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Introduction  

Information about the parameters defining water resources 

availability is a key factor in their management which improves 

the operation policies for water resources systems. One of the 

most important parameters in this area is river streamflow. 

Moreover, climate change impact assessment studies often need 

models capable in simulating river streamflow on a daily time 

basis. The modeling of streamflow time process has essentially 

followed two approaches (Razavi and Araghinejad 2009): 

empirical and statistical simulation of the hydrological system. 

In the first approach, the hydrological system is described by 

theoretical and/or empirical (physical) relationships (e.g. Garrote 

and Bras 1995), whereas, in the statistical approach, the 

objective is to develop a model in order to represent the most 

relevant statistical characteristics of the historical series 

(Araghinejad et al. 2006). 

Artificial Neural Networks (ANNs)                     

Many statistical-based methods are used to model and 

forecast streamflow time series. In the recent years, Artificial 

Neural Networks (ANNs), have been widely studied and applied 

to simulate and forecast the hydrological variables (Hsu et al. 

1995; Coulibaly et al. 2001; Razavi and Karamouz 2007; 

Altunkaynak 2007; Razavi and Araghinejad 2009; Ahmed and 

Sarma 2007; El-Shafiel et al. 2007). 

Radial Basis Neural Network (RBN) 

The radial basis function approach traces its roots from the 

work of Powell (1987), whose use as an alternative tool to 

learning in neural networks is particularly suited to multivariable 

interpolation given irregularly positioned data points. Their use 

in neural networks has found applications in solution of 

classification problems, function approximation, noisy 

interpolation, and regularization (Ke´gl et al. 2000) in various 

engineering fields due to their advantages over traditional 

multilayer perceptrons (Kagoda et al. 2010), namely faster 

convergence, smaller extrapolation errors, and higher reliability 

(Girosi and Pogio 1990). In hydrology and considering the 

complex nature of the rainfall–runoff process which is usually 

highly non-linear, the most suitable neural networks for 

modeling the process should have the ability to approximate any 

continuous function. The RBF technique provides good 

generalization ability with a minimum number of nodes to avoid 

unnecessarily lengthy calculations, in comparison with 

multilayer perceptron networks (Moradkhani et al. 2004). The 

architecture of radial basis function neural networks consists of 

an input layer, one hidden layer and one output layer. Each node 

in the hidden layer evaluates a radial basis function on the 

incoming input. In this study, the radial basis function applied 

was the Gaussian function and the neural network output was 

then evaluated as the weighted linear summation of the radial 

basis functions. 

General Regression Neural Network (GRNN) 

General Regression Neural Networks (GRNNs), falls into 

the category of probabilistic neural networks. This neural 

network like other probabilistic neural networks needs only a 

fraction of the training samples a backpropagation neural 

network would need. The use of a probabilistic neural network is 

especially advantageous due to its ability to converge to the 

underlying function of the data with only few training samples 

available. The additional knowledge needed to get the fit in a 

satisfying way is relatively small and can be done without 

additional input by the user. This makes GRNN a very useful 

tool to perform predictions and comparisons of system 

performance in practice. GRNN consists of four layers namely, 

input layer, pattern layer, summation layer and output layer 

(Singh and Deo 2007). The first layer is fully connected to the 

second pattern layer, where each unit represents a training 

pattern and its output is a measure of the distance of the input 

from the stored patterns. Each pattern layer unit is connected to 

the two neurons in the summation layer: S-summation neuron 

and D-summation neuron. The S-summation neuron computes 

the sum of the weighted outputs of the pattern layer while the D-

summation neuron calculates the unweighted outputs of the 

pattern neurons. 
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The connection weight between a neuron in the pattern layer and 

a S-summation neuron is the target output value corresponding 

to given input pattern. For D-summation neuron, the connection 

weight is unity. The output layer only divides the output of each 

S-summation neuron by that of each D-summation neuron, 

yielding the predicted value corresponding to an unknown input 

vector. The operation of the D-summation neuron includes a 

parameter called the spread factor, whose optimal value is often 

determined by trials (Kim et al. 2003). More information can be 

found in Specht (1991) and Tsoukalas and Uhrig (1997). 

Models Specification and Calibration 

As mentioned above, this study has focus on two different 

types of ANN models: General Regression Neural Network with 

standardized inputs (GRNN1) and with non-standardized inputs 

(GRNN1), and Radial Basis Networks with standardized inputs 

(RBN1) and with non-standardized inputs (RBN2) (Table 1).  

Calibration parameters of these networks is limited to 

choose the spread values (0.1 to 2000 with variable intervals). 

Larger spread values result in smoother function approximation. 

To fit data very closely, a spread value smaller than the typical 

distance between input vectors should be used (MATLAB 

2008).  

Case Study and Data Preprocessing 

Taleghan reservoir dam, located in the nearly central part of 

Iran, is considered as the case study and its daily inflow time 

series is used in the analysis. In order to prepare data for 

introducing to the models, the inflow time series (March 2006 

through April 2011) was divided between two data sets for 

calibration (60%) and validation (40%).  

Application of the Models 

An iterative algorithm was designed in MATLAB for 

calibration and validation of the considered models. The 

performances of the models were compared using well-known 

statistics: Mean Absolute Error (MAE, Eq. 1) and Root Mean 

Squared Error (RMSE, Eq.2). We normalized these statistics by 

dividing them by the mean of the observed values.  
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where, iQ : observed value on day i, iS : simulated value on 

day i, n: the number of days, and Q : the mean of the observed 

values. 

Using different combinations of inputs (precipitation and 

mean temperature lags) were analyzed. In the following tables, 

the signs "P" and "T" represent daily precipitation and mean 

temperature lags, respectively. They include lags 0 through lags 

3. For example, PPPTT means the inputs include precipitation 

from two days ago until the current day and temperature of the 

last day and the current day.  

Results and Discussion 

Daily Simulation 

Table 2 shows the best 10 models of in Group 2 selected by 

the iterative algorithm. All the best model-input combinations 

are RBN2-PPT according to the RMSE* statistic. This tables 

shows that the effect of precipitation is more than the effect of 

temperature, since more precipitation signs (i.e. lags) are 

presented among the best input combination.  

The best GRNN model appears in the 56th place in the 

ranking of Group 2 according to the RMSE* statistic (Table 3). 

As it can be seen, the performance of the best RBN and GRNN 

models are comparable and there is no considerable difference 

between them. Moreover, precipitation signs appear more than 

temperature signs in this table. Table 4 compares the statistics of 

the best models of each type.  

The best models are very capable in simulating the mean 

values of the time series (Table 5). But, the main deficiency is 

related to the simulation of standard deviation (Std) and 

Maximum values. Almost all the models studied here are not 

good at regenerating the Std (and Maximum) values of the time 

series and it can be seen from this table that all the models 

underestimate the Std values (Table 5, the last column). 

Figures 1 shows the scatter plots of the simulated inflows 

versus the observed inflows using the best models for the whole 

period along with the 1:1 line. Figure 1 demonstrates that the 

scatter plot of the RBN model is to some extent closer to the 1:1 

line as compared to the GRNN model. Also, this is obvious in 

this figure that both models are incapable in simulating the peak 

flows. 

0

20

40

60

80

100

120

0 20 40 60 80 100 120

S
im

u
la

te
d

 (
m

3
/s

)

Measured (m3/s)

RBN2 (300) - PPT 

0

20

40

60

80

100

120

0 20 40 60 80 100 120

S
im

u
la

te
d

 (
m

3
/s

)

Measured (m3/s)

GRNN2 (0.7) - PPPTT 

 
Figure 1. Observed .vs. Simulated inflows: Group 2 (values 

in the parenthesis are the spread values) 

10-Day-Average Simulation 

As mentioned above, the models are nearly incapable of 

simulating the Std and Maximum values of the time series. So, 

there is way to cope with such a deficiency: using multiple day 

averages. In water resource management, specially the issues 

related to reservoirs, it is common to use multi day averages 

(specially monthly averages). Thus, we assess the performance 

of the best models (Table 6) after performing a 10-day averaging 

on the simulated time series. These results show that multiday 

averaging operation on the simulated values of the studied ANN 

models can considerably improve the statistics.  

Summary and Conclusion 

This study compared the performance of two different types 

of ANN models in simulating the daily reservoir inflow values 

using daily precipitation and mean temperature data. Results 

showed that RBN and GRNN models are more capable in 

simulating the daily time series and regenerating the mean and 

std values of the time series. Moreover, we analyzed the effect 

of multiday (10-day) averaging on the quality of the simulations. 

It was concluded that this operation can improve the models 

performance, because of some deficiencies which were detected 

in simulating the Std and Maximum values of the time series by 

all the studied models. It can be suggested that more studies 

should be carried out in this field and more model types with 

different input combination must be analyzed to select the best 

model for each case study. 
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Table 1. Description of models and calibration process 
Network Name Abbreviation Description of Calibration Process 

General Regression Neural 
Network 

GRNN1 
Spread values between 0.1 to 2000 with standardized 

inputs 

GRNN2 
Spread values between 0.1 to 2000 with non-

standardized inputs 

Radial Basis Networks 

RBN1 
Spread values between 0.1 to 2000 with standardized 

inputs 

RBN2 
Spread values between 0.1 to 2000 with non-

standardized inputs 

 
Table 2. Simulation statistics of the best models of Group 2 

Rank Inputs Model Spread 
 R2  RMSE*  MAE* 

 Train Test All  Train Test All  Train Test All 

1 PPT RBN2 300  0.82 0.94 0.84  0.68 0.46 0.68  0.39 0.30 0.38 

2 PPT RBN2 350  0.81 0.94 0.83  0.69 0.47 0.69  0.39 0.30 0.39 

3 PPT RBN2 400  0.81 0.94 0.83  0.70 0.47 0.70  0.40 0.30 0.39 

4 PPT RBN2 450  0.81 0.93 0.83  0.71 0.48 0.70  0.40 0.31 0.39 

5 PPT RBN2 500  0.81 0.93 0.83  0.71 0.48 0.70  0.40 0.31 0.39 

6 PPT RBN2 550  0.81 0.93 0.83  0.71 0.48 0.70  0.40 0.31 0.39 

7 PPT RBN2 600  0.81 0.93 0.83  0.71 0.48 0.70  0.40 0.31 0.39 

8 PPT RBN2 650  0.81 0.93 0.83  0.71 0.48 0.70  0.40 0.31 0.39 

9 PPT RBN2 700  0.81 0.93 0.83  0.71 0.48 0.70  0.40 0.31 0.39 

10 PPT RBN2 750  0.81 0.93 0.83  0.71 0.48 0.70  0.40 0.31 0.39 

 
Table 3. Simulation statistics of some acceptable models of Group 2 

Rank Inputs Model Spread 
 R2  RMSE*  MAE* 

 Train Test All  Train Test All  Train Test All 

56 PPPTT GRNN2 0.7  0.85 0.93 0.86  0.61 0.49 0.63  0.33 0.30 0.34 

57 PPT GRNN2 0.7  0.82 0.93 0.84  0.67 0.49 0.68  0.37 0.31 0.37 

58 PPT GRNN2 0.8  0.82 0.93 0.83  0.68 0.49 0.68  0.37 0.31 0.37 

59 PPT GRNN2 0.9  0.81 0.93 0.83  0.68 0.49 0.69  0.38 0.31 0.38 

60 PPTT RBN2 300  0.80 0.93 0.82  0.73 0.49 0.72  0.40 0.31 0.39 

61 PPT RBN2 100  0.81 0.93 0.83  0.69 0.49 0.69  0.39 0.32 0.39 

62 PT RBN2 350  0.80 0.93 0.82  0.72 0.49 0.71  0.40 0.32 0.40 

63 PT RBN2 400  0.80 0.93 0.82  0.72 0.49 0.71  0.40 0.32 0.40 

64 PPT RBN2 20  0.82 0.93 0.84  0.68 0.49 0.68  0.37 0.32 0.38 

65 PPT RBN2 25  0.82 0.93 0.84  0.68 0.49 0.68  0.38 0.32 0.38 
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Table 4. Comparison of the statistics of the best models 

Inputs Model TrFunc Nn / Spread 
 R2  RMSE*  MAE* 

 Train Valid Test All  Train Valid Test All  Train Valid Test All 

PPT RBN2 -- 300  0.82 0.94 0.84  0.68 0.46 0.68  0.39 0.30 0.38 

PPPTT GRNN2 -- 0.7  0.85 0.93 0.86  0.61 0.49 0.63  0.33 0.30 0.34 

 
Table 5. Comparison of the Mean and Std values of the best models 

Model 
 Mean   Std  

 Train Valid Test All  Train Valid Test All 

RBN2  13.99 14.86 13.99 14.86 13.99 14.86 13.99 14.86  16.28 14.88 16.91 15.32 16.91 15.32 17.04 14.97 

GRNN2  14.03 14.63 14.03 14.63 14.03 14.63 14.03 14.63  16.32 14.96 16.84 14.99 16.84 14.99 17.05 15.13 

 
Table 6. Comparison of the statistics of the best models after 10-day averaging 

Inputs Model TrFunc Nn / Spread 
 R2  RMSE*  MAE*  R2  RMSE*  MAE*  

 Test  Test  Test  All  All  All  

PPT RBN2 -- 300  0.99  0.25  0.20  0.87  0.59  0.33  

PPPTT GRNN2 -- 0.7  0.99  0.25  0.20  0.89  0.55  0.30  

 


