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Introduction  

Reactive currents in an electrical utility distribution system 

produce losses and result in increased ratings for distribution 

components. Shunt capacitors can be installed in a distribution 

system to reduce energy and peak demand losses, release the 

KVA capacities of distribution apparatus, improve the system 

voltage profile in the power distribution systems. Capacitor 

planning must determine the optimal site and size of capacitors 

to be installed on the buses of a radial distribution system. There 

have been analytical approaches, numerical programming 

methods and AI-based techniques devised to solve this capacitor 

problem. For instance, ref. [1] formulated the problem as a 

mixed integer programming problem that incorporated power 

flows and voltage constraints. The problem was decomposed 

into a master problem and a slave problem to determine the 

place of the capacitors, and the types as well as size of the 

capacitors placed on the system. A heuristic approach to identify 

the sensitive nodes by the levels of effect on the system losses is 

proposed in [2, 3]. Ref. [4] adopted an equivalent circuit of a 

lateral branch to simplify the distribution loss analysis, which 

obtained the capacitor operational strategies according to the 

reactive load duration curve and sensitivity index. Moreover, 

optimal capacitor planning based on the fuzzy algorithm was 

implemented to present the imprecise nature of its parameters or 

solutions in practical distribution systems [5]-[7]. Several 

investigations have recently applied artificial intelligence (AI) 

techniques to resolve the optimal capacitor planning problem 

due to the growing popularity of AI. A solution methodology 

based on a simulated annealing (SA) technique presented in [8, 

9]. Ref. [10] applied the tabu search (TS) technique to determine 

the optimal capacitor planning in Chiang et al's [8] distribution 

system, and compared the results of the TS with the SA. Genetic 

algorithm method (GA) is implemented to obtain the optimal 

selection of capacitors in [11, 12]. The capacitor planning 

problem is formulated as an objective problem. The formulation 

proposed in this paper considers total cost of power loss and 

total cost of capacitors as an objective function and also 

considers load flow restrictions security and operational 

constraints like loading of feeders, maximum voltage profile and 

maximum reactive compensation. 

It should be noticed that in this new paper a major change 

was made in selecting and valuing actions in Q-learning method 

other than what we did in ref [15] for example we used ε-greedy 

method. In the paper of ref [15] we only introduced the RL 

method but in the recent paper we explored our method and 

verified its behaviour over more networks so that we can use the 

method in future studies. In order to test our new RL method 

more case study networks were analyses. The 33 buses and the 

66 busses networks are added more than the 9 busses and 34 

buses for testing our method. 

The rest of this article is organized as follows: Section 2 

describes formulation of the capacitor planning problem. A 

solution algorithm based on the RL method is developed in 

section 3. Section 4 describes the implementation of RL method 

and in section 5 effectiveness of the RL algorithm on four 

distribution case study is demonstrated. Finally conclusions are 

presented in section 6. 

Mathematical Model of the Problem 

The objective function (OF) in the capacitor planning 

problem for radial distribution feeders is considered as follow 

[19]: 
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Where: 

pK , Cost per power loss, $/kW/year 

N , Total Number of buses in radial distribution network 

lossP , Total Active power loss 

cN , Total number of possible capacitor sizes 

inst
QiC , The cost of installation of a capacitor bank of Q (Var) 

on bus i, $/KVAR/year  

purc
QiC , The cost of purchasing of a capacitor bank of Q (Var) 

for bus i, $/KVAR/year 

gigi QP , , Active and reactive power generations at bus i. 

didi QP , , Active and reactive power load at bus i. 

V ,s , ,s  System bus voltages magnitudes and phase angles. 

ijijY , , Bus admittance matrix elements 

ijP , Active loading between buses i and j 

Total

CQ , Total connected Var by capacitor banks for radial 

distribution network 
Total

LQ , Total Var of connected loads in radial distribution 

network 

This objective function considered here in equation (1), 

consists of two terms. The first term denotes the cost of power 

loss and the second term includes the total cost of capacitors that 

consist of the purchase and installation costs. Regarding the 

constraints, equations (2) and (3) point to  

well-known load flow restrictions while security and operational 

constraints like voltage profile and loading of feeders have been 

formulated in inequalities (4) and (5). As a general rule, for 

reactive-power compensation, the maximum capacitor size 

should not exceed the connected reactive load. This results in a 

limited number of available capacitor sizes for installing on the 

radial distribution network. This concept has been formulated by 

equation (6) in the set of constraints of introduced objective 

function. 

Reinforcement Learning 

Reinforcement learning is defined by Kaelbling, Littman 

and Moore (1996) as "the problem faced by an agent that must 

learn behavior through trial-and-error interactions with a 

dynamic environment". Mathematically, the reinforcement 

learning problem has been formalized as a Markov Decision 

Process (a process where the probability of the agent moving 

from one state to another, given its choice of action, is 

independent of the history of the system prior to reaching that 

state). The mathematics of Markov processes has been 

extensively studied, one significant result, Bellman (1957), 

being that an algorithm based on dynamic programming can be 

shown to converge to an optimal policy if the Markov process is 

stationary (a stationary Markov process is one in which the state 

transition probabilities, given the agent’s choice of action, do not 

change over time). In the standard reinforcement-learning 

model, an agent is connected to its environment via perception 

and action. On each step of interaction the agent receives as 

input some indication of the current state s  of the environment; 

then the agent chooses an action a , to generate as output. The 

action changes the state of the environment and the value of this 

state transition is communicated to the agent through a scalar 

reinforcement signal [13]. 

Formally, the RL problem consists of: 

 A discrete set of environment states, S; 

 A discrete set of agent actions, A; 

 A set of scalar reinforcement signals, R; 

 Policy, , which chooses the actions that has to be taken. 

 Value Function, which maps each state to a measure of the 

value of that state, )(sV . 

In the RL problem the goal of agent is to maximize the reward it 

receives in the long run. In general, we seek to maximize the 

expected return, where the return, tR , is defined as some 

specific function of the reward ( ir ) sequence. In the simplest 

case the return is the sum of rewards: 

Tttt rrrR +++= ++ ...21                                                                                                               (7) 

Where t  denote the time steps and T  is the final time step. 

We have this notion of final time step when the agent–

environment interaction breaks naturally into subsequences 

called Episodes. If we use discount factor )10(,   , in the 

equation (8) we have: 
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Almost all reinforcement learning algorithms are based on 

estimating value functions. Value functions are functions of 

states that estimate how good it is for the agent to be in a given 

state. We have the policy   which is mapping from each state 

named s S, and action, a A, to the probability p(s,a), of 

taking action a when in state s. The value of a state s under a 

policy , denoted )(sV , is the expected return when starting 

in s and following policy   thereafter. 
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Where {}E  denote the expected value given that the agent 

follows policy . We call the function )(sV the state-value 

function for policy. 

Similarly, we define the value of taking action a  in state s  

under a policy , denoted ),( asQ , as the expected return 

starting from s , taking the action a , and thereafter following 

policy : 
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Q  is calling the action-value function for policy . 

Action-Value Method 

Unlike the supervised learning methods in RL the 

environment is explicitly on the trade-off between exploration 

and exploitation. The agent must learn which actions maximize 

reward function in the time, but also how to act to reach this 

maximization, looking for actions still not selected or regions 

not considered in a state space. The exploration and exploitation 
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processes are usually mixed. Action-value methods are used to 

estimating the values of actions and for using the estimates to 

make action selection decisions. The simplest action selection 

rule is to select the action (or one of the actions) with highest 

estimated action value, that is, to select on play t one of the 

greedy actions, *a , for which:  

)(max*)( a
t

Qaa
t

Q                                             (11) 

)(atQ  Estimated value of action a at the t  play 

This method always exploits current knowledge to 

maximize immediate reward; it spends no time at all sampling 

apparently inferior actions to see if they might really be better. A 

simple alternative is to behave greedily most of the time, but 

every once in a while, say with small probability ; instead 

select an action at random, uniformly, independently of the 

action-value estimates. We call methods using this near-greedy 

action selection rule greedy methods. An advantage of 

these methods is that, in the limit as the number of plays 

increases, every action will be sampled an infinite number of 

times, guaranteeing that
ak

 for all a , and thus ensuring 

that all the 
)(atQ

  converge to
)(* aQ

. 

Q – Learning  

One of the most important breakthroughs in reinforcement 

learning was development of an  

off–policy temporal-difference (TD) control algorithm known as 

Q-learning (Watkins, 1989). The one–step Q–Learning form is 

defined by: 

)],(),(max[),(),( 11 tttttttt asQasQ
a

rasQasQ           (12) 

Where , ( 10  ) is the learning step. 

It is important to note that the new value for ),( tt asQ  

memory is based both on the current value of ),( tt asQ , and the 

values of immediate rewards obtained by next searches. So, the 

  parameter plays a critical role representing the amount of the 

updated Q-memory and affects the number of iterations. This 

method is identical to Sarsa learning except that when 

considering the next state action transition, the action is chosen 

that will maximize the next Q-value. Q-learning is shown to 

converge to an optimal policy under the usual assumptions 

(Watkins and Dayan, 1992), and it remains the most popular 

reinforcement learning algorithm because no model of the 

environment is required, it is intuitive, easy to implement, and 

can be run interactively with updates made immediately, as and 

when states are visited [14].  

 Rewards 

Application of the Q-learning algorithm to reactive power 

planning problem is linked to the choice of an immediate reward 

(r), such that the iterative value of Q-function (12) is maximized 

for the whole planning period. The reward function is calculated 

by equation (13) as follow: 

)(cos

1

)(cos

1

total
Ct

loss
Pt

r                             (13) 

       The first term in (13) is the reverse of power losses cost and 

the second term is the reverse of cost of used capacitors. So as 

the agent maximizes the reward function it will follow our goal 

and minimizes the objective function (1). 

 

Problem Formulation and Implementation 

For solving the capacitor allocation problem using the 

reinforcement learning method states Vector and actions Vector, 

reward function and the optimized solution with a fast 

convergence are should be determined. For the purpose of our 

analysis, the Q-learning algorithm is the “agent”, the state 

vectors ( S ) are the number of available buses for capacitor 

placement in the distribution system and the action vectors ( A ) 

are the discrete values of possible capacitor banks [15]. The 

policy is based on Q–learning algorithm and greedy  

action value method is used for choosing the actions.  

The algorithm proceeds as follows: 

1- Read input data (consist of number of system buses (n), lines 

impedances, complex power of each of them, initial values, 

voltages boundaries and …). 

2- Put ni   

3- While 1i  

    3-1 nbussstate )(  

    3-2 choose greedy action a  by using greedy  method. 

    3-3 performs load flow and calculates real power loss.   

    3-4 Using equation (13) and calculate the reward of next 

episode. 

    3-5 Update Q-function using equation (12) 

    3-6 1 ii  

4- If the voltage constraint of equation (4) is guaranteed for all 

system buses go next step otherwise return step 3 

5- Save the results of chosen action, results and load flow 

6- Calculate the Objective function equation (1) 

7- Print the result. 

Discount )( and Learning Step )(  Parameters 

In addition to the above definitions, two parameters 

 and for implementing the Q-learning algorithm need to be 

chosen. RL theory gives generic guidelines for these parameters 

[13]–[14]. 

Parameter   used in equations (8) & (12), is the control 

factor by which later rewards are discounted and it must be 

between 0 and 1. In our application, later rewards are not 

important because there is no interdependence among load flow 

solutions, therefore, the value of  is initially should be zero.  

The critical parameter   used in equation (12), expresses 

the amount of the updated Q-function, in other words the rate of 

learning. A large enough parameter (close to 1) allows fast 

convergence of the Q-learning algorithm, while a small value 

(close to 0) avoids instability of Q-learning. Since the  

Q-learning enforced in constrained load flow problem does not 

depend on previous Q-learning steps as stated above, this 

parameter will work well close to 1.  

In our application, initially we set 1&0   , but by 

these values the agent is so myopic and the effect of future 

actions will not take into account. Therefore by using a dynamic 

approach  & are changing slightly between 5.00    

and 15.0  . By previous experiment we had in [15] the 

best value for   is 0.995 and for   is 0.005. 

Test Cases and Simulation Results 

The Q-learning algorithm is applied to four distribution 

systems. The test cases are a small network (with 9 buses), two 

medium-size networks (with 33 and 34 buses) and a large-scale 

network (with 66 buses). On each test case a comparison has 
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been done among the proposed method of this paper and similar 

methods in other research works. In all test cases it is assumed 

that all buses are available for placement of capacitor banks. In 

order to compare the proposed RL method four papers [16, 17, 

18 & 19] are considered. In [16] by using a fuzzy theory and 

heuristic strategy five methods and an exact solution for reactive 

power compensation is proposed. In the presented methods 

different membership function shapes for real losses, reactive 

losses and bus voltages are suggested, then the candidate bus 

with lowest membership value selected and the capacitor with 

lowest cost without violating the constraints is installed. In table 

4 and figures 2&3 the results of methods in [16] are presented. 

In [17] a robust searching hybrid differential evolution 

(RSHDE) method is used to solve the capacitor placement 

problem in distribution systems. In this method two new 

schemes, the multi-direction search scheme and the search space 

reduction scheme, are embedded into the hybrid algorithm of 

differential evolution (HDE). These two schemes are used to 

enhance the search ability before performing the initialization 

step of the solution process. In this study a comparison among 

DE, HDE, SA and GA methods is done too. In tables 5&7 the 

results of [17] and RL method are presented. In paper [18] two 

new heuristic techniques for reactive power compensation is 

introduced and the best result of this paper is compared with RL 

method. In [19] a new algorithm based on a combination of 

fuzzy (FUZ), Dynamic Programming (DP), and Genetic 

Algorithm (GA) approach is presented for capacitor allocation in 

distribution feeders. The proposed method of [19] uses fuzzy 

reasoning for placing of capacitors, DP for sizing and GA for 

finding the optimum shape of membership functions which are 

used in fuzzy reasoning stage. According to [16] available three-

phase capacitors size and cost are selected. In table 1 possible 

combination of these capacitor banks with minimum cost is 

shown. 

Case Study 1: 9-bus system 

The 9-bus radial distribution feeder of figure 1 is taken as 

the first test feeder. The system line data and other information 

are described in table 2; the rated voltage is 23 kV and the total 

reactive load of the system is 4186 kVar that according to (6) 

leads to 27 practical combinations of mentioned standard 

capacitor banks available in table 1, so the action vectors have 

these 27 members plus capacitor size and cost equal zero that 

means no capacitor is placed and state vectors have 9 members. 

The cost constant pK  is selected as 168 $/kW/year. 

 
Fig.1 Diagram of 9-bus Distribution System, Case Study 1 

Table 4 shows the results of capacitor planning in [16] and 

[19]. The first six columns show methods 1-5 and the exact 

solution that are described in [16] and column seven is the result 

of [19].  The last column is our purposed RL method that 

compared with them. In table 5 the results of methods in [17] 

and RL method are illustrated. 

From table 4 it is obvious that the RL result is much better 

than all five methods and exact solution mentioned in [16] and 

method of [19] in term of cost saving and real power loss 

reduction however in the case of the minimum voltage profile 

this does not happened; for example in the exact solution the 

minimum voltage is slightly better than the RL method and have 

the improvement of 0.0001 p.u. 

According to table 5 it is seen the HDE and RSHDE 

methods have better results of cost and real power loss so that 

the improvement of real power reduction is about 1.584 kw and 

cost saving is 195$. The best result in [18] for 9-bus system 

reactive power compensation leads to 97.7 kw power loss and 

$15526 cost reduction but in the RL method the cost saving is 

$16080 and the real power loss reduction is 106.82 kw that are 

better results compare to [18].  

In this test case the RL method is getting better than the 

fuzzy approach of [16] and heuristic methods of [18] but it is 

slightly weaker compared to complicated methods described in 

[17], we think the main purpose of this may be because of the 

inherent nature of Q-learning method. This method needs to 

interact between actions and states and find the optimal policy 

by exploration and exploitation, so because the number of states 

(buses) is to some how low the exploration and exploitation 

processes may not performed well enough and the policy cannot 

be good enough.  

Case Study 2: 34-bus system 

A radial distribution network with 34 load points is used to 

simulate the proposed RL Method. The data of this test system 

has been taken from reference [16].The system voltage is 11 kV. 

Before compensation, the cost is U.S. $ 37212, this is based on 

the previously defined cost parameters, the active and reactive 

losses are 221.5 kW and 65.04 KVar, respectively, and the 

voltage limits in per unit are 0.9417 and 1.0. Considering total 

connected reactive load of 2873.5 KVar of this system, 19 

capacitor bank combination of table 1 can be used. 

The result of RL method is illustrated in table 6, while the 

comparison between results of the methods 1-5 of [16] and 

methods 6 are presented in figures 2&3. 
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Fig. 2 Cost function for the 6 methods applied to 34-bus test 

feeder, Case Study 2 

156

158

160

162

164

166

168

170

1 2 3 4 5 6

method no.

k
w

 
l
o

s
s
e
s

 
Fig. 3 Active power losses for the 6 methods applied to 34-

bus test feeder, Case Study 2 

According to figures 2 and 3 we can conclude the RL result 

is much better than the five methods of [16] in term of cost and 

real power loss reduction. The best result for this test case in 

[18] yields to 61.8 kw real power loss and $9842 cost reduction 

while the corresponding result in RL method are 60.93 kw and 

$9645.In 34-bus system the RL method is still better than [16] 

but have slightly weaker result according to [18]. 
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This is because the test feeder is not heavy loaded so the 

voltage constraint of equation (4) is satisfied and it makes the 

algorithm to quit the exploration and exploitation process and 

abrupt the searching.      

Case Study 3:33-bus and 66-bus systems 

In order to compare the performance of our method with the 

RSHDE method the second case study of [17] is used, which is 

an 11 kV, 4-lateral, and 33-section feeder in which used as a 

medium-size system and by doubling this system we have a 

large-size system with 66 buses. The equivalents annual cost per 

unit of power loss ( pK ) is selected to be $ 150/ kW/year. Table 

7 illustrates the results of methods of [17] and our proposed RL 

method. 

Table 7 shows that as the number of buses increased the RL 

method result is much better than the methods of [16] and make 

a great improvement in total loss, cost and net saving in these 

test feeders. 

Conclusions 

This article presents a new optimization method for 

optimum capacitor planning problem. The proposed method 

uses reinforcement learning method for reactive power 

compensation in distribution system.  

The method developed herein is tested on small, medium 

and large distribution systems and the results have been 

compared with similar research works. The comparison shows 

the effectiveness of proposed method in case of investment and 

improving the performance of the distribution network. 

Although in small distribution system the RSHDE method 

perform a little better but as the number of busses increase and 

so the number of states increase, the searching space and the 

number of iteration for finding optimum policy by Q-learning 

agent is increased and the RL method performs better. That is 

why the results in table 7 for medium and large size distribution 

systems have a great improvement in total loss and cost by using 

RL method compare to RSHDE method. 

It should be mention that the proposed RL method has a 

novel formulation of optimization that is so easy in formulation 

and suitable to use in new approaches for future work in similar 

fields. 

Mathematical Symbols 

 , System bus voltages phase angle. 

 , Bus admittance matrix elements 

 , Reinforcement learning policy 

 , Discount factor 

 , Learning rate 
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Table 1 Possible Choice of Capacitor Sizes and Cost/KVAr [16] 

K Qc Size(KVar) Cost($/KVar) K Qc Size(KVar) Cost($/KVar) k Qc Size(KVar) Cost($/KVar) 

1 150 0.500 10 1500 0.201 19 2850 0.183 

2 300 0.35 11 1650 0.193 20 3000 0.180 

3 450 0.253 12 1800 0.187 21 3150 0.195 

4 600 0.220 13 1950 0.211 22 3300 0.174 

5 750 0.276 14 2100 0.176 23 3450 0.188 

6 900 0.183 15 2250 0.197 24 3600 0.170 

7 1050 0.228 16 2400 0.170 25 3750 0.183 

8 1200 0.170 17 2550 0.189 26 3900 0.182 

9 1350 0.207 18 2700 0.187 27 4050 0.179 

 
Table 2 9-buses system data 

Bus i 
P 

(Kw) 

Q 

(Kvar) 

R i-1, i 

( ) 

X i-1, i 

( ) 

1 1840 460 0.1233 0.4127 

2 980 340 0.014 0.6051 

3 1790 446 0.7463 1.205 

4 1598 1840 0.6984 0.6084 

5 1610 600 1.9831 1.7276 

6 780 110 0.9053 0.7886 

7 1150 60 2.0552 1.164 

8 980 130 4.7953 2.716 

9 1640 200 5.3434 3.0264 

 
Table 3 shows the system status before compensation where the voltage of the 

substation (bus number 0) is assumed to be 1 p.u. 

Table 3 Results of 9-buses system before compensation 

Cost Function ($) Active Loss (KW) 
Reactive Loss 

(kVar) 
Max Voltage 

(p.u) 
Min Voltage 

(p.u) 

131670 783.78 1036.5 0.9929 0.8375 

 
Table 4 Results for all methods applied to the 9-bus feeder in [16], [19] and RL Method 

Bus No. 

Qc(KVar) 

Using 

Method 1 

Qc(KVar) 

Using 

Method 2 

Qc(KVar) 

Using 

Method 3 

Qc(KVar) 

Using 

Method 4 

Qc(KVar) 

Using 

Method 5 

Exact 
Solution 

Qc(KVar) 

Using Method 

[18] 

Qc(KVar) 

Using RL 

Method 6 

1         

2   3300   3600 3600 4050 

3  1050 3900 3300 2850  4050 2400 

4 2100 1050  1800 2100 4050 450 1200 

5 2500 1950 1200 1050 1050 1650 1200 1500 

6         

7        450 

8      600 150  

9 900 900 900 900 900  600 450 

Real 

Loss(KW) 
707 705 689 692 691.6 686 681.28 676.96 

$ Cost 119736 119420 117330 117571 117479 117095 116320 115590 

Min V 

(p.u.) 
0.9000 0.9029 0.9006 0.90004 0.9000 0.9003 0.90014 0.9002 

Max V 

(p.u.) 
1.0000 1.0000 1.006 1.0012 1.001 1.007 1.007 1.007 
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Table 5 Results for all methods applied to the 9-bus feeder in [17] and RL Method 

Bus No. 
Qc(KVar) Using 

SA 

Qc(KVar) Using 

GA 

Qc(KVar) Using 

DE 

Qc(KVar) Using 

HDE 

Qc(KVar) 

Using RSHDE 

Qc(KVar) Using 

RL 

1       

2 3600 3600 3600 4050 4050 4050 

3 1800 1800 3450 2100 2100 2400 

4 2700 2400 1800 2100 2100 1200 

5 450 600 750 900 900 1500 

6 450 450 600 450 450  

7 150 450 150   450 

8   150 150 150  

9 600 450 300 450 450 450 

Real 
Loss(KW) 

677.222 676.550 679.531 675.376 675.376 676.96 

$ Cost 115645 115484 160479 115395 115395 115590 

Min V (p.u.) 0.9001 0.9000 0.9023 0.9002 0.9002 0.9002 

Max V (p.u.) 1.0064 1.0064 1.0084 1.0073 1.0073 1.0070 

 
Table 6 Result of RL method in 34-bus test feeder 

Bus 5_1 5_5 5_9 9_3 Cost ($) Loss(KW) Loss(kVar) Min V (p.u) Max V (p.u) 

Qc(kVar) 900 300 750 450 27567 160.57 47.01 0.9503 1 

 
Table 7 Results of [17] &RL methods in 33-bus&66-bus test cases 

Test 

Cases 
Items 

Before 

Compensation 

After Compensation 

SA GA DE HDE RSHDE RL 

33-bus 

system 

Total 

Loss(kw) 
883.240 714.037 709.653 718.504 705.585 704.557 635.673 

Cost($) 132486 120606 120410 127576 119638 119634 96356 

Net 

Saving($) 
- 11880(8.97%) 12076(9.11%) 4910(3.71%) 12848(9.70%) 12852(9.70%) 36130(27.27%) 

66-bus 
system 

Total 

Loss(kw) 
1123 879.712 863.642 - - 855.684 685.705 

Cost($) 168450 134178 133947 - - 130645 111290 

Net 

Saving($) 
- 34270(20.34%) 34501(20.48%) - - 37803(22.44%) 57160(33.93%) 

 


