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Introduction  

Wirawan (2007) estabilished and analyzed a deterministic 

mathematical model on the transmission dynamics of influenza 

[5]. However, the integration of the exposed individuals to the 

population was not incorporated into the mathematical model. In 

this paper, it is intended to analyze a model which incorporates 

the exposed individuals on the transmission dynamics [2]. 

Therefore, we shall study a stability analysis on an SEIRC 

model. The name of this class of model derives from the fact 

that they involve equations relating the number of susceptible 

individuals (S), the number of exposed individuals (E), the 

number of infectives (I), the number of recovered individuals 

(R) and the number of cross-immuned individuals (C). 

The transmission dynamics is described by a set of system 

of first order ordinary differential equations giving the change of 

population sizes of other individuals in the system [1]. It is much 

more complicated to know more from the qualitative structure of 

the isoclines that whether the system is stable or unstable after 

the change in any of the population size. Therefore, we 

introduce stability analysis in this paper to find out whether the 

system is stable or not when individuals in each subclass is in 

competition [3]. 

The SEIRC model is depicted in the compartmental diagram 

as shown in figure 1.1 and is expressed as the system of 

nonlinear initial value problem given in the form; 

 

                   (1) 

                       (2) 

        (3) 

        (4) 

                    (5) 

in which S = S(t), E = E(t), I = I(t), R = R(t) and C = C(t) 

represent the population of the susceptible, exposed, infectives, 

recovered, and the cross-immuned individuals respectively. The 

model assumes a population of constant size N with equal birth 

and death rates such that N(t) = S(t) + E(t) + I(t) + R(t) + C(t) 

[2]. The table below provides an interpretation of the model 

parameters.   
 

Figure 1.1: The diagram above represents the transmission 

dynamics of an SEIRC epidemic model 

Basic Reproductive Number 

One extremely useful concept that may be used on more 

complicated system is to find the threshold values to describe in 

what situation an outbreak will develop into an epidemic. A 

threshold value is often a bifurcation point as it is the position 

the steady state (equilibrium) solutions exchange stability [1]. 

The most commonly used threshold value is called the basic 

reproductive number denoted by R0 and it is defined as the 

average number of secondary infectives produced when a single 

infected individual is introduced into a population consisting 

entirely of susceptible [3]. It is obviously the case that if R0 > 1, 

the infected individual is infecting more than one further person, 

so the number of infectives will exponentially increase and an 

epidemic will occur. If however R0 < 1, the infective is not 

passing the infection on to enough people to replace itself so the 

disease dies out and not persist in the community. There may be 

some secondary cases, but these will decrease with time and 

eventually the infection will become extinct.    
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If R0 ≈ 1, the infection just barely succeeds in reproducing itself 

and there will be a similar number of cases at any later time [6].   

In this paper, the basic reproductive number for the model is 

obtained using the next generation matrix operator. This method 

is proposed by [8] and it is given in the form  

R0 = ρ(FV
-1

)      (6) 

where R0 denotes the basic reproductive number, F represents 

the matrix of the rate secondary infections are produced and V 

represents the matrix of the expected time an individual initially 

introduced into disease compartment.  

Forming the matrices for F and V at the disease free 

equilibrium of  the form H0 = (1, 0, 0, 0, 0) such that there is no 

infection in the population, 

                                                          (7) 

V =                                   (8) 

                                              (9) 

The method was used and the basic reproductive number is 

obtained as  

                                                       (10) 

In the context of epidemiology modeling, it is generally 

known that if R0 < 1, then the disease free equilibrium is locally 

asymptotically stable and the disease will be eradicated from the 

community. 

Stability analysis of the model 

In this study, we restrict our study to the positive fractional 

values of the S(t), E(t), I(t), R(t) and C(t) denoted by s(t), e(t), 

i(t), r(t) and c(t) with equal birth and death rates which are 

ensuring a constant population size. The model equations (1 - 5) 

will be qualitatively analyzed to investigate the existence and 

stability of its associated equilibria.  

In order to know the asymptotical behavior of the system 

(1- 5), we set in the form of : 

,             s(0) =         (11) 

          

         (12) 

  

         (13) 

  

    (14) 

  

       (15)  

 

To investigate the possible equilibria of the system (11 - 15), we 

consider the Jacobian matrix  and impose the 

restriction on the equilibrium points;  , 

,  and  .  

By differentiating the system (11 - 15) with respect to the 

state variables and with the parameter values in the table above, 

we obtain the Jacobian matrix as follows: 

 

 (16) 

  

at  the disease – free equilibrium with H0 = (1, 0, 0, 0, 0)), we 

obtain 

     (17) 

 

with eigenvalues obtained as 

 , , , 

 and   

Since , i = 1, 2, 3, 4, 5 are negative with all the parameters are 

assumed to be positive, then the disease – free equilibrium H0 is 

locally asymptotically stable if R0 < 1 and unstable if R0 > 1.  

In the presence of infection (i ≠ 0), the mathematical model (11 

– 15) has a unique endemic equilibrium given by H* = (s*, e*, 

i*, r*, c*) which are determined from the system as follows. The 

associated Jacobian matrix is obtained as: 

 

    (18) 

 

Obtaining the eigenvalues as usual form from the formula 

, the results in characteristic polynomial are 

given in the form  

=0                                     (19) 

where, 

a0 = 1, a1 = 615.3082, a2 = 123028.2888, a3 = 

0.7949220698*10
7
, a4 = 714958.7442 and a5 = 11096.92577 

with s(0) = s* = 0.3982, e(0) = e* = 0.3086, i(0) = i* = 0.2131, 

r(0)=r*=0.0502 and c(0) = c* = 0.0299. Since all the values are 

positive and by the Routh-Hurwitz stability criteria [4], the 

systems (11 – 15) are locally asymptotically stable provided 

that; 

ai > 0, for i = 1, 2, 3, 4, 5;    (20) 

a1a2 – a3 > 0;     (21) 

a1a2a3 – a1
2
a4 – a3

2
 > 0;    (22) 

 (a1a2 – a3)(a3a4 – a2a5) – (a1a4 – a5)
2
 > 0  (23) 

  The figure 3.1 represents the asymptotically stable model in 

which the numerical results of the stable system (11 - 15) were 

investigated by the stability analysis. We observe from the graph 

that the population of the susceptible individuals decrease in the 

first few days and later increase due to the reinfection. After 

some days, the susceptible individuals becomes stable while 

more individuals are recovered at that time from the infective 

individuals. Also, the rate of recovered individuals is much 

faster than the rate of infected in the first few days.  

Furthermore, we note here that a small change in parameters µ, 

η, β, ε, ζ, α, and δ bring a sensitive change in each individual 

while keeping the initial conditions constant. 
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For instance, if we consider ten percent increase or decrease 

in the parameter values, the model will still be asymptotically 

stable as represented in the figure 3.2 below. 

 
Figure 3.1: The SEIRC asymptotically stable model. This 

plot is the numerical result of the stable system investigated 

by the stability analysis 

 
Figure 3.2: The plot shows the SEIRC stable model. The 

proportion of each subclass were shown when the parameter 

values were perturbed by ten percent. 

 

Conclusion 

In this paper, we have analyzed the stability of the SEIRC 

epidemic model using the linearization technique via Jacobian 

matrix and the Routh-Hurwitz stability criteria. We observed 

that the mathematical model produced the asymptotically stable 

population such that the infectious disease dies out from the 

population as time increases. 
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Table 1: Parameter values in the mathematical model 
Parameters Definitions Hypothetical values 

 
birth and mortality rates 0.02yr-1 

 
Rate of progression from cross-immune to susceptible 0.35yr-1 

 
Transmission coefficient  1200 

 
Rate of progression from exposed to infective 0.05yr-1 

 
Rate of reinfection 

0 <  < 1 

 
Rate of progression from infective to recovered 365/3yr-1 

 
Rate of progression from recovered to cross-immuned 0.0182yr-1 

S(0) Initial values of the susceptibles 0.3982 

E(0) Initial values of the exposed 0.3086 

I(0) Initial values of the infectives 0.2131 

R(0) Initial values of the recovered 0.0502 

C(0) Initial values of the cross-immuned 0.0299 

 


