Awakening to reality

Available online at www.elixirpublishers.com (Elixir International Journal)

Discrete Mathematics

Elixir Dis. Math. 44 (2012) 7477-7479

On anti Q-fuzzy normal HX groups

R.Muthuraj¹, K.H.Manikandan² and P.M. Sithar selvam² ¹Department of Mathematics, H.H. The Rajah's College, Pudukkottai. ²Department of Mathematics, PSNA College of Engineering and Technology, Dindigul.

ARTICLE INFO

Article history: Received: 30 August 2011; Received in revised form: 15 March 2012; Accepted: 23 March 2012;

ABSTRACT

In this paper, we define a new algebraic structure of an anti Q-fuzzy normal HX group and lower level subset of an anti Q-fuzzy normal HX group and discussed some of its properties. We also define anti Q-fuzzy normalizer and establish the relation with anti Q-fuzzy normal HX group. Characterizations of lower level subsets of an anti Q-fuzzy HX subgroup of a HX group are given.

© 2012 Elixir All rights reserved.

Keywords

Fuzzy group, Q-fuzzy group, anti Q-fuzzy normal group, Anti Q-fuzzy normal HX groups, Lower level sub HX group, Anti Q-fuzzy normalizer.

Introduction

K.H.Kim [4] introduce the concept of intuitionistic Q-fuzzy semi prime ideals in semi groups and Osman kazanci, sultan yamark and Serife yilmaz[10] introduce the concept of intuitionistic Q-fuzzy R-subgroups of near rings and Muthuraj. R, Manikandan. K. H., Muthuraman. M. S., Sitharselvam. P. M.,[8] introduce the concept of anti Q-fuzzy HX group and its lower level sub HX groups. A.Solairaju and R.Nagarajan [13] introduce and define a new algebraic structure of Q-fuzzy groups. In this paper we define a new algebraic structure of an anti Q-fuzzy normal HX group and lower level subset of an anti Q-fuzzy normal HX group and discussed some of its properties. **Preliminaries**

In this section we site the fundamental definitions that will be used in the sequel. Throughout this paper, G = (G, *) is a group, e is the identity element of G, and xy, we mean x * y. **Definition [5]**

In 2^{G} -{ ϕ }, a nonempty set $\mathfrak{G} \subset 2^{G}$ -{ ϕ } is called a HX group on G, if \mathfrak{G} is a group with respect to the algebraic operation defined by AB = { ab /a \in A and b \in B}, which its unit element is denoted by E.

Definition [12]

Let X be any non empty set. A fuzzy subset λ of X is a function $\lambda:X\to [0,1].$

Definition [6][8]

A fuzzy set λ is called fuzzy HX subgroup of a HX group ϑ if for A , B $\in \vartheta,$

• $\lambda(AB) \ge \min \{ \lambda(A), \lambda(B) \}$

• $\lambda(A^{-1}) = \lambda(A)$.

Definition [8]

A fuzzy set λ is called an anti fuzzy HX subgroup of a HX group ϑ if A, B $\in \vartheta$,

• $\lambda(AB) \leq \max \{\lambda(A), \lambda(B)\},\$

• $\lambda(A^{-1}) = \lambda(A)$.

Definition [8][13]

Let Q and ϑ be any two sets. A mapping $\lambda : \vartheta \ge Q \rightarrow [0,1]$ is called a Q-fuzzy set in ϑ .

Definition [8][13]

A Q-fuzzy set λ is called Q-fuzzy HX subgroup of a HX group ϑ if for A, B $\in \vartheta$ and $q \in Q$,

• λ (AB, q) \geq min { λ (A,q), λ (B,q) },

• $\lambda(A^{-1}, q) = \lambda(A, q)$.

Definition [8]

A Q-fuzzy set λ is called an anti Q-fuzzy HX subgroup of a HX group ϑ if A, B $\in \vartheta$ and q $\in Q$,

• λ (AB, q) $\leq \max \{ \lambda (A, q), \lambda (B, q) \},$

• $\lambda(A^{-1}, q) = \lambda(A, q)$.

Definition

Let ϑ be a HX group. A Q-fuzzy HX subgroup λ of ϑ is said to be normal if for all A, $B \in \vartheta$ and $q \in Q$, λ (ABA⁻¹, q) = λ (B, q) or λ (AB, q) = λ (BA, q).

Definition

Let ϑ be a HX group. An anti Q-fuzzy HX subgroup λ of ϑ is said to be normal if for all A, $B \in \vartheta$ and $q \in Q$, λ (ABA⁻¹, q)= λ (B, q) or λ (AB, q) = λ (BA, q).

Properties of Anti Q-fuzzy normal HX subgroup

In this section, we establish the relation between Q-fuzzy normal HX subgroup and anti Q-fuzzy normal HX subgroup of ϑ and also discuss some of the properties of anti Q-fuzzy normal HX subgroup of ϑ .

Theorem

 λ is a Q- fuzzy normal HX subgroup of ϑ , iff λ^{C} is an anti Q-fuzzy normal HX subgroup of ϑ .

Proof

Suppose λ is a Q-fuzzy HX subgroup of $\vartheta.$ Then for all $A,B\in \vartheta$ and $q\in Q$,

$$\begin{array}{l} \lambda\left(AB,q\right) \geq \min \left\{\lambda(x,q),\lambda\left(B,q\right)\right\} \\ \Leftrightarrow \ 1-\lambda^{c}(AB,q) \geq \min \left\{\left(1-\lambda^{c}(A,q)\right),(1-\lambda^{c}(B,q))\right\} \end{array}$$

Tele: E-mail addresses: rmr1973@yahoo.co.in $\label{eq:linear_states} \begin{array}{ll} \Leftrightarrow \ \lambda^c(AB,q\,) \ \leq \ 1-\ \min \ \{ \ (1-\lambda^c(A,q\,)), (1-\lambda^c(B,q\,)) \} \\ \Leftrightarrow \ \lambda^c \ (AB,q\,) \ \leq \ \max \ \{ \ \lambda^c(A,q\,), \lambda^c(B,q\,) \}. \end{array} \\ \text{We have,} \ \ \lambda(A,q\,) \ = \ \lambda(A^{-1},q\,) \ \ \text{for all } A \ \ \text{in } \ \vartheta \ \ \text{and } q \in Q \ , \\ \Leftrightarrow \ \ 1-\lambda^c(A,q\,) \ = \ 1-\lambda^c(A^{-1},q\,) \ . \\ \text{Therefore,} \ \ \lambda^c(A,q\,) \ = \ \lambda^c(A^{-1},q\,) \ . \\ \text{Hence} \ \ \lambda^c \ \ \text{is an anti} \ Q \ \text{fuzzy HX subgroup of } \vartheta. \end{array}$

 λ is a Q-fuzzy HX subgroup of ϑ iff λ (ABA⁻¹, q) = λ (B, q).

iff
$$1 - \lambda (ABA^{-1}, q) = 1 - \lambda (B, q)$$
.

iff
$$\lambda^{c} (ABA^{-1}, q) = \lambda^{c}(B, q)$$
.

iff
$$\lambda^c$$
 is an anti Q-fuzzy normal

HX subgroup of ϑ .

Hence, λ is a Q- fuzzy normal HX subgroup of ϑ , iff λ^{C} is an anti Q-fuzzy normal HX subgroup of ϑ .

Theorem

The union of any two anti Q-fuzzy normal HX subgroups of ϑ is always an anti Q-fuzzy normal HX subgroup of ϑ . **Proof**

Let λ_1 and λ_2 be any two anti Q-fuzzy normal HX subgroup of ϑ . Then for all A, B in ϑ ,

 $\begin{array}{rcl} \lambda_1 \ (AB, q \) & \leq & max \ \ \{ \ \lambda_1 \ (A, q \) \ , \ \lambda_1 \ (B, q) \} \ and \\ \lambda_2 \ (AB, q) & \leq & max \ \ \{ \ \lambda_2 \ (A, q) \ , \ \lambda_2 \ (B, q) \}. \end{array}$

Clearly, $(\lambda_1 \lor \lambda_2)(A,q) = \max \{ \lambda_1 (A,q), \lambda_2 (A,q) \}$ and

 $(\lambda_1 \lor \lambda_2)(AB,q) = \max \{ \lambda_1 (AB,q), \lambda_2 (AB,q) \}$

 $= \max\{ \max\{ \lambda_1 (A,q), \lambda_1 (B,q) \}, \max\{ \lambda_2 (A,q), \lambda_2 (B,q) \} \\ \leq \max\{ \max\{ \lambda_1 (A,q), \lambda_2 (A,q) \}, \max\{ \lambda_1 (B,q), \lambda_2 (B,q) \}$

 $\leq \max \{(\lambda_1 \lor \lambda_2)(A,q), (\lambda_1 \lor \lambda_2)(B,q)\}$

Since, $\lambda_1(A,q) = \lambda_1(A^{-1},q)$ and $\lambda_2(A,q) = \lambda_2(A^{-1},q)$ for all A in 9,

We have, $(\lambda_1 \lor \lambda_2)(A^{-1},q) = \max \{ \lambda_1 (A^{-1},q), \lambda_2 (A^{-1},q) \}$ = $\max \{ \lambda_1 (A,q), \lambda_2 (A,q) \}$ = $(\lambda_1 \lor \lambda_2)(A,q) .$

That is, $(\lambda_1 \lor \lambda_2)(A^{-1},q) = (\lambda_1 \lor \lambda_2)(A,q)$ for all A in ϑ . Hence $\lambda_1 \lor \lambda_2$ is an anti Q-fuzzy HX subgroup of ϑ .

Since λ_1 is an anti Q-fuzzy normal HX subgroup of ϑ , then λ_1 (ABA⁻¹, q) = λ_1 (B, q), for all A, B \in ϑ and q \in Q and λ_2 is an anti Q-fuzzy normal HX subgroup of ϑ , then λ_2 (ABA⁻¹, q) = λ_2 (B, q), for all A, B \in ϑ and q \in Q.

Now,
$$(\lambda_1 \lor \lambda_2)(ABA^+,q) = \max \{ \lambda_1(ABA^+,q), \lambda_2(ABA^+,q) \}$$

= max { $\lambda_1(B,q), \lambda_2(B,q) \}$
= $(\lambda_1 \lor \lambda_2) (B,q).$

That is, $(\lambda_1 \lor \lambda_2)(ABA^{-1},q) = (\lambda_1 \lor \lambda_2) (B, q).$

Hence $\lambda_1 \lor \lambda_2$ is an anti Q-fuzzy normal HX subgroup of ϑ . **Remark**

- Arbitrary union of anti Q-fuzzy normal HX subgroups of θ are anti Q-fuzzy normal HX subgroup of θ.
- Intersection of any two anti Q-fuzzy normal HX subgroups of ϑ are not an anti Q-fuzzy normal HX subgroup of ϑ .

Properties of Lower level subsets of an anti Q-fuzzy normal HX subgroup

In this section, we introduce the concept of lower level subset of an anti Q-fuzzy normal HX subgroup and discuss some of its properties.

Definition [8]

Let λ be an anti Q-fuzzy normal HX subgroup of a HX group ϑ . For any $t \in [0,1]$, we define the set $L(\lambda; t) = \{A \in \vartheta | \lambda(A,q) \le t\}$ is called the lower level subset of λ .

Theorem

Let λ be an anti Q-fuzzy normal HX subgroup of a HX group ϑ . Then for $t\in[0,1]$ such that $t\geq\lambda(E,\,q$), L (λ ; t) is a normal sub HX group of G.

Proof

For all A, B \in L (λ ; t), we have,

Now,
$$\begin{array}{l}\lambda(A, q) \leq t \; ; \; \lambda(B, q) \leq t.\\\lambda(AB^{-1}, q) \leq \max \{\lambda(A, q), \lambda(B, q)\}.\\\lambda(AB^{-1}, q) \leq \max \{t, t\}.\\\lambda(AB^{-1}, q) \leq t.\\AB^{-1} \in L(\lambda; t).\end{array}$$

Hence L (λ ; t) is a sub HX group of ϑ . For all B \in L (λ ; t), A \in ϑ and q \in Q and for t \in [0,1] such that

 $t \ge \lambda(E, q)$ we have, $\lambda(B, q) \le t$.

Since, λ be an anti Q-fuzzy normal HX subgroup of a HX group ϑ ,

 λ (ABA⁻¹,q) = λ (B,q) \leq t for all A, B \in ϑ and q \in Q.

 $ABA^{-1} \in L(\lambda; t)$. Hence $L(\lambda; t)$ is a normal sub HX group. **Theorem**

Let ϑ be a HX group and λ be a Q-fuzzy subset of ϑ such that L (λ ; t) is a normal sub HX group of ϑ . For $t \in [0,1]$ $t \ge \lambda(E, q)$, λ is an anti Q-fuzzy normal HX subgroup of ϑ . **Proof**

Let A, B in ϑ and $\lambda(A,q) = t_1$ and $\lambda(B,q) = t_2$.

 $\label{eq:suppose} Suppose \ t_1 < \, t_2 \ \text{, then } A, \, B \, \in \, L \ (\, \lambda \, ; \, t_2).$

As $L(\lambda; t_2)$ is a subgroup of G, $AB^{-1} \in L(\lambda; t_2)$.

Hence, $\lambda(AB^{-1}, q) \le t_2 = \max \{ t_1, t_2 \}$

 $\leq \max \{\lambda(A, q), \lambda(B, q)\}$

That is, $\lambda(AB^{-1}, q) \leq \max \{\lambda(A, q), \lambda(B, q)\}.$

Hence λ is an anti Q-fuzzy HX subgroup of $\vartheta.$

Conversely, for any $t\in [0,1]$, L (λ ; t) $\neq \varphi$ and L (λ ; t) is a classical normal sub HX group.

Then ,we have, λ (ABA⁻¹,q) = λ (B,q) for all A , B $\in \mathfrak{G}$ and $q \in Q$.

Otherwise, if there exists A_0 or $B_0 \in \vartheta$ and $q \in Q$ such that, $\lambda (A_0 B_0 A_0^{-1}, q) > \lambda (B_0, q)$.

Take $t_0 = 0.5 [\lambda (B_0,q) + \lambda (A_0 B_0 A_0^{-1}, q)].$

Evidently, $t_0 \in [0,1]$, we can infer that,

 $\lambda(B_0,q) < t_0 \text{ and } \lambda(A_0B_0A_0^{-1},q) > t_0.$

Consequently, we have $B_0 \in L(\lambda; t_0)$ and $A_0 B_0 A_0^{-1} \notin L(\lambda; t_0)$. This contradicts that $L(\lambda; t_0)$ is a normal sub HX group. Hence, we get,

 λ (ABA⁻¹,q) = λ (B,q) for all A, B \in ϑ and q \in Q.

Hence, λ is an anti Q-fuzzy normal HX subgroup of a HX group 9.

Theorem

Let 9 be a HX group and λ be an Q-fuzzy subset of 9. Then λ is an anti Q-fuzzy normal HX subgroup of 9 iff the level subset L(λ , t), t \in [0,1], is a normal sub HX group of 9.

Proof It is clear.

Theorem

Let λ be an anti Q-fuzzy normal HX subgroup of a HX group ϑ . If two lower level normal sub HX groups L (λ ; t_1), L (λ ; t_2), for, $t_1, t_2 \in [0,1]$ and $t_1, t_2 \geq \lambda(E, q)$ with $t_1 < t_2$ of λ are equal then there is no λ in ϑ such that $t_1 < \lambda(A, q) \leq t_2$. **Proof**

Let L (λ ; t₁) = L (λ ; t₂).

Suppose there exists $A \in \vartheta$ such that $t_1 < \lambda(A, q) \le t_2$ then $L(\lambda; t_1) \subseteq L(\lambda; t_2)$.

Then $A \in L$ (λ ; t_2), but $A \notin L$ (λ ; t_1), which contradicts the assumption that, $L(\lambda; t_1) = L$ ($\lambda; t_2$). Hence there is no A in ϑ such that $t_1 < \lambda(A, q) \le t_2$.

Conversely, suppose that there is no A in 9 such that $t_1 < \lambda(A,\,q\,) \leq t_2.$

Then, by definition, $L(\lambda; t_1) \subseteq L(\lambda; t_2)$.

Let $A \in L(\lambda; t_2)$ and there is no A in ϑ such that

 $t_1 < \lambda(A, q) \leq t_2.$

 $\begin{array}{ll} \mbox{Hence} & A \in L \ (\ \lambda \ ; \ t_1) & \mbox{and} & L \ (\ \lambda \ ; \ t_2) \subseteq \ L \ (\ \lambda \ ; \ t_1). \\ \mbox{Hence} & L \ (\ \lambda \ ; \ t_1) = \ L \ (\ \lambda \ ; \ t_2). \end{array}$

Remark

As a consequence of the Theorems , the lower level normal sub HX groups of an anti Q-fuzzy normal HX subgroup λ of a HX group ϑ form a chain. Since $\lambda(E, q) \leq \lambda(A, q)$ for all A in ϑ and $q \in Q$, therefore $L(\lambda \ ; \ t_0)$, where $\lambda(E, q) = t_0$ is the smallest and we have the chain :

$$\begin{split} \{E\} &\subset L(\;\lambda\;;\;t_0) \subset L\;(\;\lambda\;;\;t_1\;) \subset L\;(\lambda\;;\;t_2\;) \subset \ldots \subset L\;(\lambda\;;\;t_n\;) = \vartheta,\\ where \quad t_0 < \;t_1 < \;t_2 < \ldots \ldots < \;t_n. \end{split}$$

Definition

Let ϑ be a HX group and λ be an anti Q-fuzzy normal HX subgroup of ϑ . Let $N(\lambda) = \{ A \in \vartheta / \lambda (ABA^{-1}, q) = \lambda (B, q) \text{ for all } B \in \vartheta \}$. Then $N(\lambda)$ is called the anti Q-fuzzy normalizer of λ .

Theorem

Let λ be an anti Q-fuzzy normal HX subgroup of a HX group 9. Then

• $N(\lambda)$ is a sub HX group of ϑ .

• λ is an anti Q-fuzzy normal $\Leftrightarrow N(\lambda) = \vartheta$.

+ λ is an anti Q-fuzzy normal HX subgroup of the HX group $N(\lambda).$

Proof

i. Let A, B \in N(λ) then λ (ACA⁻¹, q) = λ (C, q), and λ (BCB⁻¹, q) = λ (C, q), for all C \in 9.

Now
$$\lambda$$
 ((AB) C(AB)⁻¹, q) = λ (ABCB⁻¹A⁻¹, q)
= λ (BCB⁻¹, q)
= λ (C, q)
Thus we get, λ ((AB)C(AB)⁻¹, q) = λ (C, q).

This implies, $AB \in N(\lambda)$.

Therefore, $N(\lambda)$ is a sub HX group of ϑ .

ii.Let λ be an anti Q-fuzzy normal HX Subgroup of ϑ .

Clearly $N(\lambda) \subseteq \vartheta$, Let $A \in \vartheta$, then λ (ABA⁻¹, q) = λ (B, q), Then $A \in N(\lambda)$ implies $\vartheta \subseteq N(\lambda)$.

Hence $N(\lambda) = \vartheta$.

Conversely, let $N(\lambda) = \vartheta$.

Clearly λ (ABA⁻¹, q) = λ (B, q), for all B $\in \vartheta$ and A $\in \vartheta$.

Hence λ is an anti Q – fuzzy normal HX subgroup of ϑ .

iii. From (ii), λ is an anti Q -fuzzy normal HX subgroup of a HX group N(λ).

Conclusion

In this paper, we defined a new algebraic structure of an anti Q-fuzzy normal fuzzy HX group and studied some of its properties. Further, we defined the relation between Q-fuzzy normal HX group and anti Q-fuzzy normal HX group in HX group and also some operations on anti Q-fuzzy HX groups are investigated and the same on intuitionistic fuzzy and on some of the other groups are in progress.

References

[1]Dixit. V. D., Kumar. R. and Ajmal. N., Level subgroups and union of fuzzy subgroups, Fuzzy sets and systems, 37(1990),359-371.

[2]Kim. K.H., Yun. Y.B, on fuzzy R- subgroups of near rings, J.fuzzy math 8 (3) (2000) 549- 558.

[3]Kim. K.H., Yun. Y.B, Normal fuzzy R- subgroups in near rings, Fuzzy sets and systems 121 (2001) 341-345.

[4]Kim. K.H, on intuitionistic Q- fuzzy semi prime ideals in semi groups, Advances in fuzzy Mathematics, 1 (1) (2006) 15-21.

[5]Li Hongxing, HX group, BUSEFAL,33(4), October 1987, 31-37.

[6]Luo Chengzhong , Mi Honghai , Li Hongxing , Fuzzy HX group , BUSEFAL,41(14), October 1989, 97-106.

[7]Mashour. A. S., Ghanim. M.H. and Sidky. F.I., Normal fuzzy subgroups, Univ.u Novom Sadu Zb.Rad. Prirod.-Mat.Fak.Ser.Mat.20,2(1990),53-59.

[8]Muthuraj. R, Manikandan. K. H., Muthuraman. M. S., Sitharselvam. P. M., Anti Q-fuzzy HX group and its lower level sub HX groups, International Journal of Computer Applications, (0975 – 8887), Vol.6, No.4, 16-20, September 2010.

[9]Muthuraj. R, Muthuraman. M. S., Sitharselvam. P. M., Interval valued Anti fuzzy subgroups Induced by T-triangular norms, International Journal of Computational and Applied Math., (18194966),volume5,no.4,(2010),479-485.

[10]Osman kazanci, Sultan yamark and Serife yilmaz "On intuitionistic Q- fuzzy R-subgroups of near rings" International mathematical forum, 2, 2007 no. 59, 2899-2910.

[11]Palaniappan.N,Muthuraj. R, Anti fuzzy group and Lower level subgroups, Antarctica J.Math. 1 (1) (2004), 71-76.

[12]Rosenfeld. A., fuzzy groups, J. math. Anal.Appl. 35 (1971), 512-517.

[13]Solairaju. A., and Nagarajan. R., "Q- fuzzy left R-subgroups of near rings w.r.t T- norms", Antarctica journal of mathematics.5, (1-2), 2008.