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Introduction  

       The theory of impulsive differential equations has been 

emerging as an important area of investigation in recent years, 

because, all the structures of its emergence have deep physical 

background and realistic mathematical models. The theory of 

impulsive differential equations appears as a natural description 

of several real processes subject to certain perturbations whose 

duration is negligible in comparision with the duration of the 

process. It has seen considerable development in the last decade, 

see the monographs of of Bainov and Simeonov [2], 

Lakshmikantham et al. [13] and Samoilenko and Perestyuk [22] 

and the papers of [1, 4, 7, 8, 18, 24, 25], where the numerous 

properties of their solutions are studied and detailed 

bibliographies are given. In many areas of science there has been 

an increasing interest in the investigation of functional 

differential equations, incorporating memory or aftereffect, i.e., 

there is an effect of infinite delay on state equations. We refer 

the reader to Kolmanovskii and Myshkis [11, 12], Wu [23] and 

the references there in for a wealth of reference materials on the 

subject. 

        The notion of controllability is of great importance in 

mathematical control theory. Many basic problems of control 

theory pole-assignment, structural engineering and optimal 

control may be solved under the assumption that the system is 

controllable. The concept of controllability plays an crucial role 

in both finite and infinite dimensional spaces, that is systems 

represented by ordinary differential equations and partial 

differential equations, respectively. In recent years, significant 

progress has been made in the controllability of linear and 

nonlinear deterministic systems [5, 6, 9, 14, 15, 17, 19, 21]. In 

[9], the author studied the controllability of impulsive functional 

differential systems of the form  

      

  

  

 where  is a family of linear operators which generates an 

evolution operator  

, here  

is a Banach space,  is the space of all bounded linear 

operators in ; ; ; 

, are impulsive functions; 

;  is a bounded linear operator from a 

Banach space  to  and the control function  is given in 

. The results are obtained by using the measures of 

noncompactness and Monch fixed point theorem.  

       Inspired by the above mentioned works [5, 9, 25], in this 

paper we investigate the sufficient conditions for the 

controllability of impulsive differential system with infinite 

delay of the form  

 (1.1) 

  (1.2) 

  (1.3) 

where  is the abstract phase space which will be defined later; 

 is a family of linear operators which generates an evolution 

system ; The state variable  takes 

the values in the real Banach space  with norm ; The control 

function  is given in  a Banach space of admissible 

control functions with  as a Banach space;  is a bounded 

linear operator from  into ;  is given function; 

 are impulsive functions; 

;  and  represent 

the right and left limits of  at , respectively. Denote  

 and define the 

following space: 

       Let  such that  is 

continuous at  and left continuous at  and the right 

limit  exists for . It is easy to verify that 

 is a Banach space with the norm 
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        The histories  defined by 

, which belong to . Our 

approach here is based on semigroup theory, measures of 

noncompactness and Monch fixed point theorem. 

Preliminaries 

 At first, we define the abstract phase space  as given in 

[5]. 

        Assume that  is a continuous 

function with . For any , we define  

 

and equip the space  with the norm  

 

Let us define  

 

If  is endowed with the norm  

 

then it is easy to see that  is a Banach space. Now we 

consider the space,  

 

Set  be a seminorm in  defined by,  

  

Next we recall some basic definitions and lemmas which are 

used throughout this paper.  

Definition 2.1. A function  is said to be a 

mild solution of the system  if,  on ; 

, ; and the following integral 

equation is satisfied.  

 

Definition 2.2. The system  is said to be 

controllable on the interval  if, for every initial function  

and , there exists a control  such that the 

mild solution  of  satisfies .  

Definition 2.3. Let  be the positive cone of an order Banach 

space . A function  defined on the set of all bounded 

subsets of the Banach space  with values in  is called a 

measure of noncompactness(MNC) on  if  for 

all bounded subsets , where  stands for the closed 

convex hull of . 

The MNC  is said: 

Monotone if for all bounded subsets ,  of  we have: 

;  

Nonsingular if  for every , ;  

Regular if  if and only if  is relatively compact in .  

One of the most examples of MNC is the noncompactness 

measure of Hausdorff  defined on each bounded subset  of  

by 

 can be covered by a finite number of 

balls of radii smaller than }. 

It is well known that MNC  enjoys the above properties and 

other properties see [3, 10]: 

 For all bounded subsets  of ,   

 , where 

 ;  

;  

  for any ;  

If the map  is Lipschitz continuous with 

constant , then  for any bounded subset 

, where Z is a Banach space.  

 Definition 2.4. A two parameter family of bounded linear 

operators ,  on  is called an evolution 

system if the following two conditions are satisfied:   

    (i) ,  for 

;  

    (ii)  is strongly continuous for .  

 Since the evolution system  is strongly continuous on the 

compact operator set , then there exists  such that 

 for any . More details about 

evolution system can be found in Pazy [20]. 

Definition 2.5. A countable set  is said to 

be semicompact if the sequence  is relatively compact in 

 for almost all  and if there is a function 

 satisfying   for a.e. 

.  

Lemma 2.1. ([5]) Assume that ; then for , . 

Moreover,  

 

where   

Lemma 2.2. ([3]) If  is bounded and 

equicontinous, then  is continuous for  and  

 

Lemma 2.3. ([25]) If  is bounded and 

piecewise equicontinuous on  then  is piecewise 

continuous for  and  

  

Lemma 2.4. ([17]) Let  be a sequence of functions in 

. Assume that there exist  

satisfying   and  

a.e. , then for all , we have 

 
Lemma 2.5. ([17]) Let , If 

 is semicompact, then the set  is 

relatively compact in  and moreover if , then 

for all ,  

 

The following fixed-point theorem, a nonlinear alternative of 

Monch type, plays a key role in our proof of controllability of 

the system . 

Lemma 2.6. ([16, Theorem 2.2]) Let  be a closed convex 

subset of a Banach space  and . Assume that  is 

a continuous map which satisfies Monch's condition, that is 

 is countable,  is compact . 

Then  has a fixed point in .  

Controllability Results 

  In this section, we present and prove the controllability 

results for the problem . In order to prove the main 

theorem of this section, we list the following hypotheses:   

(H1).  is a family of linear operators, 

 not depending on t and dense   subset of 

, generating an equicontinuous evolution system 

, i.e.,  is 

equicontinous for  and for all bounded subsets  and     

      .  

(H2). The function  satisfies:   

For a.e. , the function  is continuous and for 

all , the function     is strongly measurable. 
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For every positive integer , there exists  

such that  

 

                           and  

 

  There exists integrable function  such that  

 

         where .  

(H3). The linear operator  is defined by 

 
 has an invertible operator  which take values in 

ker , and there exist         positive constants  and 

 such that  

 

 There is  such that, for every bounded set 

,  

 

(H4). , be a continuous operator such 

that:   There are nondecreasing functions  such that  

 

                        and  

 

     There exist constants  such that,  

 

         for every bounded subset  of .  

(H5). The following estimation holds true:  

 

Theorem 3.1. Assume that the hyphotheses  are 

satisfied. Then the impulsive differential system  is 

controllable on  provided that,  

 (3.1) 

Proof.  Using the hypothesis , for every 

, define the control  

 

 We shall now show that when using this control the operator 

defined by  

 

 has a fixed point. This fixed point is then a solution of 

. Clearly , which implies the 

system  is controllable.We rewrite the problem 

 as follows:  

 For , we define  by  

  

 Then . Let , . It is easy 

to see that  satisfies  and 

  

 where 

 if and only if  satisfies  

 

 and , . Define 

. For any ,  

 

and thus  is a Banach space. Set 

 for some . Clearly  is a 

nonempty, closed, convex and bounded set in . Then for any 

, from Lemma , we have  

  

 

 

  (3.2) (3.2) 

 In the view of Lemma , for each , 

. For each , we 

have by  and ,  

 

 

 

  

              (3.3) (3.3) 

 

Let  be an operator defined by  

 (3.4) (3.4) 

Obviously the operator  has a fixed point is equivalent to  has 

one. So it turns out to prove  has a fixed point.  

 Let , 

where  

 

 (3.5) 

 

         (3.6) (3.6) 

Step 1: There exists a positive number  such that 

. 

        Suppose the contrary. Then for each positive integer , 

there exists a function  but . i.e., 

 for some .  

 We have from ,  

  

  

  

  (3.7) (3.7) 

where  

(3.8) (3.8) 

 Hence by ,  

 

  

 

where M  is independent of 

. Dividing both sides by  and noting that 

 as , we obtain  
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 Thus we have   

 

 This contradicts . Hence for some positive number , 

. 

Step 2:  is continuous. 

Let  with  in . In the view of , 

we have  

 

       Then there is a number  such that  for 

all  and a.e. , so  and . By , 

 for each . By , 

 and by , 

. 

 Then we have  

 (3.9) (3.9)             

 and  

 

 

 

(3.10) (3.10) 

 where  

 

 

 

 

 Observing  and by dominated convergence 

theorem we have that,  

(3.11) (3.11) 

That is  is continuous. 

Step 3:  is equicontinuous on every . That is 

 is piecewise equicontinuous on . 

 Indeed for  and , we deduce that  

  

 

 

 

 

 

 

 

 

(3.12)     (3.12) 

By the equicontinuity of  and the absolute continuity of 

the Lebesgue integral, we can see that the right hand side of 

 tends to zero and independent of  as . Hence 

 is equicontinuous on . 

Step 4: The Monch's condition holds. 

Suppose  is countable and . We 

shall show that , where  is the Hausdorff MNC. 

Without loss of generality, we may assume that . 

Since  maps  into an equicontinuous family,  is 

equicontinuous on . Hence  is also 

equicontinuous on every .  

 By , we have  

  

 

 

  

  (3.13)  (3.13) 

 

By Lemma  and from  and , we 

have that  

  

 

 

 

 

 

 

  

 

 (3.14) (3.14) 

 This implies that  

  

 

 

 

 

 

 

  

  

(3.15)   

From  an d  we obtain that  

  

 

 

 

  

 

(3.16)    (3.16) 

 for each . 

 Since  and  are equicontinuous on every , according 

to Lemma , the inequality  implies that,  
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That is , where  is defined in . Thus 

from the Monch's codition, we get that 

  

since , which implies that . So we have that  

is relatively compact in . In the view of Lemma , i.e., 

Monch's fixed point theorem, we conclude that  has a fixed 

point  in . Then  is a fixed point of  and thus the 

system  is controllable on .  

Remark 3.1. Note that if  is compact or Lipschitz continuous, 

then  is automatically satisfied. In the following, by 

using another MNC, we will prove the result of the Theorem  

in the case there is no equicontinuity of the evolution system 

 and hypothesis . Here we assume that the impulsive 

operators  are compact. So, instead of , we give the 

hypothesis :   

 , be a continuous compact 

operator such that, there are       nondecreasing functions 

 satisfying  

 

         and  

 

Theorem 3.2. Let  be a family of linear operators 

that generates a strongly continuous evolution system 

. Assume that the hypothesis  

and  are satisfied. Then the impulsive differential system 

 is controllable on . 

Proof. In the view of Theorem , we should only prove that 

the function  given by the formula  satisfies 

the Monch's condition. 

For this purpose, let  be countable and 

. We shall prove that  is relatively 

compact. 

We will denote by  the following MNC in  defined by 

(see[10]),  

 (3.17) (3.17) 

 for all bounded subsets of  of , where  is the set of 

countable subsets of ,  is the real MNC defined by,  

  

 with , L is a constant that we shall choose 

appropriately. 

 is the modulus of equicontinuity of the function set  

given by the formula  

 

 It was proved in [10] that  is well defined. (i.e., there is 

 which achieves the maximum in  and is a 

monotone, nonsingular and regular MNC. 

Let us choose a constant , such that 

 

 (3.18) 

 where  and  is the 

integrable function in the hypothesis . Let  

as defined in theorem . From the regularity of , it is 

enough to prove that . Since  is a 

maximum, let  be the denumerable set which 

achieves its maximum. Then there exists a set  

such that  

 

3.19 (3.19) 

 Now we give an estimation for . Since  is 

compact, we get  

 3.20 (3.20) 

From , noticing that , as  is compact, we 

have that  

  

  

 

 

 

 

 

 

 

3.21 (3.21) 

 From  and , it follows that  

 

 

 

  

Therefore, we have that  

 

From , we obtain that  

 

 From the definition of , we have  

3.22 (3.22) 

 From  and , noticing that  in , we get 

that  

 

 

 

  

 

That is,  is relatively compact 

for almost all  in . Moreover, from the fact that 

, by  and , it is easy to see that 

 is uniformly integrable for a.e. 

. So  is semicompact 

according to the Definition . By applying Lemma , we 

have that  is relatively compact in . 

 On the other hand, by the strong continuity of  and 

the compactness of , we can easily verify that  is 

relatively compact. Then by  is also relatively 

compct in . Since  is a monotone, nonsingular, regular 

MNC, from Monch's condition, we have that  
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Therefore,  is relatively compact in . This completes the 

the proof.  
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