
Manikandan et al./ Elixir Comp. Sci. & Engg. 44 (2012) 7482-7485 
 

7482 

Introduction  

The goal of frequent pattern (or frequent item set) mining is 

to determine which items in a transactional database commonly   

appear   together.  Given   the   size   of   typical modern 

databases, an exhaustive search is usually not feasible, making 

this a challenging computational problem. The FP-growth 

algorithm stores all transactions in the database   as   a   tree   

using   two   scans.   The   FP-growth algorithm  was originally  

designed from a software developer’s  perspective  and  uses  

recursion  to  traverse  the  tree and   mine  patterns.   It   is   

cumber some (and sometimes impossible) to implement 

recursive processing directly in hardware, as dynamic memory 

allocation typically requires some software management. For 

this reason, the dynamic data  structures  (such  as  linked  lists  

and  trees)  which  are widely  used  in  software  

implementations  are  very  rarely used in a direct hardware 

implementation. Consequently, it would be very difficult to 

directly translate this FP-growth algorithm into a hardware 

implementation. 

I have previously introduced a reconfigurable systolic tree 

architecture for frequent pattern mining, and describe a 

prototype using a Field Programmable Gate Array (FPGA) 

platform.  

The systolic tree is configured to store the support counts of 

the candidate patterns in a pipelined fashion as the database is 

scanned in, and is controlled by a simple software module that 

reads the support counts and makes pruning decisions. In this 

paper, we focus on improving the original scheme introduced in 

[2] by eliminating the counting nodes, and provide a new 

COUNT mode algorithm.  

A new database projection approach which is suitable for 

mining a systolic tree is proposed and implemented. Based on 

the reconfigurable platform presented, the area requirement of 

FPGAs and software/hardware mining time are studied. We 

performed experiments over several benchmarks. The 

experimental results show that our FPGA-based approach can be 

several times faster than a software implementation of the FP-

growth algorithm. 

 

Fig. 1. A simple transactional database 

In VLSI terminology, a systolic tree is an arrangement of 

pipelined processing elements (PEs) in a multidimensional tree 

pattern. The goal of our architecture is to mimic the internal 

memory layout of the FP-growth algorithm while achieving a 

much higher throughput. The role of the systolic tree as mapped 

in FPGA hardware is then similar to the FP-tree as used in 

software. Given a transactional database, the relative positions 

of the elements in the systolic tree should be the same as in the 

FP-tree. To achieve this objective, the systolic tree in this work 

can be designed based on the following observations: 

A control PE which corresponds to the root node in the FP-

tree acts as the input and output interfaces to the systolic tree.  

The systolic tree construction algorithm starts from the root node 

upon receiving a new transaction. For two nodes which store any 

two items in a transaction, one node must be an ancestor of the 

other. If two transactions share a common prefix, the shared 

parts are merged using one prefix path. The degree of a node is 

equal to the number of transactions which share the common 

prefix. In the worst case, the degree of a node is equal to the 

number of frequent items N. Barring the use of dynamic partial 

reconfiguration, the PEs in hardware cannot be created and 

deleted dynamically as in software. If each PE is connected to N 

child PEs, the hardware structure and operation in each PE will 

be very complex. To avoid this hindrance, each PE in the 

systolic tree connects to its leftmost child. The other children 

connect to their leftmost siblings. To reach the rightmost child, 

the signal from the parent PE must travel through all the children 

on the left. In the FP-growth algorithm, the first item in each 

transaction is stored in a child of the root while the other items 

are stored in its descendants. 
Tele:  

E-mail addresses:  rpsmanikandan@gmail.com , 
vsamsri@gmail.com            

         © 2012 Elixir All rights reserved 

Design of a frequent pattern mining based on systolic trees 
R.P.S.Manikandan and V.Shanmugam 

Sasurie College of Engineering, Vijayamangalam. 

        
ABSTRACT  

Frequent pattern mining algorithms are designed to find commonly occurring sets in 

databases. This class of algorithms is typically very memory intensive, leading to prohibitive 

runtimes on large databases. A class of reconfigurable architectures has been recently 

developed that have shown promise in accelerating some data mining applications. In this 

paper, I propose a new architecture for frequent pattern mining based on a systolic tree 

structure. The goal of this architecture is to mimic the internal memory layout of the original 

pattern mining software algorithm while achieving a higher throughput. We provide a 

detailed analysis of the area and performance requirements of our systolic tree-based 

architecture, and show that our reconfigurable platform is faster than the original software 

algorithm for mining long frequent patterns. 

                                                                                                            © 2012 Elixir All rights reserved. 
 

ARTICLE INFO    

Article  history:  

Received: 9 September 2011; 

Received in revised form: 

14 November 2011; 

Accepted: 23 November 2011;

 
Keywords  

Systolic Tree, 

Pattern Mining, 

Database projection. 

 

 

 

 

 

Elixir Comp. Sci. & Engg. 44 (2012) 7482-7485 

Computer Science and Engineering 

Available online at www.elixirpublishers.com (Elixir International Journal) 

 



Manikandan et al./ Elixir Comp. Sci. & Engg. 44 (2012) 7482-7485 
 

7483 

However, all PEs in the systolic tree operate in parallel and 

there is no “pointer” concept in the hardware implementation. 

Due to the intrinsic characteristics of the tree, the operation of a 

transaction usually starts from the root. Thus, the control PE acts 

as the input/output interface of the systolic tree. Each clock 

cycle, an item is transferred to the control PE which may 

forward the item to its children.  

Definition 1 (Systolic Tree). A systolic tree is a tree 

structure which consists of the following PEs: 

Control PE: The root PE of the systolic tree does not 

contain any item. Any input/output data of the systolic tree must 

go through it first. One of its interfaces connects to its leftmost 

child.  

General PE: All other PEs are general PEs. Each general PE 

has one bidirectional interface connecting to its parent. The 

general PE which has children has one interface connecting to 

its leftmost child. Those general PEs which have siblings may 

have an interface connecting to its leftmost sibling. The general 

PE may contain an item and the support count of the stored item.  

Each PE has a level associated with it. The control PE is at 

level 0. The level of a general PE is equal to its distance to the 

control PE. The children of a PE has the same level. 

Systolic Tree Creation 

The design principle of the WRITE mode algorithm is that 

the built-up systolic tree should have a similar layout with the 

FP-tree given the same transactional database. The ith item in a 

transaction is mapped to the ith level in the systolic tree. For any 

two PEs in the path of the same transaction, the PE in the ith 

level is the ancestor of the PE in the i þ 1th or higher level. A PE 

is never in the same path of a transaction with its siblings. 

Suppose the transactional database has N frequent items. The 

number of PEs in the first level is at most N. The depth of the 

systolic tree is at most N. Suppose all items in Fig. 1 are 

frequent. The first items in all transactions only include items A 

and B. Therefore, we only need two PEs in the first level of the 

systolic tree. However, counting the number of items in each 

level may impair the overall pattern mining performance. Thus, 

the values of K and W are usually set to be equal to N. The last 

item of a transaction may not be put into the leaf of the systolic 

tree if the number of items in the transaction is less than N. If 

two transactions share the same prefix, they will share a path in 

the systolic tree. In summary, the design intuition behind the 

WRITE mode algorithm is that the path an item travels through 

the FP-tree is the same as the path it travels in the systolic tree. 

The WRITE mode algorithm is presented in Algorithm 1. 

The same algorithm runs in each PE of the systolic tree in every 

clock cycle. That is, the inner hardware structure of each PE is 

the same. Initially all PEs are empty. An item is loaded into the 

control PE each clock cycle which in turn transfers each item 

into the general PEs. After all items in a transaction are sent to 

the systolic tree, a control signal that states the termination of an 

old transaction and the start of a new one is sent to the control 

PE. The signal will be broadcast to all PEs which reinitialize 

themselves for the next transaction.  

The initialization includes resetting match and Inpath flags 

in the first line of Algorithm 1. The input of the algorithm is an 

item it. The match flag is set when the item in the PE matches it. 

The Inpath flag is not set when the PE does not contain any item 

from the current transaction. 

Upon receiving a new item it, the three if statements in 

Algorithm 1 are evaluated sequentially. The two switches match 

and InPath are used to make sure that the latter items in a 

transaction will follow the path of the former items in the same 

transaction. The first if statement allocates a PE for the incoming 

item it if it appears in the current path for the first time. In this 

case, the transaction represented by the items contained in the 

PEs from the root to the current one is a new transaction which 

has never been put into the systolic tree before. The second if 

statement is executed if the current item matches the item in the 

current PE. In this case, the transaction represented by the items 

contained in the PEs from the root to the current one is a 

transaction which has been put into the systolic tree before. 

Pattern Mining Using Systolic trees 

 To mine frequent patterns in the systolic tree, a 

collaborating hardware/software platform is required. The 

software sends a candidate pattern to the systolic tree. After 

some clock cycles, the systolic tree sends the support count of 

the candidate pattern back to the software. The software 

compares the support count with the support threshold and 

decides whether the candidate pattern is frequent or not. After all 

candidate patterns are checked with the support threshold in 

software, the pattern mining is done. The approach to get the 

support count of a candidate pattern is called candidate item set 

(pattern) matching. The platform architecture of the software 

and hardware co-design will be introduced. 

Candidate Item Set Matching 

The main principle of matching is that any path containing 

the queried candidate item set will be reported to the control PE. 

Note that such a path may contain more items than the queried 

item set. Before introducing item set matching, we examine 

some useful properties of the systolic tree which will facilitate 

frequent pattern mining. As mentioned in previous sections, 

each frequent item is assigned a sequence number. The items in 

each transaction enter the systolic tree in an increasing order in 

both the WRITE mode algorithm and the SCAN mode 

algorithm. 

Candidate Item Set Count Computation 

According to Property 1 of the systolic tree, there is only 

one path tracing back from any PE to the control PE since each 

PE has a unique parent. Once all items in a candidate item set 

are sent to the systolic tree, a control signal signifying the 

COUNT mode is broadcast to the whole systolic tree. It shows 

that the first child’s input interface is always connected to its 

parent while others accept input from the sibling in WRITE and 

SCAN mode. After a candidate frequent item set is delivered 

into the systolic tree, the PEs report the support count of the 

candidate item set to its unique parent. The PE which is not 

directly connected to its parent sends its count to the left sibling. 

.The parent PE collects the support counts reported by the 

children PEs and sends them to its own parent direction. The 

COUNT mode algorithm in each PE is given in Algorithm 3, 

where the support counts are transferred to each PE’s parent in a 

pipelined fashion. The inputs of the algorithm are two count 

values sent by a PE’s sibling and child, respectively. The 

NMyself variable is the number of the locally stored item. The 

Sent flag is set when the local number has been reported to the 

parent. Only the PEs with the IsLeaf flag set can report its local 

value, while other PEs deliver the count values sent by the child 

and sibling to their parents. The control PE adds up all count 

values and sends it as an output signal. 

Tree Scaling by Database Projection 
It is unreasonable to assume that a tree-based representation 

can fit in the available hardware resources (either memory or 

logic) for any arbitrary database. In the case that memory or 



Manikandan et al./ Elixir Comp. Sci. & Engg. 44 (2012) 7482-7485 
 

7484 

logic is not large enough to hold the whole tree, the database 

must be divided into multiple smaller databases with fewer 

frequent items. Without the technique of database projection, the 

brute-force candidate item set matching will take an intolerable 

amount of time when the number of frequent items is large. 

Introduction to Database Projection 

To use the systolic tree to mine frequent item sets, the 

original database is projected into subdatabases. Each of the 

projected database has no more than N ¼ minðK; WÞ frequent 

items and is guaranteed to fit into the FPGAs. Let’s illustrate the 

database projection with an example. Suppose the FPGA logic 

can at most hold a systolic tree with two frequent items. The 

database in Fig. 1 has four frequent items and should be 

projected into subdatabases each of which has at most two 

frequent items. The frequent items are usually sorted in 

frequency-decreasing order, which introduces a dense tree 

structure. For illustrative purpose, we arrange the frequent items 

in an alphabetic order, i.e., A; B; C; D. Starting at frequent item 

A, the set of transactions that contain A are collected as an A-

projected database. Since there are three frequent items B; C; D 

in the A-projected database, it should be further projected into 

two subdatabases. One is an AB-projected database. The 

transactions in the AB-projected database are obtained by 

removing B from those transactions containing B in the A-

projected database. The other is an A₃-projected database which 

is composed of those transactions in the A-projected database 

after removing B. Since the transactions in both of them only 

contain C and D, the projection process terminates. The 

projected databases which will be put onto an FPGA are shown 

as dotted leaves.  

Notice the difference between the A-projected database and 

the A3-projected database. The former data-base contains all the 

transactions starting with A while the latter contains only those 

transactions starting with A but not including item B. 

Experimental Evaluation 

Area Requirements 

In our VHDL implementation, different sizes of systolic 

trees are generated automatically by specifying the depth and 

degree parameters. We placed and routed various configurations 

of this implementation using Xilinx ISE 9.1.03i. The targeted 

device is a Xilinx Virtex-5 XC5VLX330 FPGA with package 

ff1760 and -2 speed grade. From the place and route report, each 

node requires 50 LUTs. Approximately 25 percent of the 

available slices are used when both K and W are four. When 

both K and W are five, the slice usage is more than 100 percent.  

Performance Comparison 

For performing a fair comparison, we selected as our target 

environment the XtremeData XD2000i, which is a complete 

platform to explore the benefits of FPGA coprocessing with 

traditional microprocessor computing systems. The XD2000i 

development system comprises of a Dual Xeon motherboard 

with one Intel Xeon processor and two Stratix III EP3SE260 

FPGAs in the other socket, running the CentOS Linux operating 

system.  

In our simulated environment, the systolic tree of size four 

was integrated with other hardware IP components provided by 

XtremeData in one of the FPGAs. The Intel 

CPU executes Algorithm 5, which was implemented in 

C++. For each frequent item set ₃, a projected tree is generated 

as a set of pointers pointing to the paths in the original FP-tree. 

The algorithm reads the transactions pointed by those pointers 

and sends them to the systolic tree in FPGA. The sending 

operation returns immediately. The FPGA hardware receives the 

transactions and creates the systolic tree using Algorithm 1. 

Thereafter, the candidate item sets are generated and matched by 

hard-ware without software intervention in a pipelined style. 

Algorithms 2 and 3 are executed in each node of the systolic 

tree. After all frequent item sets are collected, they are sent back 

to the software. After receiving the frequent item sets from the 

hardware, the software combines them with ₃. 

During this process, the original database is projected 

sequentially which is similar to partition projection men-tioned 

in fig. The experimental results presented below are based on 

this sequential mode. Reconfigurable develop-ment systems 

with multiple FPGAs integrated in the same board would not 

benefit from this model since the running time of FPGAs in this 

case is smaller than the running time to generate a projected 

database. Parallel projection, which scans each transaction in the 

original database and projects it into multiple projected 

databases in parallel can fully utilize the multi-FPGA system. 

Designing an efficient parallel projection software algorithm and 

applying it in a parallel FPGA implementation is a planned 

avenue of future work. We can expect that the parallel FPGA 

implementation will be much faster than the sequential model 

used in this paper. 

The experiments are performed on real data sets described 

in and from the KDD Cup 2000 data. Table 1 characterizes the 

data sets in terms of the number of distinct items and 

transactions, the maximum and mini-mum size of the 

transactions. The performance measure was the execution time 

of the systems on the benchmarks with different support 

thresholds. The execution time only includes the time for disk 

reading and memory I/O, but excludes the disk writing time. The 

original software FP-growth algorithm which is implemented in 

C++ is from [13]. In order to have a fair comparison, the 

software FP-growth algorithm also runs on our target Xtreme 

Data XD2000i platform without using the FPGA hardware. 

The systolic tree algorithm is almost two times faster than 

FP-growth for the chess and BMS-WebView-2 data sets. For the 

kosarak data set, the mining time of the systolic tree is larger 

than FP-growth. The mining time for FP-growth grows larger 

than the systolic tree algorithm with the decrease of support 

threshold in BMS-POS. 

The advantage of the systolic tree over FP-growth becomes 

dramatic with long frequent patterns, which is challenging to the 

algorithms that mine the complete set of frequent patterns. In 

retrospect, the systolic tree algorithm removes the most frequent 

items and mines them in the projected databases.  

Compared with the original FP-growth algo-rithm, the 

systolic tree algorithm reduces the runtime by mining the dense 

part of the FP-tree in hardware and the sparse part in software 

simultaneously. However, it introduces the overhead of database 

projection. If the overhead is not amortized by the runtime 

reduction, the systolic tree algorithm is slower than the original 

FP-growth algorithm. This is illustrated in the kosarak 

benchmark.  

One can expect that the mining time will decrease with 

more frequent patterns mined in hardware when the size of the 

systolic tree is fixed. , the systolic tree algorithm removes the 

most frequent items and mines them in the projected databases. 

Hence more patterns will be mined in the systolic tree. It will be 

more efficient than the FP algorithm that can be used for the 

mining. Also the systolic tree algorithm reduces the runtime. 



Manikandan et al./ Elixir Comp. Sci. & Engg. 44 (2012) 7482-7485 
 

7485 

Conclusion 

A new systolic tree-based approach to mine frequent item 

sets is proposed and evaluated. A transactional database must be 

projected into smaller ones each of which can be mined in 

hardware efficiently. A high performance projection algorithm 

which fully utilizes the advantage of FP-growth is proposed and 

implemented. It reduces the mining time by partitioning the tree 

into dense and sparse parts and sending the dense tree to the 

hardware. The algorithm was implemented on an XtremeData 

XD2000i high performance reconfigurable platform. Based on 

the experimental results on several benchmarks, the mining 

speed of the systolic tree was several times faster than the FP-

tree for long frequent patterns. Improving the mining efficiency 

on sparse patterns will be included in our future work. 

References 

[1]J. Han, J. Pei, Y. Yin, and R. Mao, “Mining Frequent Patterns 

without Candidate Generation: A Frequent-Pattern Tree Ap-

proach,” Data Mining and Knowledge Discovery, vol. 8, no. 1, 

53-87, Jan. 2004.  

[2]S. Sun and J. Zambreno, “Mining Association Rules with 

Systolic Trees,” Proc. Int’l Conf. Field-Programmable Logic and 

Applications (FPL ’08), Sept. 2008.  

[3] R. Narayanan, D. Honbo, G. Memik, A. Choudhary, and J. 

Zambreno, “An FPGA Implementation of Decision Tree 

Classifi-cation,” Proc. Conf. Design, Automation, and Test in 

Europe (DATE), 189-194, Apr. 2007. 

[4]Z. Baker and V. Prasanna, “Efficient Hardware Data Mining 

with the Apriori Algorithm on FPGAs,” Proc. IEEE Symp. 

Field-Programmable Custom Computing Machines (FCCM), pp. 

3-12, Apr. 2005. 

[5]Y.-H. Wen, J.-W. Huang, and M.-S. Chen, “Hardware-

Enhanced Association Rule Mining with Hashing and 

Pipelining,” IEEE Trans. Knowledge and Data Eng., vol. 20, no. 

6, pp. 784-795, June 2008.  

[6]A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim, A. 

Nguyen, Y.-K. Chen, and P. Dubey, “Cache-Conscious Frequent 

Pattern Mining on a Modern Processor,” Proc. Int’l Conf. Very 

Large Data Bases (VLDB), pp. 577-588, 2005.  

[7]R. Bayardo, B. Goethals, and M. Zaki, eds., Proc. IEEE 

ICDM Workshop Frequent Itemset Mining Implementations 

(FIMI), Nov. 2004.  

[8]T. Uno, M. Kiyomi, and H. Arimura, “LCM ver. 2: Efficient 

Mining Algorithms for Frequent Closed Maximal Itemsets,” 

Proc. IEEE ICDM Workshop Frequent Itemset Mining 

Implementations (FIMI), 2004.  

 

Table 1 

Benchmark Information 

 


