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Introduction

The theory of impulsive differential equations has been
emerging as an important area of investigation in recent years,
because, all the structures of its emergence have deep physical
background and realistic mathematical models. The theory of
impulsive differential equations appears as a natural description
of several real processes subject to certain perturbations whose
duration is negligible in comparision with the duration of the
process. It has seen considerable development in the last decade,
see the monographs of of Bainov and Simeonov [2],
Lakshmikantham et al. [13] and Samoilenko and Perestyuk [22]
and the papers of [1, 4, 7, 8, 18, 24, 25], where the numerous
properties of their solutions are studied and detailed
bibliographies are given. In many areas of science there has been
an increasing interest in the investigation of functional
differential equations, incorporating memory or aftereffect, i.e.,
there is an effect of infinite delay on state equations. We refer
the reader to Kolmanovskii and Myshkis [11, 12], Wu [23] and
the references there in for a wealth of reference materials on the
subject.

The notion of controllability is of great importance in
mathematical control theory. Many basic problems of control
theory pole-assignment, structural engineering and optimal
control may be solved under the assumption that the system is
controllable. The concept of controllability plays an crucial role
in both finite and infinite dimensional spaces, that is systems
represented by ordinary differential equations and partial
differential equations, respectively. In recent years, significant
progress has been made in the controllability of linear and
nonlinear deterministic systems [5, 6, 9, 14, 15, 17, 19, 21]. In
[9], the author studied the controllability of impulsive functional
differential systems of the form

(0 = A x® + fle.x(®)) + Bu)(®), a.e. on[0.b],

Ax|e, = L(x(£)), § =1.2,.5,

(0 + Mx) = x,.
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where A(t}) is a family of linear operators which generates an
evolution operator

U:A={(ts)e[0,b] x[0.b]:0 5=t = b} — L(X), here X
is a Banach space, L{X7} is the space of all bounded linear
operators in X; f:[0b] =X = X, 0 ==ty == = t, <ty =5
IpX =X i=12,..5 are impulsive functions;
M:PC([0,B].X)— X; E is a bounded linear operator from a
Banach space V¥ to X and the control function u(-} is given in
L*([0. 5]. V). The results are obtained by using the measures of
noncompactness and Monch fixed point theorem.

Inspired by the above mentioned works [5, 9, 25], in this
paper we investigate the sufficient conditions for the
controllability of impulsive differential system with infinite
delay of the form
x (8) = A()x(t) + f(tx)+ (Bu)(E), te]=[0.B], t £, k=12,...m,

Bxeer, = Li(x(5)). k =1.2,..m,

Xp = I:p = 'E;:,
where B; is the abstract phase space which will be defined later;
A(t) is a family of linear operators which generates an evolution
system {U{t,5s):0 = s =t = b}; The state variable x{-} takes
the values in the real Banach space X with norm |I-Il; The control
function u(-) is given in L*(J. V) a Banach space of admissible
control functions with ¥ as a Banach space; E is a bounded
linear operator from V into X; f:] = B; — X is given function;
Ik =X k=12..m are impulsive functions;
0=ty <ty =<ty < tpyy = b x(87) and x (5 ) represent
the right and left limits of x (£} at t = &, respectively. Denote
Jo=10.8], Jx = (tirtens]. = 12,...m, and define the
following space:

Let PC{{—oco,b].X) ={x:{—ca,b] = X such that =(t) is
continuous at £ # £; and left continuous at £ = t; and the right
limit x(t7) exists for k = 1.2,...m}. It is easy to verify that
Pe({(—co,b].X) is a Banach space with the norm
| x llze= supfll x(t) Il: £ € (—oco,b]L
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The histories xpii{—o0,0] = X defined by
x.(f) =x(t+8). —co <8 =0, which belong to Bx. Our
approach here is based on semigroup theory, measures of
noncompactness and Monch fixed point theorem.

Preliminaries

At first, we define the abstract phase space Bj as given in
[5].

Assume that h:(—co,0]— (0,+c0) is a continuous
function with [ = J’_DDC h{s)ds = +co. Forany a = 0, we define
B = [i:[-a,0] = ¥ suchthat (t) is hounded and measurable)

and equip the space B with the norm
1 lgg= sup Nyls)l, YyeB

FE[-0.0]
Let us define
By = {ur (-0 0]+ 1 suchhatforany €3 0, 9oy €8 and fnx h(3) N gy s < 00}
If B is endowed with the norm

I g, = o () 1 lpggy ds. Vi € By,
then it is easy to see that (E5.l-llz, } is a Banach space. Now we
consider the space,

B = {x € PC((—co, b].X) suchthat x, = ¢ € By L
Set Il-llz, be a seminorm in B, defined by,

Iz g, =N ¢ Nz, + sup{ll x(s) l:s € [0.5]}, x € By,
Next we recall some basic definitions and lemmas which are
used throughout this paper.
Definition 2.1. A function x € PC{{—ca, 5], X} is said to be a
mild solution of the system {1.1} — (1.3} if, x; = ¢ on {—2a,0];
Ax|emy, = Ie(x(t:)), k= L2 ....m; and the following integral
equation is satisfiedr.

x(t) = U( 0)9(0) 4 Jy UE5) Buls) + (5.5 s + Epaner U ) (a(E). €]
Definition 2.2. The system (1.1} —{1.3} is said to be
controllable on the interval | if, for every initial function ¢ € B;,
and x, = X, there exists a control u € L*(J. V) such that the
mild solution = {-} of {1.1} — (1.3] satisfies x (b} = x,.
Definition 2.3. Let E* be the positive cone of an order Banach
space (E,=]. A function ¥ defined on the set of all bounded
subsets of the Banach space X with values in E* is called a
measure of noncompactness(MNC) on X if #{zo2} = €(12) for
all bounded subsets 12 £ X, where toil stands for the closed
convex hull of i1,

The MNC @ is said:

Monotone if for all bounded subsets £2;, €2, of X we have:
(£2; €0;) = (D{L2) = ©(L2;));

Nonsingular if ®@{{a} U &2} = @2} foreverya e X, 2 c X;
Regular if @£} = 0 if and only if £2 is relatively compact in X.
One of the most examples of MNC is the noncompactness
measure of Hausdorff & defined on each bounded subset £2 of X
by

B(€2) = inf{z = 0; €2 can be covered by a finite number of
balls of radii smaller than =}.

It is well known that MNC £ enjoys the above properties and
other properties see [3, 10]:

For all bounded subsets £2.£2,.52, of X,

B, +9.) = A(9,) + B(92;), where

O+, =x+yixeld ¥y}

B2y VL) = max{f(€,), B(L2,)};

BUALY) = |45 (52) forany 4 € E;

If the map @:D{@)E X —=Z is Lipschitz continuous with
constant k, then S-{Q%2) = kF(L2) for any bounded subset
£2 2 D(@Q7, where Z is a Banach space.
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Definition 2.4. A two parameter family of bounded linear
operators U(t,s), 0 =s=t=b on X is called an evolution
system if the following two conditions are satisfied:

Q) Uiz, 51 =1, Ui, vylU{r. sy = Ut 5] for
D=s=r=t=<h,

(ii) (t.5) = Ut s) is strongly continuous for 0 = s = t = b,
Since the evolution system L7{t, 5} is strongly continuous on the
compact operator set [ = J, then there exists M; = 0 such that
| Uit sy = M; for any (t.s)e[=]. More details about
evolution system can be found in Pazy [20].

Definition 2.5. A countable set {f, Yoe, = L*{[0.5]. X is said to
be semicompact if the sequence {f, 1oz, is relatively compact in
X for almost all t=[0.b] and if there is a function
w e L*([0,b]. B¥) satisfying supnz. I £, (£) 1= u(t) for ae.
te [0.b].

Lemma 2.1. ([5]) Assume that x € By, ; then for t € ], x, € By
Moreover,

LI x(e) U<l x, Uz, <0 ¢ Nz, +1 sup Il x(s) I,
zE[D.Y

where I = [ h(t)dt = +co.
Lemma 2.2. ([3]) If W < C([e.5].X} is bounded and
equicontinous, then F{W{t})} is continuous for t € [a. 5] and

B(WY = suplA(W(t)), te[ah]) where W(t)={e(thxeW]CLX
Lemma 2.3. ([25]) If W = PC([a.b].X} is bounded and
piecewise equicontinuous on [a &] then S{W ()} is piecewise
continuous for t € [z, 5] and

B{W) = sup{B(W(E)). t € [ab])

Lemma 2.4. ([17]) Let {f,}iL, be a sequence of functions in
L*([0.5]. B*). Assume that there exist w.n € L*([0.5].E¥)
satisfying  suppzy I fo (£) 1= u(t) and B({f (E)in=s) = 0(E)
a.e. t € [0, b], then for all ¢ & [0, &], we hrave

t
_3{{[:' Ut s)ify(5)ds:n = 11) = 2M, L n{s)ds,

Lemma 2.5. ([17]) Let (&GFi(E) = J’,: Uit.s)f (s)ds, |If
[f}e, o L*([0, 5], X) is semicompact, then the set {Gf, Jaz, is
relatively compact in ([, &].X7 and moreover if f, = f;, then
forall t = [0, 5],
(Gl (&) = (Gfol(E)., as n— co.

The following fixed-point theorem, a nonlinear alternative of
Monch type, plays a key role in our proof of controllability of
the system (1.1} — (1.3).
Lemma 2.6. ([16, Theorem 2.2]) Let I be a closed convex
subset of a Banach space X and 0 € I, Assume that F: D) —= X is
a continuous map which satisfies Monch's condition, that is
(M < D is countable, M € Za ({0} U F(M}) = M is compact J.
Then F has a fixed point in I,
Controllability Results

In this section, we present and prove the controllability
results for the problem (1.1} — {1.33. In order to prove the main
theorem of this section, we list the following hypotheses:
(H1). At} is a family of linear  operators,
At D{A) — X, D({A) not depending on t and dense subset of
X, generating an equicontinuous  evolution  system
Uit s:-0=s=t=b}, e, (Ls)—={Utslx:xeT} is
equicontinous for ¢ = 0 and for all bounded subsets T and

M; = supf{ll U{t,s) I:(t.s) e J= L
(H2). The function f:] = By — X satisfies:
For a.e. t €], the function f(t.-}: B; — X is continuous and for
all ¢ € By, the function  f{ ¢):] = X is strongly measurable.
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For every positive integer r, there exists a, € L*([0,b]:R¥)
such that
sup Il flt. @) < e () for aete].

||_1'.l|1:h5i"
and
umtnEJ’ dt =g < o0,
F—s02

There exists integrable functlon n: [0, 5] — [0, c2) such that
BFED)<0E) sup BO(E) forae te] and DEB,

.
where D (£} = {1;'{9].1:' e DL,
(H3). The linear operator W: L*(],V) — X is defined by
]

ﬂ'-rlf"l

W = J‘ Ui, s)Buls)ds such that
o

W has an invertible operator W~ which take values in
L2(J.V)/kerW, and there exist positive constants M; and
My such that

I Bl M, 1W< M,.
There is Ky € L*(J.R*) such that, for every bounded set
QX

BW~*Q)(t) = Ky ()B(Q).
(H4). I X = X, Kk =1,2..,m, be a continuous operator such
that: There are nondecreasing functions L;:E* — RE* such that

I ) I= Lp(l=0) k=12...m, xeX,
and
LE(o)
=dp=<0o, k=12...m
1303 [}

There exist constants £y, = 0 such that,
BUL(S)) £ C:B(S), k=12...m
for every bounded subset 5 of X
(H5). The following estimation holds true:
N = [0+ 20 1 Ry ) DR Gt (20, 440, DK 1) I ] < L
Theorem 3.1. Assume that the hyphotheses (K1)} — (H3) are
satisfied. Then the impulsive differential system (1.1} —(1.3] is
controllable on prolvided that,
M, (1+ M, M, M;b2)(ol +
Proof. Using the hypothesis
xE Tt?{{—m E:] X7, define the control

(0= W7 D.090) - |y UbF6.5d5= Ty DB LD
We shall now show that when using this control the operator
defined by

A= 1
(H3)(), for

(3.1)
every

w(t), te(-om,0]
(F)(e) = | U000 (0) + Jy (e (s ) + (B
+Zoct,ct Ut () tE]
has a fixed point. This fixed point is then a solution of
(1.1) —(1.3). Clearly x(b) = (Fx)(b) = x,, which implies the
system (1.1} — (1.3} is controllable.We rewrite the problem
(1.1} —(1.3) as follows:
For ¢ € By, we define & by
o) = (U{t, 0 (0). te]
¢(t), te(—co,0].
Then & € By, Let x(t) = y(£) + ¢(£), t € (—ca.b]. It is easy
to see that ¥ satisfies vy =0 and
(0)= Iy VE.S)IF(53s + 6+ Buy(9)1ds + Toesee U6 L0/ (8) + §(22)
where
uy() =Wz, = U0, 0090) - [} UG, 5)f (5.3, + 6 )ds - T,
if and only if x satisfies
x(t) = Ut.0)p(0) + J"nr Ut 5)[f(sx5) 4 Buy(s)]ds + Zyarper Ul t(x(t)).

2J(s)]ds

U(b ey (8 + 9(8:)]6)
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and x{tj = g(t}, t e (—ocao, []] Define
=1y EfE,. ¥y = 0E B} Forany ¥ E'BI..,
Iy ||_-_r—|| Yo Iz, +sup{l y(s) I:5 € [0.5]} = sup{ll y(s) I:5 € [0.B]},
and thus (B, ||'||r3ﬁ 3 is a Banach space. Set
B, ={y e By:llylz <q} for some g =0, Clearly B, is a
nonempty, closed, convex and bounded set in B . Then for any
y € B, from Lemma 2.1, we have

Iy + @ Nz, <l Nz, +1 ¢ Iz,

=l yp Iz, +1sup Hy(s) | +1@g Iz, +1sup Ig(s) I
S EE[] T [l

<I(g+M g0 N+l ¢ llz,=g.(32)
In the view of Lemma 21, for each ¢teg],
Iy(E) + () I= 17" I 3 + ¢ llz,. Foreach t € ], y € B, we
have by (3.2} and (H4)(i),
sup IyE)+ @) I Iy + ¢, Iz, <171,
E

I ey (te) + @Ctd) 1= Ll w(ts) + @Ct) 1)
< Li(sup | y(£) 4+ @) 1)
tej

< L(I"*g) k=12 ...m (3.3)
Let G: By, — By, be an operator defined by
0, te(-00,0],
t -
)0 =| b UGyt 04 Buy(Slds  (3.4)

+Doeryer Ul 80t + 6 (t)). te).
Obviously the operator F has a fixed point is equivalent to & has
one. So it turns out to prove & has a fixed point.

LetG =Gy + G,
where R
(GY)(8) = Eparyer ULE 8 )0y (&) + &(8:))
(3.5)
(Gy)(t) = J’; Ut s)[f(s ¥ + @:) + Buy(s)]ds. (3.6)

Step 1: There exists a positive number g = 1 such that
G(B,) S B,.

Suppose the contrary. Then for each positive integer g,
there exists a function y9(-)e B, but G(y%)e B, ie,
I G(vE)(t) = g forsome t € [.

We have from (H1} — (H4),
g =l {G¥T)(E1 Il
smfé’ \lfm‘f + 6+ Bup(@) s+ M, T L1 6060 )

<M, [ ds+'lflf | Bug( ||ds+ﬂflii'1l( 1)
<l (st+u41m L la4 M, 5 L0™), (3.7)
where
Vg Dz Ml 4 09 U M [ g (s + M, DB L9 1(3.8)

Hence by (3. ?j
gl f fle)dst] W Waflag | 4 19, +*U (6)is t M, 3Fy L1
+M; EFL, i-{t"lqr]
[f ay (s)ds + Iy L (T )] + M,
where M = MMM 3h¢{ll xy Il +My Il @ lig, ) is independent of

g. Dividing both sides by g and noting  that
g = I(q+ My I ¢(0) I+ ¢ Iz, = 2 as g — ©o, we obtain

q:l:l‘l'\'l \'Ig 3]3‘-
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_I n* [2yde
lirn mf{ )= Ilrn mf{

e

_I & risde g
—] =gl

lim ml’(%] = llm lﬂf{M-l q] i

g+ iy
Thus we have .
1< M(1+ MM, Mbz) (el + ZF, 1;).

This contradicts (3.1}. Hence for some positive number g,
G(B,) € B,
Step 2: G: By, — B} is continuous.
Let {v"™ (£)}nz: S By with ™ — y in By, In the view of 3.2,
we have
17 + ¢, lz, =g te].

Then there is a number g = 0 such that II ¥™ (£} II< g for
all n and ae. tef, so y™ eB,; and y e B,. By (H;)(),
fE 3™ + @) = f(tye + é;) for each te]. By (H:)(),
LFEy™ + ) — fltye + 62 1< 2ay(5) and by (Hy),
L™t + () = Lv(t) + 6(8)), k=12,..,m
Then we have N
1Gy™ = Gy I, = ZEey My 1T ly™ (&) + 9(8)) - L(y(t:) + 9(8:)
and

l. (3.9)

I Goy™ — Gy g,
|i""|

< MLJ’ I f(s.5" +@5) = f(s.3: + ¢:) I ds
+M, M, J’ I 23 (5) — wy (5) Il ds

SM Iy WfGs 3™ + 69~y + 65) hds + 058 1 —u; 1,2/(3.10)
where

Dl =y a2 M50 ) 0 £ ™ 4 80) - Flsiye +6) 1 ds

+M I 1™ (@) + (80) = (&) + 98 1]
Observing (3.9) —(3.11} and by dominated convergence
theorem we have that,
I Gy™ — Gy Iz, <! GL)-"“?—G} Iz, +16; y M -Gyy lz, =0 asn-+0,(3.11)
That is & is continuous.
Step 3: & is equicontinuous on every . & =1.2,...
G(E) is piecewise equicontinuous on .
Indeed for ty.¢; € [ & << E;and y € B, we deduce that

Gy )tz) = (Gy)(e

.. That is

< 7 WUt 5) — Ut s) I £(s. 3. + 62) + Buy(s) I ds

+ 52 MU ) 1 f(s 5+ 85) + Buy(s) I ds

< Iy VU 9) - UCtys) Dy (s + ;1 U(tys)-Uttys) LMD, 14, 1 9(0)
r t
M [ agds+ M, T, L0 g ds + [ 1 U(t.5) 1 oy ()ds

fy
£l 100 ) LR[04, To(0) 141, Jy agds+ M, B L16s(3.12)

By the equicontinuity of U{-.s} and the absolute continuity of
the Lebesgue integral, we can see that the right hand side of
(3.12) tends to zero and independent of ¥ as £; — t;. Hence
G(B;) is equicontinuous on [ (k =1.2,...,m]).

Step 4: The Monch's condition holds.

Suppose W < E_ is countable and W & ea( {0} U G(W}). We
shall show that #{W"} = 0, where £ is the Hausdorff MNC.
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Without loss of generality, we may assume that W = {y'™1=_,.
Since G maps B, into an equicontinuous family, G(W) is
equicontinuous on J;. Hence W £ to({0} U G(W)) is also
equicontinuous on every J;.
By (H,)(if), we have

BUG y™ (E)}n1)

= B({Zoaer VI (r™ (8) + 9(8:))}520)
= My IR B(LO™ () + ¢(t)n=s)
= My EFL GeB(y™ (8:))e=1)- (3.13)

By Lemma 2.4 and from (H2){iii), (H3)(ii) and (H4){ii), we
have that

By [y (5)In=1)

< KB Jy U@ f(sv™ + $)ds)r_,)ds

+BUER Ul ) (y™ () + @(t))kr=1)]

< K ($)2M; Jy n(s)_sup B(Iy™ (s +8) g8 (s + E))i-a)ds

—== @20
+M; I B0y ™ (t)37-1)]

< Ky (5)(20, Jy (s Supﬂ(b"")(ﬂ};‘ﬂ]ds+MLE-¥‘=1Ca.ﬂ(b-““)(tﬂ};‘:l]]-(3-14)
This implies that

BUGyP @y (10

foS Flys™ 4 @dskiny) +B(L foS y0(8)ds)ney)

<2 f; 1(s) sug ™ (s +6) +@(s +6)) s + 20, f: By (fuy )}y Jis
-z el

= M, Jf n(s) sup B({y™ (D}n=1)ds + 4MIM; {f: Ky (s)ds)
DetsE (311)
x (fy n(s) sup B (0™ ()} 7=a)ds)

$2MEM, ) Koy (9)ds(TE, CoB(y™ (6))5n,). foreach ¢ € /,(3.15)
From {3.13} and (3.15) we obtain that
BUGY™ (i)
< B({Gy™ (®))5=0) + BUG Y™ ()}

= M, B0, CR(Y™ (6lns) + M, +4M2M, [ Ky()ds)
x fy 1(s) sup B(Ly™ (2)}aoy)ds
et

+2MEM, f) Ky (s)ds(ZE CoB(Dy™ (:))im))(3.16)
foreacht £ ].
Since W and G (W) are equicontinuous ofB A’y [, according
to Lemma 2.3, the inequality (3.16&) implies that,
BUGY™IT)

< [M I, G+ (2M, +4MEM; UKy 1200 1 U2 18C0 ™ 3y)
+H[ZMIM; | Ky 2 ZFC; GBIy ™ass)

=[O+ 2000y 1Ky 1) 25, G+ (20 + 900 1 Ky ) U 1 B ™ )
= NB({y ™).
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That is F(GW) = NF(W), where N is defined in {H5). Thus
from the Monch's codition, we get that
BiWY = Biea(f0} U G(WY) = B(G(WY) < NE(WY,

since IV = 1, which implies that (W) = 0. So we have that W
is relatively compact in B;". In the view of Lemma 2.6, i.e.,
Monch's fixed point theorem, we conclude that & has a fixed
point v in W, Thenx = v + & is a fixed point of F and thus the
system (1.1} — (1.3} is controllable on [0, &].
Remark 3.1. Note that if f is compact or Lipschitz continuous,
then (HZ)(iii) is automatically satisfied. In the following, by
using another MNC, we will prove the result of the Theorem 3.1
in the case there is no equicontinuity of the evolution system
UTt, 5) and hypothesis (HZ). Here we assume that the impulsive
operators I are compact. So, instead of (H4), we give the
hypothesis (H4)':
(H4)' I;:X =X k=12..m, be a continuous compact
operator such that, there are nondecreasing functions
Li:R* — R* satisfying

Iy =Ll =) k=12..m,

and

x e X,

L (/)
“ﬂ ~= A <o k=12...m

f—=sze
Theorem 3.2. Let {A(t)} e e @ family of linear operators
that generates a strongly continuous evolution system
{U{t,s):(t.s) € J = J}. Assume that the hypothesis (H27), (H3)
and (H4") are satisfied. Then the impulsive differential system
(1.1} —(1.3) is controllable on J.
Proof. In the view of Theorem 3.1, we should only prove that
the function G:Bj; — B given by the formula (3.4) satisfies
the Monch's condition.
For this purpose, let W =B, be countable and
W S co({0} = ¢(W)). We shall prove that W is relatively
compact.
We will denote by & the following MNC in B: defined by
(see[10]),

$(0) = max {a{E] mod (E)).(3.17)

for all bounded subsets of ﬂ of BL, where A(}) is the set of
countable subsets of £1, « is the real MNC defined by,
a(E) = sup e M B(E(t)).
te[0.B]

with E(t} = {x(t):x € E}, L is a constant that we shall choose
appropriately.

mod, (£} is the modulus of equicontinuity of the function set £
given by the formula

d.(E) =i t) - x(t,
o B = e T ttpeioemcg | 1)~ 3(8) b

It was proved in [10] that € is well defined. (i.e., there is
E, € ALY} which achieves the maximum in (3.17}} and is a
monotone, nonsingular and regular MNC.

Let us choose a constant L =0, such that
n t y
p= (2M, +4MIM; | Ky 1) sup [ g(s)e ™ ds < 1,
tE[D.B]
(3.18)
where M, = sup!ll U{t.s) l:(t.s1eJx 1 and #n is the

integrable function in the hypothesis (HZ). Let 6, = Gyv + Gy ¥
as defined in theorem (3.1}. From the regularity of &, it is
enough to prove that (W) = (0.0). Since (G(W)) is a
maximum, let {z™1=_ ., < G{IW) be the denumerable set which
achieves its maximum. Then there exists a set {y™17_, c W
such that
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2Z®(t) = (Gy™)E) = (6, y™)(E) + (G, y™)(t), foralln = 1, £ € [0,5).3.19
Now we give an estimation for a({z™1>_,). Since I.(*) is
compact, we get

B,y ™) (#)}5=s) = 0, for t € [0,5].3.20
From (3.147, (3.13], noticing that £ = 0, as I is compact, we
have that

B{(Gyy! ”“]{t]}n 1)

< 2M; J; n(s) sup By ™ (1))

STEE

- t ;
+4MIMy | Ky 2 Jy 0(s) sup B(y™ (@))5-0)ds
e -4
- r P
< (2M, + 4MEM;, | Ky ) [y n(s) sup B(Iy™ (7)), )ds
DETEs
. t ; , .
< (2M + 420 | Koy 12 Jy n(s)e™ sup (e7B({y™ (1))7-0))ds
tef0.0]

= (2M, +4M2M, I Ky 1 )a(fy ™)) f; n(s)etds, fort € [0,5].3.21

From (3.200 and (3.21), it follows_ that _

a({z™) = f[LEFE,""_”.E{{(Gi:f*“j]{t] + (G ™)
E[D.0]

. - - E .
< sup e~ (2M; +4MIM; Il Ky 1)a(y™Ym,) fy n(s)eds
te[0.B

- ” L .
a({y ™Y )(2M, + 4MEM, | Ky 1) sup [ g(s)e™~ds
te[0.b]

= a(ly™ ) p.

Therefore, we have that

a({y™ i) € a(W) < a(Ea({0}U GW))) = a(z™li.) £ a(r™ e,
From {3.183, we obtain that _

a({y™ ) = a(W) = a(z™5,) = 0.
From the definition of =, we have
B ™ (E)s) = Bz O)Es) = 0. fordehDt € [0,5]3.22
From (3.14) and (3.22}, noticing that £, = 0in (3.14), we get
that

BUF 3™ +6:) + Buym)(®)}ies)
=n(t)_sup BULy™(+6) + (¢t +6))7no)

+2M, M Ky (5) f () Sup ) B(y™ (1)}5s)ds
= () S'-IP 5’({} SR () =y

D=1

+2M M Ky (5) Iy ?J(SJDSS'-}F;S.E (D (Thlee)ds = 0,

That is, {f (£, 5™ + @) + Bum (£) )5 is relatively compact
for almost all £ & [0.5] in X Moreover, from the fact that
{y™5o: EB,, by (H2)(ii) and (3.8), it is easy to see that
(it y™ + 1)+ Buye (£))52, is uniformly integrable for a.e.
te[0b]. So {fl.y™ +¢)+ Buymi}ze: IS semicompact
according to the Definition 2.53. By applying Lemma 2.5, we
have that G ({v™1:_, is relatively compact in B, .

On the other hand, by the strong continuity of U{t.=} and
the compactness of I, we can easily verify that G, ({y ™1z, is
relatively compact. Then by (3.19), {z!™1=, is also relatively
compct in Bj. Since € is a monotone, nonsingular, regular
MNC, from Monch's condition, we have that
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(W) = e{co({0JU W) = ({zn}n=1) = (0.0).
Therefore, W is relatively compact in Bj. This completes the
the proof.
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