 0.45 0.00 0.45 0.00 0.45 

0.996 0.61 0.00 0.61 0.00 0.61 0.00 0.61 0.00 0.61 0.00 0.61 

0.995 0.76 0.00 0.76 0.00 0.76 0.00 0.76 0.00 0.76 0.00 0.76 

0.990 1.55 1.97 1.55 1.97 1.54 1.32 1.55 1.97 1.55 1.97 1.52 

0.985 2.35 0.86 2.36 1.29 2.34 0.43 2.36 1.29 2.36 1.29 2.33 

0.980 3.19 0.31 3.19 0.31 3.16 1.25 3.19 0.31 3.19 0.31 3.20 

0.970 4.92 0.20 4.94 0.61 4.86 1.02 4.94 0.61 4.94 0.61 4.91 

0.960 6.76 0.59 6.80 0.00 6.64 2.35 6.80 0.00 6.80 0.00 6.80 

0.950 8.69 1.14 8.78 0.11 8.53 2.96 8.78 0.11 8.77 0.23 8.79 

0.940 10.73 1.56 10.89 0.09 10.50 3.67 10.89 0.09 10.87 0.28 10.90 

 

Table – 5: Comparison of Variation of pressure P (in GPa)  versus unit cell volume ratio (V/V0) calculated by (1) Third 

degree Eulerian EOS (2) Third degree Lagrangian EOS (3) Second order B-M EOS (4) Third order B-M EOS 

(5) Bardeen EOS with experimental value for Bi2Sr2CaCu2O8 with corresponding percentage deviation with 

experimental values 

V/V0 P (1) 
ΔP(1) % div. 

P(2) 
ΔP(2) % div. 

P(3) 
ΔP(3) % div. 

P(4) 
ΔP(4) % div. 

P(5) 
ΔP(5) % div. 

P(exp) 

 

1.000 0.00 

 

-- 0.00 

 

-- 0.00 

 

-- 0.00 

 

-- 0.00 

 

-- 0.00 

0.999 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 

0.998 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 

0.997 0.18 0.00 0.18 0.00 0.18 0.00 0.18 0.00 0.18 0.00 0.18 

0.996 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 

0.995 0.31 0.00 0.31 0.00 0.31 0.00 0.31 0.00 0.31 0.00 0.31 

0.990 0.63 0.00 0.63 0.00 0.63 0.00 0.63 0.00 0.63 0.00 0.63 

0.985 0.96 0.00 0.96 0.00 0.95 1.04 0.96 0.00 0.96 0.00 0.96 

0.980 1.30 0.00 1.30 0.00 1.28 1.54 1.30 0.00 1.30 0.00 1.30 

0.970 2.00 0.00 2.01 0.50 1.97 1.50 2.01 0.50 2.01 0.50 2.00 

0.960 2.75 1.08 2.77 0.36 2.70 2.88 2.77 0.36 2.76 0.72 2.78 

0.950 3.54 1.39 3.57 0.56 3.47 3.34 3.57 0.56 3.57 0.56 3.59 

0.940 4.36 1.13 4.43 0.45 4.27 3.17 4.43 0.45 4.42 0.23 4.41 

 
Table – 6: Comparison of Variation of pressure P (in GPa)  versus unit cell volume ratio (V/V0) calculated by (1) Third degree 

Eulerian EOS (2) Third degree Lagrangian EOS (3) Second order B-M EOS (4) Third order B-M EOS (5) Bardeen 

EOS with experimental value for  Nd1.32Sr0.41Ce0.27CuO3.96 with corresponding percentage deviation with 

experimental values 

V/V0 P (1) 
ΔP(1) % div. 

P(2) 
ΔP(2) % div. 

P(3) 
ΔP(3) % div. 

P(4) 
ΔP(4) % div. 

P(5) 
ΔP(5) % div. 

P(exp) 

 

1.000 0.00 

 

-- 0.00 

 

-- 0.00 -- 0.00 -- 0.00 -- 0.14 

0.999 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.29 

0.998 0.29 0.00 0.29 0.00 0.29 0.00 0.29 0.00 0.29 0.00 0.43 

0.997 0.43 0.00 0.43 0.00 0.43 0.00 0.43 0.00 0.43 0.00 0.57 

0.996 0.58 1.75 0.58 1.75 0.58 1.75 0.58 1.75 0.58 1.75 0.72 

0.995 0.73 1.39 0.73 1.39 0.72 0.00 0.73 1.39 0.73 1.39 0.14 

0.990 1.47 -- 1.48 -- 1.47 -- 1.48 -- 1.48 -- -- 

0.985 2.25 -- 2.25 -- 2.23 -- 2.25 -- 2.25 -- -- 

0.980 3.04 -- 3.04 -- 3.01 -- 3.04 -- 3.04 -- -- 

0.970 4.70 -- 4.71 -- 4.63 -- 4.71 -- 4.71 -- -- 

0.960 6.45 -- 6.49 -- 6.33 -- 6.49 -- 6.48 -- -- 

0.950 8.29 -- 8.38 -- 8.13 -- 8.38 -- 8.37 -- -- 

0.940 10.24 -- 10.39 -- 10.01 -- 10.39 -- 10.37 -- -- 

 

 


