Available online at www.elixirpublishers.com (Elixir International Journal)

Discrete Mathematics

Elixir Dis. Math. 44 (2012) 7213-7217

Total edge domination in graphs

S.Velammal¹ and S.Arumugam²

¹Department of Mathematics, Velammal College of Engineering and Technology, Viraganoormadurai – 625 009, India. ²Core Croup Research Faculty (CGRF)National centre for advanced Research in discrete mathematics(n-cardmath)Kalasalingam University, Anand Nagar, Krishnankoil-626 190.

ARTICLE INFO

Article history: Received: 14 December 2011: Received in revised form: 25 February 2012: Accepted: 5 March 2012;

ABSTRACT

In this paper we discuss the concept of total edge domination in graphs. We prove that for any connected (p,q) – graph G with $\Delta' < q - 1$, $\gamma'_t \leq q - \Delta'$ where Δ' denotes the maximum degree of an edge in G and characterize trees and unicyclic graphs which attain this bound. We also prove that $\gamma_t'(S(G)) \leq 2(p - \beta_1)$ for any connected graph G. We also determine the value of total edge domatic number d_t for some families of graphs.

© 2012 Elixir All rights reserved.

4)

Edge domination number, Total edge domination number.

Introduction

Keywords

By a graph G = (V,E) we mean a finite undirected graph without loops or multiple edges Terms not defined have are used in the sense of Harary[1].

A set $S \subset E$ is said to be an edge dominating set if every edge in E - S is adjacent to some edge in S. The edge domination number of G is the cardinality of a smallest edge dominating set of G and is denoted by γ' . The degree of an edge e = uv of G is defined by deg e = deg u + deg v - 2. The minimum (maximum) degree of an edge in G is denoted by $\delta'(\Delta')$. For a real no x, |x| denotes the largest integer $\leq x$ and $\begin{bmatrix} x \end{bmatrix}$ denotes the smallest integer $\geq x$. We need the following theorems.

Theorem 1.1[2] If G is a graph with $p \ge 3$ then $\gamma_t \le \left| \frac{2p}{3} \right|$.

Theorem 1.2[2] (i) If G is a graph without isolated vertices ,then $\gamma_t \leq p - \Delta + 1$

(ii) If G is connected and $\Delta = p - 1$, then γ_t

 $\leq p - \Delta$.

Theorem 1.3[2] For any (p,q) - graph G without isolated vertices, $d_t \leq \min(\delta, p/\gamma_t)$

Theorem 1.3[2] If G is a connected graph, then $\gamma(S(G)) = \gamma_{t}(S(G))$

Main results

Definition 2.1 Let G = (V,E) be a graph without isolated edges. An edge dominating set X of G is called a total *edge dominating* set if the edge induced subgraph $\langle X \rangle$ has no isolated edges. The minimum cardinality of a total edge dominating set is called the total edge domination number of G and is denoted by $\gamma_t(G)$ or γ_t . The upper total edge domination number of G is the maximum cardinality taken over all minimal total edge dominating sets of G and is denoted by Γ_{t}

Example 2.2
(i)
$$\gamma_t(P_n) = \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \text{ or } 2 \pmod{4} \\ \frac{n-1}{2} & \text{if } n \equiv 1 \pmod{4} \\ \frac{n+1}{2} & \text{if } n \equiv 3 \pmod{4} \end{cases}$$

(ii) $\gamma_t(C_n) = \begin{cases} \frac{n}{2} & \text{if } n \equiv 3 \pmod{4} \\ \frac{n+1}{2} & \text{if } n \equiv 0 \pmod{4} \\ \frac{n+1}{2} & \text{if } n \equiv 1 \text{ or } 3 \pmod{4} \\ \frac{n+2}{2} & \text{if } n \equiv 2 \pmod{4} \end{cases}$

(iii) $\gamma'_t(K_{1,n}) = 2$ (iv) $\gamma'_{t}(K_{m,n}) = \min\{m, n\}$ if m,n >1. **Theorem 2.3** $\gamma'_t(K_p) = \left| \frac{2p}{3} \right|$ if $p \ge 3$. Let $V(K_p) = \{v_1, v_2, ..., v_p\}.$ Proof Let $c_i = v_i v_{i+1}, 1 \le i \le p-1$. If $p \equiv 0$ or $1 \pmod{3}$, let $D = \{e_i \mid 1 \le i \le p-1 \text{ and } i \ne 0 \pmod{3}\} [J \{e_{n-2} \}]$

Tele: E-mail addresses: vela67_mepco@yahoo.co.in

© 2012 Elixir All rights reserved

Clearly D is a total edge dominating set of K_p and

$$|D| = \left\lfloor \frac{2p}{3} \right\rfloor$$
. Hence $\gamma'_t(K_p) \le \left\lfloor \frac{2p}{3} \right\rfloor$.

Now let D be any total edge dominating set of K_p . If there exist two vertices, say v_i, v_j of K_p which are not incident with any edge of D, then the edge $v_i v_j$ is not dominated by D. Hence D must cover at least p – 1 vertices of K_p . Further $\langle D \rangle$ has no isolated edges and hence $|D| \ge \left\lceil \frac{2(p-1)}{3} \right\rceil = \left\lfloor \frac{2p}{3} \right\rfloor$.

Thus
$$\gamma_t'(K_p) = \left\lfloor \frac{2p}{3} \right\rfloor$$
.

Theorem 2.4 $\gamma'_t(W_p) = \lfloor p/2 \rfloor$.

Proof Let $V(W_p) = \{v_1, v_2, ..., v_p\}, \text{ deg } v_1 = p-1 \text{ and} E(W_p) =$

$$\{v_{1}v_{i} \mid 2 \leq i \leq p\} \bigcup \{v_{2}v_{3}, v_{3}v_{4}, \dots, v_{p-1}v_{p}, v_{p}v_{2}\}.$$
Then

$$S = \begin{cases} \{v_{1}v_{2}, v_{1}v_{4}, \dots, v_{1}v_{p}\} & \text{if p is even} \\ \{v_{1}v_{2}, v_{1}v_{4}, \dots, v_{1}v_{p-1}\} & \text{if p is odd} \end{cases}$$

is a total edge dominating set of W_p so that $\gamma'_t(W_p) \leq \lfloor p/2 \rfloor$.

Now let S be a minimum total edge dominating set of W_p . Since any two adjacent edges e_1 , e_2 of S dominate at most four edges of $C_{p-1} = (v_2, v_3, \dots, v_p, v_2)$ in W_p (including possibly e_1 and e_2), it follows that $|S| \ge \lfloor p/2 \rfloor$. Hence $\gamma'_t(W_p) = \lfloor p/2 \rfloor$.

Remark 2.5 If G is a graph without isolated edges, then $\gamma'_t(G) = \gamma_t(L(G))$ where L(G) denoted the line graph of G. Hence it follows from Theorems 1.1 and 1.2 that

(i)
$$\gamma_t' \leq \left\lfloor \frac{2q}{3} \right\rfloor$$

(ii)
$$\gamma_t \leq q - \Delta' + 1$$

(iii) If G is connected and $\Delta' < q - 1$ then $\gamma'_t \le q - \Delta'$

For the graphs given in Figure 4.1 $\gamma'_t = 4 = \left| \frac{2q}{3} \right|$.

Theorem 2.6 For any tree T with $\Delta' , <math>\gamma_t \leq q - \Delta'$ if and only if

 $4 \le diam(T) \le 6$ and T is isomorphic to one of the following. (1) $P_5 P_6$ or P_7 .

(2) Any tree with exactly one vertex u of degree ≥ 3 satisfying the following condition. If there exists a pendant vertex x with d(u,x) = 4, then there exists at most one pendant vertex y with d(u,y) = 2.

(3) Any tree obtained from a tree described in (2) by attaching any number of pendant vertices to exactly one vertex v of N(u) such that in the resulting tree v has degree ≥ 3 .

Proof Let T be a tree with $\Delta' < p-2$. Suppose $4 \le diam(T) \le 6$ and T is isomorphic to one of the trees given in the hypothesis. Then $|S| = \Delta'$ where S is the set of all pendant edges of G and E(G) \ S is the unique minimum total edge dominating set of T so that $\gamma_t' \le q - \Delta'$

Conversely suppose that $\gamma_t \leq q - \Delta'$. Then diam(T) \geq 4

and $|S| = \Delta'$. Since E(T)\S is the unique minimum total edge dominating set of T, it follows that diam(T) ≤ 6 and T has at most one vertex of degree ≥ 3 or two adjacent vertices of

degree \geq 3. We consider the following cases. **Case(i)** T has no vertex of degree \geq 3.

In this case, $T=P_5, P_6$ or P_7 .

Case(ii) T has exactly one vertex, say u of degree ≥ 3 .

Suppose there exists a pendant vertex x in T such that d(u,x) = 4. Let P = (u, u₁, u₂, u₃,u₄ = x) be the u - x path of length 4. If there exist two pendant vertices, say y₁,y₂ such that $d(u,y_1) =$ $d(u,y_2) = 2$.then $E(T) \setminus (S \cup \{uu_1\})$ is a total edge dominating set of T so that $\gamma'_t \leq q - \Delta' - 1 < q - \Delta'$ which is a contradiction. Hence there is at most one pendant vertex y with d(u,y) = 2.

Case(iii) T has exactly two adjacent vertices, say u, v of degree ≥ 3 . First we claim that there exist at least deg(u) – 2 pendant vertices adjacent to v otherwise there exist vertices u_1, u_2, v_1, v_2 , such that $d(u, u_1) = d(u, u_2) = d(v, v_1) = d(v, v_2) = 2$ and in this case

 $E(T) \setminus (S \cup \{uv\})$ is a total edge dominating set of T with

cardinality $\mathbf{q} - \Delta' - \mathbf{1}$, which is a contradiction. Hence we assume that there exist deg(u) - 2 pendant vertices adjecent to u in T. Let T₁ be the tree obtained by deleting these deg u - 2 pendant vertices adjacent to u. Clearly T₁ is a tree with exactly one vertex v of degree ≥ 3 and $\gamma'_t = \mathbf{q}(T_1) - \Delta(T_1)$. Hence T₁ is of the form described in (2) and the result follows.

Notation2.7(i) Let G be a graph with vertex set $V = \{v_1, v_2, \dots, v_n\}$. Let k_1, k_2, \dots, k_m be non negative integers. Take k_i copies of P_{i+1} , $i=1,2,\dots,n$ where P_i denotes the path on i vertices. Then the graph obtained from G by identifying one end vertex of each P_i with v1 is denoted by $G^*v_1(k_1P_2,k_2P_3,\dots,k_mP_{m+1})$.

If such paths are attached at more than one vertex of G, the above notation can be extended in an obvious way.

(ii)Let C_n be the cycle $(v_1, v_2, \dots, v_n, v_1)$. The graph obtained by attaching a pendant edge, say wv_1 to C_n , is denoted by E_n . Thus $E_n = C_n * v_1(P_2)$

Example 2.8 Let $G = C_3 = (v_1, v_2, v_3, v_1)$. Then $G * v_1(2P_2, 2P_3, P_4) * v_2(2P_2, P_3) * v_3(3P_2)$ and $E_3 * v_1(2P_2, P_3, P_4) * w(3P_2)$ are given in Figure 2.1

Figure 2.1

Theorem 2.9 Let G be a connected unicyclic graph with cycle $C_n = (v_1, v_2, \dots, v_n, v_1)$. Then $\gamma'_t = q - \Delta'$ if and only if G is isomorphic to one of the following 1. $C_6 * v_1(a_{11}P_2) * v_6(a_{21}P_2)$ where $a_{11}, a_{21} \ge 0$. 2. $C_5 * v_1(b_{11}P_2) * v_5(b_{21}P_2, b_{22}P_3)$ where $b_{11}, b_{21} \ge 0$ and $b_{22} \le 1$. 3. $E_5 * v_1(c_{11}P_2) * w(c_{21}P_2)$ where $c_{11}, c_{21} \ge 0$ 4. $C_4 * v_1(d_{11}P_2) * v_4(d_{21}P_2)$ where $d_{11}, d_{21} \ge 0$ $5.C_4 * v_1(e_{11}P_2, P_3) * v_4(e_{21}P_2, e_{22}P_3)$ where $e_{11}, e_{21} \geq 0$ and $e_{22} \leq 1$

7.
$$E_4 * w(g_{11}P_2, g_{12}P_3) * v_1(g_{21}P_2, g_{22}P_3, g_{23}P_4)$$

where $g_{ij} \ge 0$ and $g_{12} \le 1$.

8.
$$C_3 * v_1(h_{11}P_2, h_{12}P_5) * v_2(h_{21}P_2)$$

where $h_{11}, h_{21} \ge 0$ and $h_{12} \le l$.

9. $C_3 * v_1(i_{11}P_2, i_{12}P_3) * v_2(i_{21}P_2, i_{22}P_3, i_{23}P_4)$ where $i_{11}, i_{21}, i_{22}, i_{23} \ge 0$ and $i_{12} \le 1$. $C_3 * v_1(j_{11}P_2, j_{12}P_3, j_{13}P_4) * v_2(j_{21}P_2, j_{22}P_3)$

 $j_{11}, j_{12}, j_{13}, j_{21}, j_{22} \ge 0$ and if $j_{12} \ge 2$ or $j_{13} \ge 1$ then $j_{22} \le 1$ $C_3 * v_1(k_{11}P_2, k_{12}P_3, k_{13}P_4) * v_2(k_{21}P_2) * v_3(P_3)$ where k_{11}, k_{12}, k_{13} and $k_{21} \ge 0$ 11. $C_3 * v_1(l_{11}P_2, l_{12}P_3) * v_2(l_{21}P_2, P_3) * v_3(P_2)$ where $l_{11}, l_{21} \ge 0$ and $l_{12} \le 1$

12.
$$C_3 * v_1(m_{11}P_2) * v_2(m_{21}P_2, m_{22}P_3, m_{23}P_4) * v_3(P_2)$$

where $m_{ij} \ge 0$ and $m_{22} \ge 2$ or $m_{23} \ge 1$

13.
$$E_3 * w(n_{11}P_2, n_{12}P_3) * v_1(n_{21}P_2, n_{22}P_3, n_{23}P_4)$$

where $n_{ij} \ge 0$ and $n_{12} \le 1$

14. $E_3 * w(q_{11}P_2, q_{12}P_3, q_{13}P_4) * v_1(q_{21}P_2)$ where $q_{ii} \ge 0 \text{ and } q_{13} \ge 1$

Proof Let G be a connected unicyclic graph with cycle $C = C_n =$ $(v_1, v_2, \dots, v_n, v_1)$, Let e = uv be an edge of maximum degree Δ' and let S denote the set of all pendant edges of G. Clearly $|S| \ge \Delta' - 2$

Now suppose
$$\gamma'_t \leq q - \Delta'$$
. Since $E(G) \setminus (S \cup \{e_1\})$
where e_1 is any edge of C is a total edge dominating set of G, it
follows that $|S| = \Delta' - 1$ or Δ' - 2. Hence G has at most
three vertices of degree ≥ 3

If there exist two non adjacent vertices w_1, w_2 with deg $w_1 \ge 3$ and deg $w_2 \ge 3$, then $|S| = \Delta' - 1$ and in this case there exist two adjacent edges e_1 , e_2 of C such that $E(G) \setminus (S \cup \{e_1, e_2\})$ is a total edge dominating set of cardinality $q - \Delta' - 1$, which is a contradiction. Thus any two vertices of degree ≥ 3 are adjacent.

Hence if G has three vertices of degree ≥ 3 , then these three vertices form a triangle and hence $C = C_3$ and in this case at least one vertex of C_3 has degree exactly 3.

We now claim that the edge e = uv of maximum degree lies on C or incident with a vertex of C. If both u and v are not on C, then $|S| = \Delta' - 1$ and there exist two adjacent edges e_1, e_2 of C such that $E(G) \setminus (S \cup \{e_1, e_2\})$ is a total edge dominating set of cardinality $q - \Delta' - 1$, which is a contradiction . Hence at least one of u,v lies on C.

Now if the length of C is at least 7 then there exist edges e_1, e_2, e_3 on C such that $E(G) \setminus (S \cup \{e_1, e_2, e_3\})$ is a total edge dominating set of cardinality $\leq q - \Delta' - 1$ which is a contradiction. Hence the length n of C is at most six.

Now, suppose $4 \le n \le 6$. Then G has at most two vertices of degree ≥ 3 and $|S| = \Delta' - 2$. If G has no vertex of degree \geq 3, then G=C₄,C₅ or C₆ which is isomorphic to the graph given in (1),(2) or (4).

We now assume that G has at least one vertex of degree \geq 3. Without loss of generally we assume that deg $v_1 \geq$ 3 and deg v₂=2. Then D = $E(G) \setminus (S \cup \{v_2v_1, v_2v_3\})$ is a minimum total edge dominating set of cardinality $q - \Delta'$. We now consider the following cases. Case(i) $C = C_6$.

If G contains an induced subgraph H isomorphic to the graph $C_6 * v_1(P_3)$, then D\{v_5v_6\} is a total edge dominating set of G, which is a contradiction. Hence G is isomorphic to the graph given in (1) **Case(ii)** $C = C_5$.

If G contains an induced subgraph H isomorphic to the graph $C_5 * v_1(P_4)$, then D\{v_1v_5} is a total edge dominating set of G, which is a contradiction. Therefore distance of every vertex from C_5 is at most 2. Subcase (a) e lies on C_5 .

Let $e = v_1v_5$. If G contains an induced subgraph H $C_5 * v_1(P_3) * v_5(P_3),$ isomorphic to $D \cup \{v_1v_2\} \setminus \{v_1v_5, v_3v_4\}$ is a total edge dominating set of G, which is a contradiction. Hence G is isomorphic to the graph given in (2).

Subcase(b) e is incident with a vertex of C_5

Let $e = v_1 v$. Since distance of any vertex from C_5 is at most 2, all the vertices adjacent to w are all pendant vertices. Since by Subcase(a), all the vertices adjacent to v_1 other than v are all pendant vertices, G is isomorphic to the graph given in (3). Case(iii) $C = C_4$.

If G contains an induced subgraph H isomorphic to the graph $C_4 * v_1(P_5)$. Then $D \setminus \{v_1 u_1\}$ where u_1 is a vertex of H adjacent to v_1 in H is a total edge dominating set, which is a contradiction. Hence all the vertices not on C4 ar at distance of at most 3 from C₄.

Subcase(a) e lies on C₄

Let $e = v_1v_4$. If G contains an induced subgraph H isomorphic to $C_4*v_1(P_3)*v_4(2P_3)$ or $C_4*v_1(P_3)*v_4(P_4)$, then $D \cup \{v_2v_1\}) \setminus \{v_3v_4, v_1v_4\}$ is a total edge dominating set of G, which is a contradiction. Hence G is isomorphic to the graph given in (4),(5) or (6).

Subcase(b) e is incident with a vertex of C₄.

Let $e = v_1 v$. If G contains an induced subgraph H isomorphic to $E_4 * v_2(P_3)$ then $D \setminus \{e\}$ is a total edge dominating set of G, which is a contradiction. Hence G is isomorphic to the graph given in (7).

Case(iv) $C = C_3$.

Suppose G contains an induced subgraph H isomorphic to the graph $C_3 * v_1(P_6)$. Let $P = (v_1, u_1, u_2, u_3, u_4, w)$ be the v₁-w path of length 5 which is edge disjoint from C₃ in H. Then E(G)\(S $\cup \{v_1v_3, v_1u_1, u_1u_2\}$) is a total edge dominating set of cardinality $\leq q - \Delta' - 1$ which is a contradiction. Hence the distance of any vertex not on C₃ is at most 4 from C₃.

Suppose G contains an induced subgraph H isomorphic to $C_3 * v(2P_5)$ or $C_3 * v_1(P_5) * v_2(P_5)$. If $H = C_3 * v_1(2P_5)$ then $E(G) \setminus (S \cup \{v_1v_3, v_1u_1, v_1u_2\})$ where u_1, u_2 are the vertices not on C_3 and adjacent to v_1 in H is total edge dominating set of cardinality $\leq q - \Delta' - 1$ which is a contradiction. If $H = C_3 * v_1(P_5) * v_2(P_5)$, then $E(G) \setminus (S \cup \{v_1v_3, v_1u_1, v_2u_2\})$ where u_1, u_2 are the vertices not on C_3 and adjacent to v_1 in H is total edge dominating set of cardinality $\leq q - \Delta' - 1$ which is a contradiction. If $H = C_3 * v_1(P_5) * v_2(P_5)$, then $E(G) \setminus (S \cup \{v_1v_3, v_1u_1, v_2u_2\})$ where u_1, u_2 are the vertices not on C_3 and adjacent to v_1, v_2 respectively in H, is a total edge dominating set of cardinality $\leq q - \Delta' - 1$ which is a contradiction. Hence there is at most one path of length four which is edge disjoint from C_3 in G.

If $|S| = \Delta' - 1$, then $D = E(G) \setminus (S \cup \{v_1v_3\})$ is a minimum total edge dominating set of G with cardinality $q - \Delta'$. If $|S| = \Delta' - 2$, then G contains a vertex of C₃, say v₃, of degree 2 and $D_1 = E(G) \setminus (S \cup \{v_3v_1, v_3v_2\})$ is a minimum total edge dominating set of G with cardinality $q - \Delta'$. Subcase(a) e lies on C₃.

Suppose $|S| = \Delta' - 2$. Then $e=v_1v_2$. If G contains an induced subgraph H isomorphic to $C_3*v_1(P_5)*v_2(P_3)$ or $C_3*v_1(P_5,P_3)$, then $D_1\setminus\{v_1u_1\}$ where u_1 is a vertex not on C_3 and adjacent to v_1 in H, is a total edge dominating set of G, which is a contradiction. Hence all the vertices of G other than u_1 , adjacent to both v_1 and v_2 are all pendant vertices so that G is isomorphic to the graph given in (8). If G contains an induced subgraph H isomorphic to $C_3*v_1(2P_3)*v_2(2P_3)$ or $C_3*v_1(P_4)*v_2(2P_3)$ or $C_3*v_1(P_4)*v_2(2P_3)$ or $C_3*v_1(P_4)*v_2(2P_3)$ is a total edge dominating set of G, which is a contradiction. Hence G is isomorphic to the graph in (9) or (10).

Suppose $|S| = \Delta' - 1$. Without loss of generality we assume that deg $v_3 = 3$ and $e = v_1v_2$. If G contains an induced subgraph H isomorphic to $C_3^*v_1(2P_3)^*v_2(p_3)$ or $C_3^*v_1(P_4)^*v_2(P_3)^*v_3(P_2)$ then $D \setminus \{v_1v_2\}$ is a total edge dominating set, which is a contradiction. Hence G is isomorphic to one of the graphs given in either (11),(12) or (13).

Subcase(b) e is incident with a vertex of C_3 .

Let $\boldsymbol{e} = \boldsymbol{v}_1 \boldsymbol{v}$. In this case G has at most two vertices of degree ≥ 3 and $|\boldsymbol{S}| = \Delta' - 2$. It G contains an induced subgraph H isomorphic to $E_3^* v_1(P_3)^* v(2P_3)$ or $E_3^* v_1(P_3)^* v(P_4)$,

then $D_1 \setminus \{e\}$ is a total edge dominating set of G, which is a contradiction. Hence G is isomorphic to one of the graphs given in (14) and (15).

Conversely suppose that G is isomorphic to one of the graphs given in the hypothesis. Then if $|S| = \Delta' - 1$, then $E(G) \setminus S \cup \{e\}$ is a minimum total edge dominating set of cardinality $q - \Delta'$ and if $t|S| = \Delta' - 1$, then $E(G) \setminus S \cup \{e_1, e_2\}$ where e_1, e_2 are the adjacent edges of C incident with a vertex of degree 2, is a minimum total edge dominating set of cardinality $q - \Delta'$. Hence $\gamma'_t = q - \Delta'$. Theorem 2.10 For any graph G of order p, $\gamma'_t(S(G)) \leq 2(p - \beta_1)$.

Proof Let $X = \{u_i v_i | 1 \le i \le \beta_i\}$ be a maximum edge independent set of G. Then X is an edge dominating set of G. Let w_i be the vertex of S(G) which is adjacent to both u_i and v_i . Let S be the set of vertices of G which are not incident with any If S = edge of X. then $D = \{u_1 w_1, w_1 v_1, u_2 w_2, w_2 v_2, \dots, u_{\beta_*} w_{\beta_*}, w_{\beta_*} v_{\beta_*}\}$ is a total edge dominating set of S(G) so that $\gamma'_{+}(S(G)) \le 2\beta_1 = 2(p - \beta_1).$ Suppose $S \neq \emptyset$. Let $S = \{x_1, x_2, \dots, x_n\}$. Since G is connected and $\langle S \rangle$ is independent, each x_i is adjacent to some z_i ($z_i = u_i$ or v_m) in G. Let y_i be the vertex of S(G) adjacent to both x_i and z_i in S(G). Then $D_1 =$ $\{u_1w_1, w_1v_1, u_2w_2, w_2v_2, \dots, u_{\beta_1}w_{\beta_1}, w_{\beta_1}, v_{\beta_1}, x_1y_1, x_2y_1, x_2y_2, x_2y_1, x_2y_2, x_2y_1, x_2y_1, x_2y_1, x_2y_2$ forms a total edge dominating set of G so that $\gamma'_{t}(S(G)) \leq |D| = 2\beta_{1} + 2n = 2\beta_{1} + 2(p - 2\beta_{1}) = 2(p - \beta_{1})$

. The inequality in Theorem 2.10 cannot be improved further. In fact equality holds for $K_{\rm p}$ and $K_{\rm m,n}$ as shown in the following theorem.

Theorem 2.11 (1) $\gamma'_{t}(S(K_{p})) = 2\lceil p/2 \rceil.$

2)
$$\gamma'_t(S(K_{m,n})) = 2n \quad (m \le n).$$

Proof (1) Since $\beta_1(K_p) = \lfloor \frac{p}{2} \rfloor$ by Theorem 2.10, it follows that $\gamma'_t(S(Kp)) \le 2p - 2\lfloor p/2 \rfloor = 2\lceil p/2 \rceil$. To prove the reverse inequality, let D be a total edge dominating set for $S(K_p)$. Suppose there exist two vertices, say u,v of K_p such that neither u nor v is incident with any edge of D. Let w be adjecent to u and v in $S(K_p)$. Now the edges uw and wv are not dominated by D so that D is not a total edge dominating set of $S(K_p)$. Hence D must cover at least p - 1 vertices of K_p . Further D has no isolated edges and hence it follows that $|D| \ge 2\lceil p/2 \rceil$. Thus

$$\gamma'_t(S(K_p)) = 2\lceil p/2 \rceil.$$

(2) Let (X,Y) be the bipartition of $K_{m,n}$ with |X| = m and |Y| = n. By Theorem 2.10, we have $\gamma'_t(S(Km,n)) \le 2(p - \beta_1) = 2(m+n) - 2m = 2n$. Further any total edge dominating set for $S(K_{m,n})$ must contain at least 2n edges for dominating the edges incident with the vertices of

2n edges for dominating the edges incident with the vertices of X and m of the vertices of Y and 2(n-m) edges for dominating the edges incident with the remaining n – m vertices. Hence $|D| \ge 2m + 2(n-m) = 2n$. Thus $\gamma'_t(S(K_{m,n})) = 2n$.

Theorem 2.12 Let T be any tree of order $p \ge 3$ and n be the number of pendant edges of T.

(1) $n \le \gamma' (S(T)) \le 2p - 2 - n$.

(2) $\gamma'_t(S(T)) = 2p - 2 - n$ if and only if T is isomorphic to $K_{1,n}$ or P_4 .

(3) $\gamma'_t(S(T)) = n$ if and only if any internal vertex of T is adjacent to at least two pendant vertices.

Proof (1) Let $u_1v_1, u_2v_2, \dots, u_nv_n$ be the pendant edges of T such that $deg_T v_i = 1$. Let w_i be the vertex of S(T) that subdivides the edge u_iv_i . Any total edge dominating set of S(T) contains the edges u_iw_i , $i = 1, 2, \dots, n$ and hence $\gamma'_t(S(T) \ge n$. Further E(S(T)\S where S is the set of all pendant edges of S(T) forms a total edge dominating set of S(T) and hence $\gamma'_t(S(T)) \le 2p - 2 - n$.

(2) Suppose $\gamma'_i(S(T)) \leq 2p-2-n$. We claim that diam(T) ≤ 3 . Suppose diam(T) ≥ 4 . Let $P = (v_1, v_2, ..., v_k, v_{k+1})$ be path of length k in T. Let w_i be the vertex of S(T) subdividing the edge $v_i v_{i+1}$, $1 \leq i \leq k$. Now $E(S(T)) \setminus S \cup \{w_2 v_3\}$) is a total edge dominating set of cardinality 2p - 2 - n - 1, which is a contradiction. Hence diam(T) ≤ 3 . If diam(T)=2 then T is isomorphic to $K_{1,n}$.

Suppose diam(T) = 3. Let $P_4=(u_1,u_2,u_3,u_4)$ be a path of length 3 in T. We claim that $T = P_4$. Suppose deg $u_2 \ge 3$. Since diam(T) = 3 any vertex $w \ne u_3$ which is adjacent to u_2 is a pendant vertex of T. Let $N(u_2) = \{u_1,u_3,w_1,w_2,...,w_r\}$. Let x be a vertex subdividing the edge u_2u_3 . Now $E(S(T)) \setminus (S \cup \{u_2x\})$ is a total edge dominating set of cardinality 2p-2-n-1, which is a contradiction. Hence deg $u_2 = 2$. Similarly deg $u_3 = 2$ and hence T is isomorphic to P_4 . Conversely,

if $T = P_4$ then $\gamma'_t(S(T)) = 4 = 2p - 2 - n$ and if $T = k_{1,n}$ then $\gamma'_t(S(T)) = p - 1 = 2p - 2 - n$.

(3)Suppose $\gamma'_t(S(T)) = n$. Let $u_1v_1, u_2v_2, ..., u_nv_n$ be the pendant edges of T such that deg $_T v_i = 1$. Let w_i be the vertex of S(T) that subdivide the edge u_iv_i . Since any total edge dominating set of S(T) contains the edges u_iw_i for all i = 1, 2, ..., n and $\gamma'_t = n, S = \{u_iw_i \mid i = 1, 2, ..., n\}$ is the unique minimum total edge dominating set of S(T). The edge induced subgraph $\langle S \rangle$ is isomorphic to a union of stars K_{1,n_i} with $n_i > 1$ and every non pendant edge of T joins the centers of two such stars. Hence any internal vertex of T is adjacent to at least two pendant vertices. The converse is obvious.

Definition 2.13 The total edge domatic number of G, denoted by $d'_t(G)$ or d'_t is the maximum order of a partition of the edge set E into total edge dominating sets of G.

Example 2.14 (i)
$$d'_{t}(P_{n}) = 1.$$

(ii) $d'_{t}(C_{n}) = \begin{cases} 2 \text{ if } n \equiv 0 \pmod{4} \\ 1 \text{ otherwise.} \end{cases}$

(iii) $d'_t(\mathbf{K}_{1,n}) = \lfloor n/2 \rfloor$. (iv) $d'_t(\mathbf{K}_{m,n}) = \max\{m,n\} \text{ if } m,n \ge 2$.

Remark 2.15 Since for any graph G, $d'_t(G) = d_t(L(G))$, by **Theorem 1.3** it follows that for any (p,q)-graph G without isolated edges, $d'_t(G) \le \min((\delta', q / \gamma'_t))$.

Theorem 2.16

(1) For any (p,q)-graph without isolated edges, $\gamma'_t + d'_t \le q + 1$ and equality holds if and only if G = mP₃.

(2) If G is connected and $p \ge 4$, then $\gamma'_{t} + d'_{t} \le q$ and equality holds if and only if G=C₄,K_{1,4},K_{1,3} or P₄.

Proof (1) By Remarks 2.5 and 2.15, we have $\gamma'_t \leq q - \Delta' + 1$ and $d'_t \leq \delta'$. Hence $\gamma'_t + d'_t \leq q - \Delta' + 1 + \delta' \leq q + 1$ Further $\gamma'_t + d'_t = q + 1$ if and only if $\gamma'_t = q - \Delta' + 1, d'_t = \delta'$

and $\Delta' = \delta'$ Since $d'_{t} \le \frac{q}{\gamma_{t}}$ and $\gamma'_{t} + d'_{t} = q + 1$, it follows

that
$$d'_{t} \le \frac{q}{q - d'_{t} + 1}$$
 which implies $(q - d'_{t})(d'_{t} - 1) \le 0$.

Since $q - d'_t > 0$, we have $d'_t = 1 = \delta'$ and hence G=P₃.

(2) By(1), P₃ is the only connected graph with $\gamma'_t + d'_t \le q + 1$ and hence $\gamma'_t + d'_t \le q$ for any connected graph with $p \ge 4$. Suppose $\gamma'_t + d'_t = q$. We consider the following cases. Case(i) $\Delta' \le q - 1$

Then $\gamma'_t = q - \Delta' + 1$, $d'_t = \delta'$ and $\Delta' = \delta'$. Since $d'_t \leq \frac{q}{2}$, we have $d'_t \leq \frac{q}{2}$ so that

$$\leq \frac{q}{\gamma_{t}}$$
, we have $d_{t} \leq \frac{q}{q-d_{t}}$ so that

$$d'_t \ge q(d'_t - 1)$$
. Further $q \ge 2d'_t$ and hence $d'_t^2 \ge 2d'_t(d'_t - 1)$ so that $d'_t \le 2$. If $d'_t = 1 = \delta'$ then $G = P_3$, which is a contradiction since $p \ge 4$. If $d'_t = 2 = \delta'$ then $G = C_4$.

Case (ii)
$$\Delta' = q - 1$$

Then $\gamma_c = 2$ and $d_t = q - 2$. Now Since $d_t \leq \frac{q}{\gamma_t}$, we have

$$q-2 \le \frac{q}{\gamma_t} = \frac{q}{2}$$
 so that $q \le 4$.

If q=3, then $G = P_4$ or $K_{1,3}$. If q=4, then $G = K_{1,4}$. Thus G is isomorphic to C_4 , $K_{1,4}$, $K_{1,3}$ or P_4 .

The converse is obvious. **References**

[1]F. Harary, Graph Theory, Addison Wesley Reading Mass(1972).

[2]E.J. Cockayne, R.M. Dawes and S.T. Hedetnicni, Total domination in graphs, Networks 10(1980) 211-219.

[3]S.Arumugam and J. Paulraj Joseph, Domination in subdivision graph, J. Indian.math.soc.62(1-4)(1996) 274-282.