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Introduction   

The solid transportation problem (STP) was first presented 

by Haley [7] in 1962, in which three kinds of constraints are 

taken into consideration that is, source constraint, destination 

constraints and conveyance constraint. The STP degenerates into 

the classical transportation problem as the number of 

conveyance is only one. In a solid transportation problem more 

than one objective is normally considered. The solid 

transportation problem (STP) may be considered as a special 

case of LPP. In many industrial problems, a homogeneous 

product is delivered from an origin to a destination by means of 

different modes of transport called conveyances, such as trucks, 

cargo flights, goods trains, ships etc. The STP was proposed by 

Schell [14]. Bit et al. [3] used a fuzzy programming approach to 

solve a MOSTP, Ida et al. [8] presented a neural network 

method to solve a MOSTP. Furthermore there exists uncertainty 

in practical STP's. In fact, uncertainty exists everywhere in the 

practical world. 

  Solid transportation problem is a linear programming 

problem stemmed from a network structure consisting of a finite 

number of needs and arcs attached to them. For example, the 

unit shipping cost may vary in a time frame. The supplies, 

demands and conveyances may be uncertain due to some 

uncontrollable factors. Since the solid transportation problem a 

linear program, one straightforward idea is to apply the existing 

fuzzy linear programming techniques [10, 12, 13] to the fuzzy 

solid transportation problem. In this paper, we restrict attention 

on fuzzy total transportation cost measure and develop a solution 

procedure that is able to calculate the lower and upper bounds of 

the objective value of fuzzy solid transportation problem, where 

at least one of the parameters are fuzzy numbers. Based on 

extension principle [18, 19, 20], the fuzzy solid transportation 

problem is transformed into a pair of two-level mathematical 

programs to calculate the bounds of the objective value at 

possibility level . Jimenenz and Verdegay [9] solved both 

interval and fuzzy solid transportation problems via an extension 

of auxiliary linear program proposed by Chanas et al. [5]. 

 The method of Julien [10] and Parra et al. [12] is able to 

find the possibility distribution of the objective value provided 

all the inequality constraints are of   type or   type. In robust 

optimization, one divides approaches into two groups, 

depending on the decisional context. The first context can be 

identified as the single-stage context, where the decision-maker 

has to select a solution before knowing the real value of each 

uncertain parameter. Generally the single-stage approaches 

provide the worst case solutions (Soyster [15]) that are very 

conservative and far from optimality in real-world applications. 

In this research, we propose a new approach for robust linear 

optimization that retains the advantages of the linear framework 

of Soyster (1973). More importantly, our approach offers full 

control on the degree of conservation for every constraint. In this 

paper a new method is proposed for solving fuzzy solid 

transportation problems by assuming that a decision maker is 

uncertain about the precise values of the transportation cost, 

availability, demand and conveyances of the product. To 

illustrate the proposed method a numerical example is solved 

and the obtained results are compared with the results of existing 

methods. So the proposed method is very easy to understand and 

to apply on real life transportation problem for the decision 

makers. 

This paper is organized as follows. In section 2, solid fuzzy 

transportation and Robust solid transportation problems are 

presented. In section 3, fuzzy total transportation cost is 

formulated based on the extension principle is presented. In 

section 4, Robust location transportation problem and its 

solution is presented. In section 5, we use an example to 

illustrate the difference between inequality - constraint and 

equality - constraint problems. Finally, some conclusion is 

drawn from the discussions. 
 

Solid Fuzzy Transportation Problem 
 

Consider a transportation problem with m supply nodes and 

n demand nodes, in that 0is  units are supplied by supply 

node i and 0j units are required by demand node j. Let
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ke denote the units of this product that can be carries by k 

different modes of transportation called conveyance, such as the 

land transportation by car or train, flight and ocean shipping. 

Associated with each link (i, j, k) from supply node i, demand 

node j and k, there is a unit shipping cost ijkc  for transportation. 

The problem is to determine a feasible way of shipping the 

available amount to satisfy the demand that minimizes the total 

transportation cost. 

          Let ijkx  denote the number of units to be transported from 

supply i, demand j and conveyance capacity ke .  The 

mathematical description of the conventional transportation 

problem is: 
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Intuitively, if any of the parameters iijk sc , , or j , or ke  is 

fuzzy, the total transportation cost Z becomes fuzzy as well. The 

conventional transportation problem defined in (2.1) then turns 

into the fuzzy transportation problem. 

Suppose the unit shipping cost ijkc , supply is , and demand 

j , and conveyance capacity ke  are approximately known. 

They can be represented by the convex fuzzy numbers, 
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) which denote the 

universe sets of the unit shipping cost, the quantity supplied by 

i
th

 supplier and the quantity required by j
th

 customer through 

k
th

 conveyance respectively. The fuzzy solid transportation 

problem is of the following form: 
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Without loss of generality, the entire unit shipping costs, 

supply quantities and demand quantities, and conveyance 

capacities are assumed to be convex fuzzy numbers. In this 

model, as crisp values can be represented by degenerated 

membership functions which only have one value in their 

domains. 

Robust Solid Transportation Problem 

We consider the following transportation problem: a 

commodity has to be transported from each of m potential 

sources, to n-destinations through conveyance l. The sources 

capacities are iC , i = 1,2,…,m and the demand at the 

destinations are j ,  j = 1,2,…,n . Let kE denote the units of 

the product that can be carries by k different modes of 

transportation called conveyance. We assume that the total sum 

of the capacities at the sources is greater than or equal to the sum 

of the demands at the destinations through conveyance k. The 

fixed and variable costs of supplying from source i = 1, 2,…,m 

are j  and ic  respectively. The cost of the transporting one 

unit of the commodity from source i to destination j by means of 

the conveyance k is ijkc . The goal is to determine which sources 

to open ( ir ), the supply level is  and the amounts ijkx  to be 

transported such that the total cost is minimized. The 

mathematical formulation of the nominal transportation problem 

is the following linear program (T): 
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Furthermore, it should be noted that the decision maker has 

to decide in two steps: first, the warehouses have to be located 

and filled and after, once the demands are known, the routing of 

commodities is decided. According to this context, the 

transportation part of the problem has a significant importance 

when deciding of the location part. 
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In practice, the customers’ demands are often estimated, at 

the stage of construction of warehouses. To be realistic, it is 

common to assume some uncertainty on these demands. We 

define the uncertainty set as being interval numbers for each one 

of them. Formally, the j
th

 customer demand j  belongs to 

]ˆ~
,ˆ~

[ jjjj   where 0
~
j  represents the nominal 

value of j and 0ˆ j  its maximum deviation. Clearly, each 

demand j  can take on any value from the corresponding 

interval regardless of the values taken by other coefficients. We 

denote )( T the location transportation problem for a given 

 ]ˆ
~

,ˆ
~

[   with a nonempty feasible set. Finally, we 

denote )( Topt the optimal value (bounded value) of (
T ) for 

a given  . 

  Because of the context of our problem, we apply a 2-stage 

robust approach to the uncertain problem )( T . In fact, we 

recall that the decision maker has to size the capacities before 

knowing the demands, and once these demands are revealed, he 

has to satisfy them. Thus, according to this context, we define 

the ir  and s i  variables as first stage decisions, while the 

ijkx variables represent the recourse variables or the second 

stage decisions. Total costs of all the decisions should be 

minimized. Furthermore, the decision maker wants to take 

decisions based on a realistic scenario and avoid the worst case 

demands. The model chosen to represent the uncertainty set is 

the one suggested by [1, 6, 17]. This model is a natural 

adaptation of the original Bertsimas and Sim approach (see [2, 

4]), in which a parameter  , called the budget of uncertainty, is 

defined. The value of  represents the maximum range of the 

uncertain demands that can simultaneously deviate from their 

nominal values. As the uncertainty is on the right hand sides 

(demands),  belongs to [0, n]. For  = 0, every right hand side 

is equal to its nominal value, while  = n leads to consider the 

problem with the greatest demands. 

The aim of setting the parameter  in the robust 

formulation is to restrict the demands that are greater than the 

nominal ones. Hence, according to its predictions, the decision 

maker is free to choose any value of  in the interval [0, n] and 

solve the 2-stage robust problem. Then he can decide to open the 

sources and fill the warehouses, while the actual demands are 

not known yet. Nevertheless, when the demands are revealed, 

the decision maker must satisfy them, even if they are larger 

than those expected. Thus, we assume the total recourse 

hypothesis: given a solution is  and r i  a solution for the 

transportation problem exists whatever are the demands. This 

problem may concern, for example, the installation of power 

plants, where the worst demands must be handled. 
 

Solid Fuzzy Total Transportation Problem: 
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These intervals indicate where the unit shipping cost, supply, 

demand, and conveyance lie at possibility level .  Suppose we 

are interested in deriving the membership function of the total 

transportation cost Z
~ . The major difficulty lies on how to deal 

with the varying ranges of the unit shipping costs, the supply 

quantities, demand quantities and conveyance capacity. One idea 

is to apply Zadeh extension principle [18, 19, 20]. 

Based on the extension principle, the membership function z~  

can be defined as: 
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where Z(c, s,  ,e) is defined in Model (2.1). If the  -cuts of  

Z
~

 at all   values degenerate to the same point, and then the 

total transportation cost is a crisp number. Otherwise, it is a 

fuzzy number. In equation (3.1), several membership functions 

are involved. To derive z~  in closed form is hardly possible. 
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Two Level Mathematical Programs 
 

min

,,,)()(

)()(

)()(

)()(

kjiEeE

SsS

CcC

L

U
kk

L
k

U
jj

L
j

U
ii

L
i

U
ijkijk

L
ijk

Z





















  
































 

 

 

    

 

 

 

    

0

,...,2,1,

,...,2,1,

,...,2,1,

min

1 1

1 1

1 1

1 1 1 1 1

ijk

m

i

n

j

kijk

m

i

l

k

jijk

n

j

l

k

iijk

m

i

m

i

m

i

n

j

l

k

ijkijkiiii

x

lkforex

njforx

miforsx

tosubject

xCrsc





   (3.2) 

 



S. Narayanamoorthy and P. Anukokila
*
/ Elixir Appl. Math. 44 (2012) 7396-7404 

 
7399 

  

max

,,,)()(

)()(

)()(

)()(

kjiEeE

SsS

CcC

U

U
kk

L
k

U
jj

L
j

U
ii

L
i

U
ijkijk

L
ijk

Z























.

0

,...,2,1,

...,,2,1,

,...,2,1,

min

1 1

1 1

1 1

1 1 1 1 1
































 

 

 

    

 

 

 

    

ijk

m

i

n

j

kijk

m

i

l

k

jijk

n

j

l

k

iijk

m

i

m

i

m

i

n

j

l

k

ijkijkiiii

x

lkforex

njforx

miforsx

tosubject

xCrsc





   (3.3)

  

 At least one jiijk sc ,,  or ke must hit the boundary of 

their  -cuts to satisfy .)(~  zz   A necessary and sufficient 

condition for Model (3.2) and (3.3) to have feasible solutions is 





n

j

j

m

i

is
11

  and .
11





n

j

j

l

k

ke   In the first level of 

Model (3.2) and (3.3), s i , j and ke  are allowed to vary in the 

range of  

   U

j

L

j

U

i

L

i SS  )(,)(,)(,)(  and  U

k

L

k EE  )(,)( respect

ively. However, to ensure the transportation problem of the 

second level to be feasible, it is necessary that the constraint 





n

j

j

m

i

is
11

  and ,
11





n

j

j

l

k

ke   be imposed in the first 

level. Hence, Model (3.2) and (3.3) becomes: 

min

,,

,)()(

)()(

)()(

)()(

1

1 1

kji

e

s

EeE

SsS

CcC

L

n

j

j

l

k

k

m

i

n

j

ji

U
kk

L
k

U
jj

L
j

U
ii

L
i

U
ijkijk

L
ijk

Z

















 





 

















     





































  

 

 

 

    

0

,...,2,1,

,...,2,1,

,...,2,1,

min

1 1

1 1

1 1

1 1 1 1 1

ijk

m

i

n

j

kijk

m

i

l

k

jijk

n

j

l

k

iijk

m

i

m

i

m

i

n

j

l

k

ijkijkiiii

x

lkforex

njforx

miforsx

tosubject

xCrsc





   (3.4)               

max

,,

)()(

)()(

)()(

)()(

11

11

kji

e

s

EeE

SsS

CcC

U

n

j

j

l

k

k

n

j

j

m

i

i

U
kk

L
k

U
jj

L
j

U
ii

L
i

U
ijkijk

L
ijk

Z














































































  

 

 

 

    

.,,,0

,...,2,1,

,...,2,1,

,...,2,1,

min

1 1

1 1

1 1

1 1 1 1 1

kjix

lkforex

njforx

miforsx

tosubject

xCrsc

ijk

m

i

n

j

kijk

m

i

l

k

jijk

n

j

l

k

iijk

m

i

m

i

m

i

n

j

l

k

ijkijkiiii





      (3.5)

 

Model (3.4) and (3.5) will be infeasible for any   level if 
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Since Model (3.6) is to find the minimum of all the 

minimum objective values, one can insert the constraints of level 

1 into level 2 and simplify the two-level mathematical program 

to the conventional one-level program as follows: 
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This model is a linear program which can be solved easily. 

In this model, since all ijkc
 
have been set to the lower bounds of 

their  -cuts, that is,  )( ijkC C
ijk

this assures 

 )(~ Zz  as required by (3.1). To solve Model (3.5), the 

dual of the level 2 problem is formulated to become a 

maximization problem to be consistent with the maximization 

operation of level 1. It is well-known from the duality theorem 

of linear programming that the primal model and the dual model 

have the same objective value. Thus, Model (3.5) becomes: 
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Now, since both level 1 and level 2 perform the same 

maximization operation, their constraints can be combined to 

form the following one-level mathematical program: 
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This model is a linearly constrained nonlinear program. 

There are several effective and efficient methods for solving this 

problem. Similar to Model (3.7) since all ijkc  have been set to 

the upper bounds of their  cuts, that is,  )(~ ijkc c
ijk

as 

required by (3.1). Problems (3.4) and (3.5) are assured to be 

feasible if the lower bound of the total fuzzy demand is smaller, 

than the upper bound of the total fuzzy supply, i.e., 
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just like the conventional transportation problem can be assumed 

to make the problem feasible. The amount to be shipped from 

the fictitious supply point is the shortage of that demand point. 

For two possibility levels 1 and 2 such that 

,10 12   the feasible regions defined by 1  in 

Models (3.7) and (3.10) are smaller than those defined by 2 .  
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right shape function is non increasing. This property, based on 

the definition of ‘‘convex fuzzy set’’ [20], assures the convexity 
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Z  If both 
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function R(z) =
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Robust location Transportation problem  
 

The robust location transportation problem, denoted by 

)(robT is to choose the sources to open (with the ir variables), 

and the amounts to store (with the is  variables) such that the 

worst demand in the uncertainty set is satisfied with minimum 

cost. The robust problem is the following: 

)(robT
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where B = j

n
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and )),(( sRopt represents the 

optimal value of the recourse problem: 

            (4.2) 
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with the uncertainty set )(u is defined by 
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where B is given by (4.1) is due to 

the total recourse considered in our formulation, and the 
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By strong duality theorem, one can replace the 

minimization problem by its dual in the recourse problem as: 

(since the problem is feasible for all demands) 
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where kji wvu ,,  are dual variables. The recourse problem 

),( sQ is of quadratic form. Now  robust location 

transportation problem can be written as 

)(' robT
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which is the minimization of a convex function under linear 

constraints. 
 

Numerical Examples  
 

Example 1. To illustrate the proposed approach, consider a 

transportation problem with one fuzzy shipping cost, two fuzzy 

supplies, three fuzzy demands and two fuzzy conveyance 

capacities. Supply 1 and Demand 3 are trapezoidal fuzzy 

numbers and the remainders are triangular fuzzy numbers. The 

problem has the following form: 

.0,,,,,,,,,,,

)100,90,70(

)60,50,40(

)60,30,20,10(

)40,30,20(

)70,50,40(

)100,90,70(

)80,70,60,40(

5040505010

)90,80,70(305060604020min
~

232231222221212211132131122121112111

232222212132122112

231221211131121111

232231132131

222221122121

212211112111

232231222221212211

132131122121112111

232231222221212

211132131122121112111





















xxxxxxxxxxxx

xxxxxx

xxxxxx

xxxx

xxxx

xxxx

xxxxxx

xxxxxx

tosubject

xxxxx

xxxxxxxZ

 

The total supply is 21

~~
SS  = (110,150,160,180) and the total 

demand is 321

~~~
 = (70,100,110,170), and the total 

conveyance capacity 21

~~
EEE  = (110,150,170). 

Since . ES  According to Models (3.7) and (3.10), 

the lower and upper bounds of Z
~

 at possibility level   can be 

solved as: 
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 Fig. 1 Inequality Constraints 

  

 A mathematical programming solver Lingo [11] is used to 

solve the above mathematical programs. Table. 1 lists the  -

cuts of the total transportation cost at eleven distinct  values: 

0.1, 0.2,…, 1.0. The  -cut of Z
~

 represents the possibility that 

the transportation cost will appear in the associated range. 

Specifically, the   = 1.0 cut shows the total transportation cost 

that is most likely to be and the  = 0 cut shows the range that 

the total transportation cost could appear. In this example, while 

the total transportation cost is fuzzy, it’s most likely value falls 

between 2600 and 2900, and its value is impossible to fall 

outside the range of 1700 and 4800. The curve labeled 

‘‘Inequality-constraints’’ in Fig. 1 is the membership function 

z~  of this example. 

 For the  = 0 cut of Z
~

, the lower bound of Z* = 1700 

occurs at 
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At the other extreme end of  = 1, the lower bound of Z* 
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132  xxx with 
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and the other decision variables are 0. The upper bound of       

Z*=2900 occurs 

at 90,60,30,30,50,90,50 2132121  eess 
 

and the other decision variables are 0. Notably, the values of the 

decision variables derived in this example are also fuzzy. 
 

Equality Constraints 
 

  In the preceding section, the transportation model being 

considered has inequality constraints. The total supply must be 

greater than or equal to the total demand to assure feasibility. In 

this section, we discuss the transportation model with equality 

constraints: 
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       When the shipping costs, supplies, and demands are not 

known exactly, we have the following fuzzy solid transportation 

problem: 
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 Similar to the discussion of the inequality-constraint case, 

the lower and upper bounds of Z
~

at possibility level  can be 

solved from the following pair of two-level mathematical 

programs: 
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The corresponding pair of one-level mathematical program is 

LZ
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Example 2. Suppose the inequality constraints are replace by 

equality constraints: 
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Based on Model (5.5) and (5.6) the lower and upper bounds of 

the  -cut of Z
~

can be derived by solving the following pair of 

mathematical programs: 
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Fig.2 Equality Constraints 

Table 2 lists the bounds of the total transportation cost at eleven 

α-cuts. The curve labeled Equality constraints in Fig. 2 is the 

membership function µ z~  of this example. For α greater than 

0.6, the problem is infeasible. In other words, the maximum 

degree to which the constraints could be satisfied is equal to 0.6. 

It is also worthwhile to note that the membership function of the 

objective value of this example is contained in that of Example 

1. The reason is simply because equality constraints are more 

restrictive than inequality constraints. 

 At α = 0, the lower bound of the objective value is 2500, 

occurring at x111 = 20, x132 =20, x212 = 50, x221 = 20 with δ1 = 70, 

δ2 = 20, δ3 = 20 and s1 = 80, s2 = 90, E1 =40, E2 = 70. The upper 

bound is 4800, which occurs at δ1 = 70, δ2 = 40, δ3 = 60 and E1 = 

70, E2 = 100. At α = 0.6, the α-cut is a single point 3720. 

Conclusion: 

          Transportation models have wide application in logistics 

and supply chain for reducing the cost. The solid transportation 

problem considers not only the supply and demand but also the 

conveyance capacity to satisfy the transportation requirements in 

a cost effective manner. This paper develops a procedure to 

derive the robust fuzzy transportation problem under certain 

demands to find the membership function of the fuzzy total 

transportation costs. The idea is based on the extension 

principle. In robust optimizations a part of the decisions must be 

taken before knowing the real values of the uncertain parameters 

and another part, called recourse decision is taken when the 

information is known. In this paper, we are interested in a robust 

version of the location fuzzy transportation problem with an 

uncertain demand using a 2-stage formulation. Two different 

types of the robust fuzzy transportation problem are discussed: 

one with inequality constraints and the other with equality 

constraint. 
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Table. 1 The   -cuts of the transportation cost at 11  values for Example 1 
 

  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

 

LZ  
1700 1790 1880 1970 2060 2150 2240 2330 2420 2510 2600 

 

UZ  
4800 4640 4480 4320 4160 3950 3720 3490 3260 3060 2900 

 

Table. 2 The   -cuts of the transportation cost at 11,  values for Example 2. 
  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

 

LZ  
2500 2690 2880 3070 3260 3450 3270 inf inf inf inf 

 

UZ  
4800 4640 4480 4320 4160 3950 3720 inf inf inf inf 

 


