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Introduction  

It is indeed true that a good number of researchers have 

contributed on a variety of aspects in the field of robust control, 

especially about the dynamics of a robotic motion and their 

governing equations, for the past three decades.  But, a number 

of researchers are still contributing various principles and new 

techniques for the best use of robots in reality, especially in the 

field of industry, as this field of study is inexhaustible. 

Said Oucheriah (1999) discussed „Robust Tracking and 

Model Following the Uncertain Dynamic Delay Systems by 

Memoryless Linear Controllers‟.  David Lim and Homayoun 

Seraji (1997) discussed „Configuration Control of a Mobile 

Dexterous Robot‟. Polycarpou and Ioannoy (1996) discussed 

about a „Robust Adaptive Non-linear Control Design‟.   

Murugesan, Paul and Evans (1999) have analysed second 

order systems via Runge-kutta (RK) method and also studied 

second order multivariable linear system using Single Term 

Walsh Series (STWS) technique and RK method.  The RK 

method have found wide applications in control engineering, 

communication and signal processing.  Recently, Murugesan, 

Paul and Evans (2000) analysed a non-linear singular system 

from fluid dynamics using extended RK methods. 

In this paper, the authors have observed that the robotic 

motion has been governed by second order linear and non-linear 

differential equations.  Hence a meticulous attempt has been 

made to study the parameters concerning the control of a robot 

arm model by applying the flexible and suitable numerical 

method which is capable of solving a system of second order 

linear and non-linear differential equations representing the arm 

model of a robot . 

Robot arm model               

 The dynamics of a robot arm is represented as   

C(Q)    Q Q) B(Q,    Q     A(Q)   T 


  (2.1) 

where    A(Q) = coupled inertia matrix 



Q) B(Q,  = matrix of coriolis and centrifugal 

forces 

C(Q)  = Gravity matrix 

T  = Input torques applied at various joints 

For a two degree of freedom robot under the assumption of 

lumped equivalent masses and mass less links, the dynamics are 

represented by 
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where 

D11  =(M1 + M2) d1
2
   +  M2d2

2
  +  2M2d1d2  cos(q2) 

D12  = M2d2
2
   + M2d1d2 cos(q2)            D21=D12 

D 22 =M2d2
2         

D112 = 2M2d1d2sin(q2) 

D122 =-M2d1d2sin(q2)       D211     =  D122 

D1 =[(M1 + M2)d1sin(q1)  +  M2d2sin(q1 + q2)]g 

D2 =[M2d2sin(q1 + q2)]g 

For the set point regulation, the state vector is defined as  

T
22d211d1

T
4321 )q ,q-q , q ,q-(q    ) x, x, x,(x  X



       (2.3) 

where q1 and q2 are the angles at the joint 1 and joint 2 

respectively and q1d, q2d are constants. 

In state space representation, equation (2.2) can be written as 
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the arm model of a Robot have been compared with the corresponding discrete solutions 

(approximate solutions) at different time and also the absolute error between the exact and 

discrete solutions has been determined.   
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 The above system of equations is non-linear in nature and it 

can be seen that the synthesis of a control law is of the form  

4

4

i3

3

i2

2

i1ii  x   x   x    x     T         (2.5) 

It is observed that the synthesis of the control law would be 

very difficult due to the non-linear and interactive nature of the 

canonical equations (2.4). Hence it should be reduced to linear 

form. 

Reduction of Robot dynamics to a second order linear system 

Although the physical and mathematical structure of the 

complete dynamic robot model are analytically coupled and 

non-linear, it is observed that the transient responses of robot 

dynamics appear to resemble as transient responses of linear 

systems.  Consequently each joint  of the robot can be 

characterized as a single- input, single-output system (SISO).  

The input is the actuator torque (or) force and the output is the 

joint position.  Hence the Mathematical model of a robot is 

taken as a „Black Box‟.  The input into this „Black Box‟ is the  

transient response of a linear model to a step input.  The output 

are the motive forces or torques required by the robot to 

reproduce responses similar to the linear model.  Samples of the 

input and output of the Black Box have been fed into an 

identification program which will match a low order decoupled 

linear time invariant model of the form  
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
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       (3.1) 

The model order m and n are selected to give the lowest 

possible order that will characterize the structure of the 

mathematical model of the robot.  This can be validated by 

comparing the response of the model based on the identified 

parameters A0, A1, …, Am and B0, B1,…,Bm with the desired 

response from the linear time-invariant model, the input into the 

„Black Box‟.  

It is determined that the non-linear model (2.4) of the two 

link robot arm model can be reduced to the following system of 

linear equations as (refer Warwick-1990)  
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The above system has been reduced to a system of linear 

second order equations as  

 1010 111 TB  xAxA      x 


 

 2

2

03

2

0 3
2

13 TB  xAx A      x 


where  x  x  and  x  x 3412



     (3.3) 
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Equation (3.4) is of the form  CU,    BX    X  A  XK 


 (3.5) 
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Example  

The values of the robot parameters used were M1=2, M2=5, 

d1=d2=1.  The input into the “Black Box” is the response of 

s

22 yn  yn   y2kn   y 


, where k=1 is critical damping.  

 For n=5 and k=1, the initial conditions and the set points have 

been taken as  

1  q  and  1  q  , 0  (0)q  0,  (0)q  , 0  (0)q  ,0)0(q 2d1d2121 


    (3.6) 

The linear model parameters of joint 1 have been found as 

A0 = 0.1730, A1 =  – 0.2140, Bo=0.0265 and that of joint 2 have 

been determined as A0 = 0.0438,  A1 = 0.3610, B0=0.0967.Since 

the numerical solutions for the parameters governing the robot 

arm model have to be determined and to avoid the complexity, 

A0, A1 and B0 alone have been assigned non-zero values to 

maintain the linearity  

Equation (3.4) becomes 

1 1 1

3
3 3

1 0 x 0.2140 0 x 0.1730 0
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 which is of the form CU  XB X A XK 


.  

In order to study the parameters that govern the dynamics of 

the Robot using numerical methods, the authors have chosen T1 

= T2 = 1 unit.  However, one can vary the values of T1 and T2 to 

visualize  the effect of the parameters that control the arm model 

of the robot and the simulation can be done.  

Hence the above equation becomes

 

0.00935089     x0.00191844   x  0.130321-     x

0.0265      x0.1730    x  0.2140      x

333

111






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 (3.7) 

where   


 3412 x    x  and  x     x  

Since (x1, x2, x3, x4) =  





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2d221d11 q ,q-q ,q ,q - q  and using                      

(3.6),the initial conditions are x1(0) = -1,  x3(0) = -1, 

0  )0(x 0, )0(x 31 


 

The exact solution of the system (3.7) is 

x1   =    e
0.107t

 [-1.15317919 cos(0.401934074 t) + 0.306991074 

sin(0.401934074 t)]   

+  0.15317919 

x2   =    e
0.107t

 [0.463502009 sin (0.401934074 t) + 0.123390173 

cos (0.401934074 t)]   

+  0.107 e
0.107t

[-1.15317919 cos (0.401934074 t) +  0.306991074 

sin(0.401934074 t)]                                                                (3.8) 

x3   =   1.029908976  e
-0.11340416 t

 – 6.904124484 e
-0.016916839 t

 + 

4.874215508 

x4    =    - 0.116795962  e
-0.11340416 t

  +  0.116795962 e
-0.016916839 t

 

Since q1, q2 (the angles at the joints 1 and 2), 21 q andq


  are 

involving with x1, x2,  x3 and x4  

i.e.,  (x1, x2, x3, x4) =  






 

22d211d1 q ,q-q ,q ,q - q , the exact 

solutions of q1, q2 , 21 q andq


  are given by 
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q1   =  x1  +  q1d  ;   21 x    q 


;      q3   =  x3  +  q2d ;     

42 x    q 


                                               (3.9) 

where q1d =  q2d  = 1 and x1, x2, x3, x4 are given in (3.8). 

Extended Runge-Kutta method based on Centroidal Mean 

(RKCeM)  

Recently, Murugesan, Paul and Evans [2000] have 

developed and extended the RK method based on the Harmonic 

mean to solve a system of second order differential equation 

which was earlier introduced by Sanugi and Evans [1994] based 

on the concept of harmonic mean averaging of functional values 

to solve a first order differential equation.  In this paper RKCeM 

is being applied to study the dynamics of the robot problem. As 

a part of our contribution, we have extended the method 

introduced by Sanugi and Evans (1994) to suit the needs of this 

study. 

Consider a system of second order differential equations 

 )x,x,x,x,t(f    (t)x 212111



                
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                 (4.1) 

with the initial conditions   x1(0) = x10;   x2(0) = x20 

202101 x  (0)x   ;x  (0)x 

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Therefore equation (4.1) becomes 
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    (4.2) 

with  x1(0)   =   x10;   x2(0)  = x20 

 u1(0)   =   u10;   u2(0) = u20 

Let „h‟ denote the interval between the equidistant values of 

t.  If the initial values are t(0), x1(0), x2(0), u1(0) and u2(0) then 

the first increments in x1, x2, u1 and u2 are determined as follows 

x1(1)  =  x1(0)  +  x1 

x2(1)  =  x2(0)  +  x2 

u1(1)  =  u1(0)  +  u1 

u2(1)  =  u2(0)  +  u2      (4.3a) 

In [1 – 3, 10-11], Evans and Yaakub have developed a new 

RK method of order 4 based on Centroidal mean to solve first 

order equation and it is to be noted that the Centroidal Mean of 

two points x1 and x2 is defined as 
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Consider the first order equation (2.1) of the form 
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Let h denote the interval between equidistant values of x.  

The fourth order RKAM formula (2.21) can be written as  
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and substituting the arithmetic mean (AM) of ki,  1   i    6 with 

their Centroidal Means we obtain a new formula, similar to the 

above equation, as 
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to obtain the fourth order formula in the form, 
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while the Taylor series expansion of y(xn+1) may be given as, 
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Hence the increments for the succeeding interval are 

computed exactly in the same way except that t(0), x1(0), x2(0), 

u1(0) and u2(0) are replaced by t(1), x1(1), x2(1), u1(1) and u2(1)  

in equation (4.5) and proceeded. Please refer Sangui and Evans 

(1994) and Murgesan et al., (1999) for the basic concepts 

involved in  this method. The RKHM method has an accuracy of 

order 4.  The local truncation error (LTE) of the RK method 

based on Centroidal Mean is  

LOWER

UPPER
   -  TAYLOR          ERROR   or, (TAYLOR  

x  LOWER)  -  UPPER   =   (LOWER  x  ERROR). 

The above   discussed  numerical   method  RKCeM   with   

the step-size  h = 0.01  has  been  applied  to  determine  the  

discrete solutions of the example  (refer  eq. (3.7)),which 

represent the robot arm model involving  the parameters 

2211 q  and q ,q ,q


.The exact and the discrete solutions are 

given in the Table-1 and the error between them is given in the 

Table-2.  The graphs corresponding to the exact and discrete 

solutions and the absolute error between them have been given 

in the Figures 1 and 2 respectively.      
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Conclusion 

In this paper, the parameters governing the arm model of a 

robot and controller design have been studied by way of finding 

the discrete solutions at different time for the system of second 

order differential equations, which actually represents the 

dynamics of the arm model of the robot of two degree freedom. 

 It has been shown that the complex and non-linear 

dynamics of a robot can be reduced to a set of linear models. In 

general, the obtained table of results and graphs related to the 

example considered, infer that the solutions obtained by the 

method RKCeM agree well with the exact solutions with an 

error ranging from 10
-6

 to 10
-9

.  It helps to estimate the variation 

in the angles at the joints at different time and enables to 

identify the movement of the arm of the robot.   
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Table – 2 Error in system 3.7 
Time q1 q2 

0.00 0.0000E+00 0.0000E+00 

0.50 5.7240E-06 1.4900E-07 

1.00 6.1240E-06 8.5000E-08 

1.50 5.9010E-06 9.7000E-08 

2.00 5.4840E-06 1.1400E-07 

2.50 4.8280E-06 1.9000E-08 

3.00 3.7550E-06 7.8000E-08 

3.50 2.5030E-06 1.8600E-07 

4.00 1.3110E-06 2.0900E-07 

4.50 2.3800E-07 8.9000E-08 

5.00 9.5400E-07 7.0000E-09 

 

 

Table – 1 Solution for system 3.7 
 Exact solution Discrete solution (RKCeM) 

Time ex-q1 ex-q2 q1 q2 

0.00 0 0 0 0 

0.50 0.025757551 0.001378536 0.025751829 0.001378357 

1.00 0.105704129 0.005396783 0.105697989 0.005396724 

1.50 0.24232316 0.011886537 0.242317259 0.011886418 

2.00 0.43580091 0.020688713 0.435795426 0.020688593 

2.50 0.683758467 0.031653404 0.68375361 0.031653404 

3.00 0.981070224 0.04463917 0.981066465 0.04463923 

3.50 1.319786936 0.059512377 1.319784403 0.059512556 

4.00 1.689178348 0.076147079 1.689177036 0.076147318 

4.50 2.075907111 0.094424546 2.075906754 0.094424605 

5.00 2.464341044 0.114232481 2.464341879 0.114232481 

 

 

 


