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Introduction  

Variation is an important mathematical physics method in 

mathematical physics problems, its object is functional. We can 

apply variation methods in many physical regions. Many results 

in physics can be expressed as variational principles, and it is 

often when expressed in this form that their physical meaning is 

most clearly understood (K. F. Riley, 2002). All kinds of 

physical laws can be descripting as the extremum of functional 

each other. Thus, the motions of matter can be unified. The 

problem of mathematical physics can transform into a 

variational problem, and its mathematical type is unified. The 

calculus of variation is an approximate method to solve 

mathematical physics problems. 

The extremum of functional and Euler-Lagrange Equation 

Functional have many different definitions. We often make 

use of the integral definition (HU Si-zhu, 2002) 
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where x1=a, x2=b, ,a b  is constant, 0)( ay  and 

0)( by ; ( )y x  has second-order derivative with respect to 

variable x; y  is the derivative of y with respect to x. The line 

integral has a stationary value relative to paths differing 

infinitesimally from the correct function ( )y x . 

In some cases, the definition of functional is (WU Cong-shi, 

1999)
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First variation of functional (1) is 
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Its second variation is 
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  When functional [ ( )]I y x  has extremum, the first variation of 

functional should equal to zero. The condition is necessary. So 

we have 
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  Integrating by parts, the integral becomes 
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In Eq.(6), y is arbitrary, so Eq.(6) can be written 
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This is known as Euler-Lagrange(E-L) equation, and is a 

differential equation for ( )y x , since the function F is known.  

In general, the extremum of functional is very complex. Because 

the extremum is related with numbers of independent variables, 

numbers of unknown functions, orders of derived functions and 

constraint conditions.  

If we discuss the sufficient condition when the functional 

has extremum, positive and negative of second variation should 

be considered. In mathematical physics problems, functionals 

often have clearly physical meanings, the extremum certainly 

exists. So, we don’t necessary consider second variation of 

functional.  

By solving E-L equation, we can obtain the extremum of 

functional. When we calculate the extremum of functional, the 

condition usually is fixed boundary value or fixed end-points, 

i.e. 0)( ay , 0)( by ; when boundary is free, we 

have 0
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The extremum of functional in mathematical physics 

problem 

When using methods of functional to solve mathematical 

physics problems, we can combine the mathematical physics 

problem with a variation, and make the problem to be an 

extremum of functional. By solving E-L equations, we can 

obtain the solution of the mathematical physics problem. 

1 the extremum of functional in central field problem 

In central field, a mechanical system moved upon a path 

( )q q t  from point 1( )q q t  to 2( )q q t . Find the 

impossible motion path of the system. 

We define ( , , ) ( , , )F x x t L q q t  , where q is generalized 

coordinates and q is generalized velocities. ( , , )L q q t  is 

Lagrange function. The Lagrangian L is defined, in terms of 

kinetic energy T and potential energy V, by L T V  . Here 

V is a function of the q only, not of q . Applying Eq.(1) , we 

have functional 
2
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S L q q t dt  , where S is Hamilton’s 

action function. 

 From Eq.(3), we know, when  

2

1

( , , )
t

t
S L q q t dt    =0,                                              (8) 

the motion of the mechanical system in a given time interval is 

to minimize the action integral. Eq.(8) referred to as “Hamilton’s 

principle”. It can be stated as  

The motion of the system from time t1 to time t2  is such that 

the action has a stationary value; i.e. the integral along the given 

path has the same value to within first-order infinitesimals as 

that along all neighboring paths.  

So, we have 
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and 
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Each is Hamilton’s action function’s integral equation and 

differential equation, when S has extremum.Thus, all of 

Newtonian mechanics can be summarized in a single 

statement.By inserting the Lagrangian, and one can then deduce 

the equation of motion for the mechanical system. 

If L does not involve the time explicitly, i.e. ( , )L L q q , so 
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Substituting in Eq.(11) with Eq.(10),we have 
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Euler’s theorem states that if f is a homogeneous function of 

degree n in the variables xi, then (Herbet Goldstein, 2005)  
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Because T is a homogeneous function of the q ’s of degree 2. 

Hence, applying Euler’s theorem, so that 
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where  is freedom degree of mechanical system. 

Substituting in Eq.(13) with Eq.(15), we have  

2T—L=T+V=E=constant.                                              (16) 

Therefore, the mechanical energy E of the system is 

conservational in central field. 

   We discuss two-dimension motion of a particle in central field. 

In the polar coordinate system, we choose r and θ  as general 

coordinates, then we have 

( , ', )F q q t = ( , , , ; )L r r q t    
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Appling Eq.(9), we have 
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( 2 ) 0m r r                                                          (18) 

Eqs. (17) and (18) are the equations of motion in central force 

field. 

Maxwell equations of electromagnetic field 

There have an electromagnetic field, its electric field 

strength is E  and magnetic field strength is B . Both E  and 

B are continuous functions of time and position. When charge 

density is   and circuit is j ,  where   and  j  is constant. 

We define Lagrangian density function (Herbet Goldstein, 2005)
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Appling Eq.(2), we have 
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Substituting the three equations in Eq.(20), and considering the 

necessary condition of the extremum of 

functional:  Ldxdt =0, we have 
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  When the boundary of electromagnetic field is fixed, the 

variation 0

  and 0A


 . Hence, the third integral 

and the forth integral of Eq.(20) equals to zero. Considering 

A  and   is independent and arbitrary, we have 

D
H j

t


  


                                                          (22) 

D                                                                         (23) 

Appling vector identical equation 0   and 

0A  , and taking into account  the scalar potential 
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And    

• B  0A  . 

Namely, 
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• 0B                                                                      (25) 

Eqs. (22),(23) , (24) and (25) are the Maxwell equations of 

electromagnetic field. 

Conclusion 

The methods of variation played an important role in 

mathematical physics. Many mathematical physics problems can 

be transformed into a variational form. By solving E-L equation, 

we can obtain the solution of the mathematical physics problem. 

We can deduce physical laws by way of variation calculus, and 

its mathematical results are unified.  
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