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Introduction  

Recently, the delayed neural networks and bidirectional 

associative memory (BAM) neural networks have been paid 

more and more attention due to their wide applications in signal 

processing, image processing, pattern recognition and artificial 

intelligence, etc. Many results have been reported in literature 

[1-27]. The existence and stability (exponential stability, 

asymptotic stability, exponential convergence etc.) of 

equilibrium point and periodic solution are referred to [1, 21-24, 

28] and [4, 10-16, 18, 19, 25-27], respectively. For example, 

M.J. Tan and Y. Tan [1] proposed the following general neural 

networks with viable coefficients and time-varying delays: 

  

By using Banach fixed point theorem and spectral theory, 

the authors established the sufficient conditions for the existence 

and globally exponential stability of a unique equilibrium point 

of system (1.1). Liu et al. [19] further studied BAM neural 

networks with periodic coefficients and obtained several 

sufficient conditions guaranteeing the existence and globally 

exponential stability of periodic solution. 

It is well known that the properties of stability and 

convergence are important in design and application in neural 

networks. In this paper, we consider a class of functional 

differential equation with periodic coefficients and 

time‐ varying delays as follows. 

      (1.2) 

with initial conditions  where 

 is the activation of the th neuron at time , continuous 

function  denotes the neuron charging time,  is the 

external input on the neuron,  corresponds to the finite 

speed of the axonal signal transmission,  is continuous 

periodic functions. For, , 

.  

Actually, both delayed cellular neural networks and BAM 

neural networks can be contained in functional differential 

equation (1.2), which can be seen in [28]. Therefore, our model 

is more general. 

The aim of this paper is, by using continuation theorem, 

some analysis techniques and constructing suitable Lyapunov 

functional, to derive the existence of exponential periodic 

attractor and exponential convergence of system (1.2). The 

results are based on Mawhin’s continuation theorem, matrix 

theory, some new estimation techniques for the priori bounds of 

the solutions of  and comparison 

theorem. To the best of the author’s knowledge, few results 

based on the method have been reported [29]. It is much of 

interesting. 

The organization of the rest is as follows. In Section 2, 

some preliminaries are introduced. In Section 3, sufficient 

conditions ensuring the existence of periodic solution are 

established. In Section 4, the exponential periodic attractor and 

exponential convergence are investigated. In Section 5, 

applications and an example are given to show the usefulness of 

the main results. Finally, a simple conclusion is drawn in 

Section 6. 

Preliminaries 

In this section, some preliminaries are presented. First we 

denote the solution of (1.2) through  

  

as     

 and define 
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Definition 2.1 [30]  A real matrix  is said to be a nonsingular 

M‐ matrix if  has the form  

where  ( the spectral radius of the matrix  

denotes the identity matrix. 

Lemma 2.1 [31] Let  be an  matrix with non‐ positive 

off‐ diagonal elements. Then  is an M‐ matrix if and only if 

one of the following conditions holds: 

(i) There exists a vector  such that ; 

(ii)  There exists a vector  such that . 

Now let us introduce the continuation theorem due to Gaines 

and Mawhin [32]. 

Let  and  be two real Banach spaces, 

 be a Fredholm operator of index zero, 

and  be continuous projectors such 

that  and  

 Denote by 

 the inverse of  (the 

restriction of  on  by  

the algebraic and topological isomorphism of  onto , 

due to the same dimensions of these two subspaces. 

Lemma 2.2 [32] (continuation theorem) Let  and  be two 

Banach spaces and  be a Fredholm 

mapping of index zero.  be an open bounded set and 

 be a continuous operator which is L‐ compact on 

 Suppose that 

(a) for each  

(b) for each  

(c)  

Then  has at least one solution in  

Throughout the rest of this paper, we always assume that: 

 are all continuous periodic functions 

defined on  with period  for  

 Function  is continuous and there exist 

positive constants  such that 

 

with  for any 

  

 and  

For convenience, we shall use the following notations. 

, 

where  is an -periodic function. 

Existence of periodic solution 

In this section, by employing continuation theorem, we shall 

establish the sufficient conditions of the existence of periodic 

solution of system (1.2). 

Theorem 3.1 Assume that  hold. Further, 

 is a nonsingular M‐ matrix, 

 where  

 

Then system (1.2) admits at least one -periodic solution. 

Proof. Let  

endowed with the norm  then  

and  are all Banach spaces. For  

 we define 

, 

where for   

 

 It is not 

difficult to show that . 

 is 

closed in  and  Then,  is a 

Fredholm mapping of index zero. 

Define operators  and  as follows: 

 

It is easy to show that  and  are continuous and satisfy 

 Let 

, then the generalized inverse 

 is given by 

 

Therefore,

  and 

Thus,  and  are all continuous. For any open 

bounded set , it follows from the expression of  that 

 is bounded. Noting that  is a completely continuous 

mapping and the expression of , using Arzela-

Ascoli theorem, one obtains that  is 

relatively compact. Hence,  is L-compact on  

Now, what we need to do is just to search for an appropriate 

open bounded subset  for the application of the Mawhin’s 

continuation theorem. Corresponding to operator equation 

 we have 

             (3.1) 

Suppose that  is 

an arbitrary solution of (3.1) for some  Since any 
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 is continuously differential, then there 

exists  such that  and 

 for  It leads to 

From (3.2) and , we obtain 

which is equivalent to 

 

 

 

According to  is a nonsingular matrix. By [33], it 

follows from (3.3) that 

 

In view of the continuity of , then there exists constant  

such that  
Let  where 

 is large enough such that 

 Then for 

  

 the condition (a) of Lemma 2.2 holds. When 

 is a constant vector in  with 

 By easily computation, we have 

 

This implies that condition (b) of Lemma 2.2 holds as well. 

Define  by  

  

where  . 

 When  is a constant 

vector in  with  It is easy to verify that 

 Therefore, 

  

which means that condition (c) of Lemma 2.2 holds. Employing 

Lemma 2.2, we conclude that system (1.2) admits at least one 

-periodic solution. This completes the proof. 

Remark 3.1 In the process of discussing the priori bounds for 

equation  the matrix’s theory is 

employed, which is new and much of interesting. It is in this 

sense that a new method to estimate the priori bounds is 

proposed. The conditions ensuring the existence of periodic 

solution of system (1.2) are new and interesting and much 

different from the known results in the literature [1, 19]. 

Stability of system (1.2) 

Exponential periodic attractor 

In this subsection, by using some analysis techniques and 

Lyapunov functional, we study the exponential periodic attractor 

of system (1.2). 

Definition 4.1.1 [34] System (1.2) has an exponential periodic 

attractor if and only if there exists one periodic solution 

 with initial value  and for any solution  

with initial value  there exist positive constant  such that 

 

Theorem 4.1.1 Assume that  hold. Further, 

 is a nonsingular M‐ matrix, 

 is continuous differential functions defined on 

 such that  for where 

 

is defined in theorem 3.1. Then system (1.2) has an exponential 

periodic attractor. 

Proof. Suppose that 

  is an  

arbitrary solution of system (1.2) and  is a -periodic 

solution of (1.2). Then from system (1.2), we can obtain that: 

for  For convenience, we denote 

 Then, from (4.1) and , we 

have 

 

On the other hand, according to condition  and lemma 2.1, 

there exists a positive constant vector  such 

that 

  

Let 
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It is clear that  Since  is continuous on  

and  as  and  then there 

exist constant  such that 

 

By choosing , we have, 

                   (4.3) 

for  

Let  then it follows from (4.2) that 

  

Define a Lyapunov functional as follows: 

where  is the inverse function of  

By calculating the derivative of  along the solution of (1.2) 

and from (4.3) and (4.4), we have 

for  Therefore, from (4.6) we obtain 

                    

(4.5) and (4.7) imply that 

Let , 

  then 

 

Therefore, system (1.2) admits an exponential periodic attractor. 

This completes the proof. 

Remark 4.1.1 Theorem 4.1.1 gives the sufficient conditions 

ensuring the existence of exponential periodic attractor of (1.2), 

which includes the stability of equilibrium point as its special 

case. Similarly, one can derive the conditions of the existence 

and stability of equilibrium point of (1.2). 

Exponential convergence 

In this subsection, we study the exponential convergence of 

system (1.2). 

Definition 4.2.1 [35] system (1.2) is said to be exponentially 

convergent if there exist constants  and  such that 

for any two solutions  and  with initial values  

and , respectively, the following inequality holds: 

 

for all  and  If 

 is a periodic solution, then this periodic solution is said 

to be exponentially convergent. 

Theorem 4.2.1 If  hold and there exist constants 

 such that for all  

 

Then system (1.2) is exponential convergent. 

Proof.  Let ,  

 be two arbitrary 

solutions of (1.2) and  then we can 

obtain from system (1.2) and  that 

 

Consider the following comparison system of (4.8), i.e., 

  

By the comparison theorem, we have 

                     

whenever  

On the other hand, it follows from  that: 

                      (4.10) 

Let  then 

 

Again employing comparison theorem, we have 
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when  for   (4.9) and 

(4.11) imply that  
and  

That is, system (1.2) is exponential convergent, This completes 

the proof. 

An application of Theorem 3.1 and Theorem 4.2.1 yields the 

following corollary. 

Corollary 4.2.1 Suppose that  and  hold true. 

Then the periodic solution of system (1.2) is exponentially 

convergent. 

Corollary 4.2.2 Suppose that  hold. Further, 

 

Then system (1.2) is exponentially convergent. 

Proof. Actually, if  holds true, then  can be derived to 

be true as well. The result can be obtained immediately from 

Theorem 4.2.1. 

Remark 4.2.1 Definition 4.2.1 gives a componentwise 

exponential convergence estimate. It is stronger than 

conventional Lyapunov stability, which implies globally 

exponential stability of system (1.2), see [35, 36]. In addition, 

 involves coefficient function  instead of its infimum 

or supremum value as in most previous studies (further see 

Proposition 5.2, Proposition 5.3, Proposition 5.5 and Proposition 

5.6), which gives more flexibility in designing stable models. 

Applications and an illustrative Example 

In this section, we give applications and an example to 

show the effectiveness of the main results. 

For system (1.1), we assume that 

 are continuous -

periodic functions for  

 is continuous and there exists positive 

constant  such that for 

any  or  

We denote system (1.1) satisfying )( A and )( A by 

system (5.1), then by using Theorem 3.1 and Theorem 4.1.1, one 

can obtain the following conclusion. 

Proposition 5.1 Assume that  and  hold. Further, 

 

 is a nonsingular M‐ matrix, 

 is a nonsingular M‐ matrix, where 

  

Then system (5.1) has an exponential periodic attractor. 

From Theorem 4.2.1 and Corollary 4.2.2, it is clear that the 

following two corollaries hold true. 

Proposition 5.2 Assume that  and  hold. Further, 

there exist constants  such that for all 

 

Then system (5.1) is exponential convergent. 

Proposition 5.3 Assume that  and  hold. Further, 

 

Then system (5.1) is exponentially convergent. 

Next consider the following BAM neural network with 

impulse and time-varying delays: 

 

Similarly, one can derive the following conclusions. 

Proposition 5.4 Assume that  and  hold. 

Further, 

 

 is a nonsingular 

M‐ matrix, 

 is a nonsingular M-

matrix, where  

 

 for 

  ,,,,,,, mnmmjni    

    for  

 are  

defined in proposition 5.1. Then system (5.2) has an exponential 

periodic attractor. 

Proposition 5.5 Assume that  and  hold. Further, 

there exist constants  such that for all  

 for  and 

 for 

 

Then system (5.2) is exponential convergent. 

Proposition 5.6 Assume that  and  hold. Further, for 

all  

 

for  and 
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for Then system (5.2) is exponentially 

convergent. 

Obviously, for system (5.1) and (5.2), if ,  and 

 are constants, or  one can similarly derive the 

sufficient conditions of the existence of the corresponding 

periodic attractor and exponential convergence in cases of time-

varying delays and constant delays, they are omitted here. It 

shows that the results obtained in this paper contain many 

previously known results and are very general. 

If  delays are constant numbers, then (1.2) reads as 

             (5.3) 

which is studied in [28]. By using Banach fixed point theorem, 

the authors obtained the existence and global exponential 

stability of the equilibrium point. However, from Theorem 3.1 

and Theorem 4.1.1, we can derive the existence of exponential 

periodic attractor of (5.3). 

Proposition 5.7 Assume that  and  hold. 

Further, 

 is a nonsingular M‐ matrix, 

where  is defined in theorem 3.1.  

Then system (5.3) has an exponential periodic attractor. 

Remark 5.1 The exponential convergence of system (5.3) and 

the exponential convergence of periodic solutions of system 

(5.1)-(5.3) can be derived similarly, they are omitted here. 

Finally, an illustrative example is given to show the usefulness 

of the main results. 

Example Consider the following neural networks: 

Take  for any 

 Then  Set 

  

 

By simple calculation,  

 and  One 

concludes from Lemma 2.1 that  and  are all nonsingular M-

matrix since there exist constant vectors  

 such that  

 respectively. Hence  

hold. It is clear that  and  hold as well. 

Therefore, by proposition 5.1, system (5.4) admits an 

exponential periodic attractor. 

Conclusions 

In this paper, the existence of the exponential periodic 

attractor and exponential convergence of system (1.2) are 

investigated. The main method employed here is Mawhin’s 

continuation theorem of coincidence degree theory, Lyapunov 

stability theory combining with comparison theorem. The main 

results are based on continuation theorem , matrix theory, some 

new estimation techniques for the priori bounds of the solutions 

of  and comparison theorem. 

Particularly, the conditions ensuring the existence of exponential 

periodic attractor and exponential convergence of system (1.2) 

are obtained, which are new and interesting and much different 

from the known results in the literature [1]. They complement or 

improve the previously known results [1, 17, 19, 28]. Finally, an 

illustrative example is given to show the effectiveness of the 

main results. 
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