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Introduction  

 By a graph G = (V,E) we mean a finite undirected graph 

without loops or multiple edges Terms not defined have are used 

in the sense of Harary[1]. 

     A set SE is said to be an edge dominating set if every 

edge in E – S is adjacent to some edge in S. The edge 

domination number of G is the cardinality of a smallest edge 

dominating set of G and is denoted by  '
. The degree of an 

edge e = uv of G is defined by deg e = deg u + deg v – 2. The 

minimum (maximum) degree of an edge in G is denoted by  

)( ''  .  For a real no x, x    denotes the largest integer   x 

and x   denotes the smallest integer  x. We need the 

following theorems. 

Theorem 1.1[2] If G is a graph with p 3 then  t  
2

3

p 
 
 

. 

Theorem 1.2[2] (i) If G is a graph without isolated vertices ,then 

1 pt  

 (ii)If G is connected and  = p – 1, then  t  

   p - ∆. 

Theorem 1.3[2] For any (p,q) - graph G  without isolated 

vertices, ),min( tt pd   

Theorem 1.3[2] If G is a connected graph, then 

))(())(( GSGS t   

Main results 

Definition 2.1 Let G = ( V,E) be a graph without isolated edges. 

An edge dominating set X of G is called a total edge dominating 

set if the edge induced subgraph X has no isolated edges. The 

minimum cardinality of a total edge dominating set is called the 

total edge domination number of G and is denoted by 

t

'
or  )(  Gt .  The upper total edge domination number of G is 

the maximum cardinality taken over all minimal total edge 

dominating sets of G and is denoted by 
'

t  

Example 2.2 

     
2

n
 if n  0 or 2(mod 4) 

(i) )(
'

nt P   =    
1

2

n 
   if n  1(mod 4) 

    

 
1

2

n 
  if n 3(mod 4) 

 

    

 

 

                                             
2

n
 if n  0 (mod 4) 

(ii)  )(
'

nt C    =               
1

2

n 
   if n  1 or 3 (mod 4) 

   
2

2

n 
  if n 2(mod 4) 

 

(iii)  '

1, 2t nK    

(iv)  '

,( ) min ,t m nK m n    if m,n >1. 

Theorem 2.3 
' 2
( )

3
t p

p
K

 
  
 

  if p 3. 

Proof Let  1 2( ) , ,..........p pV K v v v . Let  

1,1 1.i i ic v v i p     If  p  0 or 1(mod 3), let 

{ |1 1iD e i p     and 20(mod3)} { }pi e  U . 
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ABSTRACT  

In this paper we discuss the concept of total edge domination in graphs. We prove that for 

any connected (p,q) – graph G with ∆
'
 <  q - 1,  t

'
    q - ∆

'
 where ∆

'
 denotes the 

maximum degree of an edge in G and characterize trees and unicyclic graphs which attain 

this bound.  We also prove that  t
'
(S(G)) 12( )p    for any connected graph G. We 

also determine the value of total edge domatic number 
'

td for some families of graphs.  
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Clearly D is a total edge dominating set of 
pK and 

2
.

3

p
D

 
  
 

 Hence 
' 2
( ) .

3
t p

p
K

 
  
 

 

 Now let D be any total edge dominating set of 
pK . If there 

exist two vertices, say ,i jv v  of 
pK  which are not incident with 

any edge of D, then the edge 
i jv v is not dominated by D. Hence 

D must cover at least p – 1 vertices of 
pK . Further D has no 

isolated edges and hence 
2( 1) 2

.
3 3

p p
D

   
    
   

 

Thus
' 2
( ) .

3
t p

p
K

 
  
 

 

 

Theorem 2.4 
'( ) / 2 .t pW p      

Proof Let  1 2( ) , ,..........., ,p pV W v v v  deg 1v =p-1 and 

E ( )pW 

   1 2 3, 3 4 1 2| 2 ,............, , .i p p pv v i p v v v v v v v v  U Then 

      

                 {v1v2,v1v4,...........v1vp}  if p is even 

 S =          {v1v2,v1v4,...........v1vp-1}  if p is odd 

 

is a total edge dominating set of pW so that
' ( ) / 2 .t pW p      

 Now let S be a minimum total edge dominating set of  pW . 

Since any two adjacent edges e1, e2 of S dominate at most four 

edges of Cp-1 = (v2,v3,.........,vp,v2) in pW (including possibly e1 

and e2), it follows that / 2 .S p    Hence 

' ( ) / 2 .t pW p      

Remark 2.5 If G is a graph without isolated edges, then 
' ( ) ( ( ))t tG L G   where L(G) denoted the line graph of G.  

Hence it follows from Theorems 1.1 and 1.2 that 

(i) 









3

2
'

q
t  

(ii) 1'  qt  

(iii)    If G is connected and 1 q  then 


qt  

For the graphs given in Figure 4.1 
' 2

4 .
3

t

q


 
   

   

 
Figure 2.1 

Theorem 2.6  For any tree T with  qp
'

t ,2   if 

and only if  

4 ( ) 6diam T   and T is isomorphic to one of the following. 

(1) P5,P6 or P7. 

(2) Any tree with exactly one vertex u of degree  3 satisfying 

the following condition. If there exists a pendant vertex x with 

d(u,x) = 4, then there exists at most one pendant vertex y with 

d(u,y) = 2. 

(3) Any tree obtained from a tree described in (2) by attaching 

any number of pendant vertices to exactly one vertex v of N(u) 

such that in the resulting tree v has degree   3. 

Proof Let T be a tree with 2 p . Suppose 

4 ( ) 6diam T   and T is isomorphic to one of the trees given 

in the hypothesis. Then S where S is the set of all pendant 

edges of G and E(G) \ S is the unique minimum total edge 

dominating set of T so that ''  qt  

 Conversely suppose that  ''  qt  . Then diam(T)  4 

and S . Since E(T)\S is the unique minimum total edge 

dominating set of T, it follows that diam(T)  6 and T has at 

most one vertex of degree  3 or two adjacent vertices of 

degree  3.  We consider the following cases. 

Case(i) T has no vertex of degree   3. 

In  this case, T=P5,P6 or P7. 

Case(ii) T has exactly one vertex, say u of degree 3. 

Suppose there exists a pendant vertex x in T such that d(u,x) = 4. 

Let P = (u, u1, u2, u3,u4 = x) be the u – x path of length 4.  If  

there exist two pendant vertices, say y1,y2 such that d(u,y1) = 

d(u,y2) = 2.then   is a total edge dominating 

set of T so that  which is a 

contradiction.  Hence there is at most one pendant vertex y with 

d(u,y)  = 2. 

Case(iii) T has exactly two adjacent vertices, say u, v of degree 

 3. First we claim that there exist at least deg(u) – 2 pendant 

vertices adjacent to v  otherwise there exist vertices u1,u2,v1,v2, 

such that d(u,u1) = d(u,u2) = d(v,v1) =d(v,v2) = 2 and in this case 

   E T \ ( )S uv  is a total edge dominating set of T with 

cardinality , which is a contradiction. Hence we 

assume that there exist deg(u) – 2 pendant vertices adjecent to u 

in T. Let T1 be the tree obtained by deleting these deg u – 2 

pendant vertices adjacent to u. Clearly T1 is a tree with exactly 

one vertex v of degree 3 and .  Hence 

T1 is of the form described in (2) and the result follows. 

Notation2.7(i) Let G be a graph with vertex set 

V={v1,v2,........,vn). Let k1,k2,.........,km be non negative integers.  

Take ki copies of Pi+1, i=1,2,........,n where Pi denotes the path on 

i vertices.  Then the graph obtained from G by identifying one 

end vertex of each Pi with v1 is denoted by 

G*v1(k1P2,k2P3,............kmPm+1). 

If such paths are attached at more than one vertex of G, the 

above notation can be extended in an obvious way. 

(ii)Let Cn be the cycle (v1,v2,..........vn,v1). The graph obtained by 

attaching a pendant edge, say wv1 to Cn, is denoted by En.  Thus 

 

Example 2.8  Let .  Then 

 and 

 are given in Figure 2.1 

 



S.Velammal et al./ Elixir Dis. Math. 44 (2012) 7213-7217 
 

7215 

 

 

2P2, P3, P4)*w(3P2) are given in Figure 2.1 

 

 

 

 

 

Figure 2.1 

Theorem 2.9   Let G be a connected unicyclic graph with cycle 

).  Then  if and only 

if G is isomorphic to one of the following 

1.  where . 

2. ),( *  )(* 322221521115 PbPbvPbvC where 

. 

3.   where  

4.   where  

5.   where 

 

6.   where 

. 

7.   

where . 

8.   

where . 

9.   where 

. 

10.   

where 

  

where  

11.   

where  

12. 

 where  

13.   

where  

14.   where 

 

Proof  Let G be a connected unicyclic graph with cycle C = Cn= 

(v1,v2,.........,vn,v1),  Let e = uv be an edge of maximum degree 

and let S denote the set of all pendant edges of G.  Clearly 

 

Now suppose . Since  1( ) \ ( )E G S e  

where e1 is any edge of C is a total edge dominating set of G, it 

follows that - 2.  Hence G has at most 

three vertices of degree 3 

If there exist two non adjacent vertices w1,w2 with deg w1 3 

and deg w2 3, then  and in this case there exist 

two adjacent edges e1, e2 of C such that  1 2( ) \ ( , )E G S e e  

is a total edge dominating set of cardinality , which 

is a contradiction. Thus any two vertices of degree  3 are 

adjacent. 

      Hence if G has three vertices of degree  3, then these 

three vertices form a triangle and hence C = C3 and in this case 

at least one vertex of C3 has degree exactly 3. 

We now claim that the edge e = uv of maximum degree lies on 

C or incident with a vertex of C.  If both u and v are not on C, 

then  and there exist two adjacent edges e1,e2 of 

C such that  1 2( ) \ ( , )E G S e e  is a total edge dominating 

set of cardinality , which is a contradiction .  Hence 

at least one of u,v lies on C. 

Now if the length of C is at least 7 then there exist edges 

 on C such that  1 2 3( ) \ ( , , )E G S e e e  is a total 

edge dominating set of cardinality  which is a 

contradiction. Hence the length n of C is at most six. 

Now, suppose 4 n 6. Then G has at most two vertices of 

degree  3 and  .  If  G has no vertex of degree 

 3, then G=C4,C5 or C6 which is isomorphic to the graph given 

in (1),(2) or (4).  

We now assume that G has at least one vertex of degree 

 3. Without loss of generally we assume that  3 and 

deg v2 =2. Then D =  2 1 2 3( ) \ ( , )E G S v v v v  is a minimum 

total edge dominating set of cardinality . We now 

consider the following cases. 

Case(i) C = C6. 

If G contains an induced subgraph H isomorphic to the 

graph , then D\{v5v6} is a total edge dominating set 

of G, which is a contradiction. Hence G is isomorphic to the 

graph given in (1) 

Case(ii) C = C5. 

If G contains an induced subgraph H isomorphic to the 

graph , then D\{v1v5} is a total edge dominating 

set of G, which is a contradiction.  Therefore distance of every 

vertex from C5 is at most 2. 

Subcase (a) e lies on C5. 

Let e = v1v5.  If G contains an induced subgraph H 

isomorphic to C5*v1(P3)*v5(P3), then 

   1 2 1 5 3 4) \ ,D v v v v v v is a total edge dominating set of G, 

which is a contradiction. Hence G is isomorphic to the graph 

given in (2). 

Subcase(b) e is incident with a vertex of C5  

Let e = v1v. Since distance of any vertex from C5 is at most 

2, all the vertices adjacent to w are all pendant vertices. Since by 

Subcase(a), all the vertices adjacent to v1 other than v are all 

pendant vertices, G is isomorphic to the graph given in (3). 

Case(iii) C = C4. 

If G contains an induced subgraph H isomorphic to the 

graph C4*v1(P5). Then D\{v1u1} where u1 is a vertex of H 

adjacent to in H is a total edge dominating set, which is a 

contradiction. Hence all the vertices not on C4 ar at distance of at 

most 3 from C4. 
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Subcase(a) e lies on C4 

Let e = v1v4. If G contains an induced subgraph H 

isomorphic to C4*v1(P3)*v4(2P3) or C4*v1(P3)*v4(P4), then 

   2 1 3 4 1 4) \ ,D v v v v v v is a total edge dominating set of G, 

which is a contradiction.  Hence G is isomorphic to the graph 

given in (4),(5) or (6). 

Subcase(b) e is incident with a vertex of C4. 

Let e = v1v. If G contains an induced subgraph H 

isomorphic to then D \ {e} is a total edge 

dominating set of G, which is a contradiction.  Hence G is 

isomorphic to the graph given in (7). 

Case(iv) C = C3. 

Suppose G contains an induced subgraph H isomorphic to 

the graph .  Let   be 

the v1-w path of length 5 which is edge disjoint from C3 in H. 

Then E(G)\(S {v1v3,v1u1,u1u2}) is a total edge dominating set 

of cardinality which is a contradiction. Hence 

the distance of any vertex not on C3 is at most 4 from C3. 

Suppose G contains an induced subgraph H isomorphic to 

C3*v(2P5) or . If H = C3*v1(2P5) then 

E(G)\ 1 3 1 1 1 2( { , , })S v v v u v u where u1,u2 are the vertices not 

on C3 and adjacent to in H is total edge dominating set of 

cardinality  which is a contradiction.  If H = 

C3*v1(P5)*v2(P5) , then E(G)\ 1 3 1 1 2 2( { , , })S v v v u v uU where 

u1,u2 are the vertices not on C3 and adjacent to v1,v2 respectively 

in H, is a total edge dominating set of cardinality 

 which is a contradiction.  Hence there is at most 

one path of length four which is edge disjoint from C3 in G. 

 If , then D = 1 3( ) \ ( { })E G S v vU  is a 

minimum total edge dominating set of G with 

cardinality .  If , then G contains a vertex 

of C3, say v3, of degree 2 and 

1 3 1 3 2( ) \ ( { , })D E G S v v v v U is a minimum total edge 

dominating set of G with cardinality .  . 

Subcase(a) e lies on C3 . 

Suppose .  Then e=v1v2.  If G contains an 

induced subgraph H isomorphic to C3*v1(P5)*v2(P3) or 

C3*v1(P5,P3), then D1\{v1u1} where u1 is a vertex not on C3 and 

adjacent to v1 in H, is a total edge dominating set of G, which is 

a contradiction.  Hence all the vertices of G other than u1, 

adjacent to both v1 and v2 are all pendant vertices so that G is 

isomorphic to the graph given in (8).   If G contains an induced 

subgraph H isomorphic to C3*v1(2P3)*v2(2P3) or 

C3*v1(P4)*v2(2P3) or C3*v1(P4)*v2(P4), then D1\{v1v2} is a total 

edge dominating set of G, which is a contradiction. Hence G is 

isomorphic to the graph in (9) or (10). 

Suppose .  Without loss of generality we 

assume that deg v3 = 3 and e =v1v2.  If G contains an induced 

subgraph H isomorphic to C3*v1(2P3)*v2(p3) or 

C3*v1(P4)*v2(P3)*v3(P2) then D\{v1v2} is a total edge dominating 

set, which is a contradiction.  Hence G is isomorphic to one of 

the graphs given in either (11),(12) or (13). 

Subcase(b) e is incident with a vertex of . 

Let .  In this case G has at most two vertices of 

degree  3 and .  It G contains an induced 

subgraph H isomorphic to E3*v1(P3)*v(2P3) or E3*v1(P3)*v(P4), 

then D1\{e} is a total edge dominating set of G, which is a 

contradiction.  Hence G is isomorphic to one of the graphs given 

in (14) and (15). 

Conversely suppose that G is isomorphic to one of the 

graphs given in the hypothesis.  Then if , then 

 is a minimum total edge dominating set of 

cardinality  and if t ,  then 

1 2( ) \ { , })E G S e eU  where  are the adjacent edges of C 

incident with a vertex of degree 2, is a minimum total edge 

dominating set of cardinality .  Hence . 

Theorem 2.10 For any graph G of order 

p,
'

1( ( )) 2( ).t S G p    

Proof Let { |1 }i i iX u v i    be a maximum edge 

independent set of G.  Then X is an edge dominating set of G.  

Let wi be the vertex of S(G) which is adjacent to both ui and vi.  

Let S be the set of vertices of G which are not incident with any 

edge of X. If S = 0  then 

 is a total edge dominating set of S(G) so that 
'

1 1( ( )) 2 2( ).t S G p      Suppose S 0  . Let 

S={x1,x2,......xn}.  Since G  is connected and S is independent, 

each  is adjacent to some zi ( zi = ul or vm) in G.  Let yi be the 

vertex of S(G) adjacent to both xi and zi in S(G). Then  

 forms a total edge  dominating set of G so that 
'

1 1 1 1( ( )) 2 2 2 2( 2 ) 2( )t S G D n p p           

.  The inequality in Theorem 2.10 cannot be improved further.  

In fact equality holds for Kp and Km,n as shown in the following 

theorem. 

Theorem 2.11 (1)     
' ( ( )) 2 / 2 .t pS K p      

              (2)   
'

,( ( )) 2t m nS K n   (m n). 

Proof  (1) Since  by Theorem 2.10, it follows 

that 
' ( ( )) 2 2 / 2 2 / 2 .t S Kp p p p           To prove the 

reverse inequality, let D be a total edge dominating set for S(Kp).  

Suppose there exist two vertices, say u,v of Kp such that neither 

u nor v is incident with any edge of D.  Let w be adjecent to u 

and v in S(Kp). Now the edges uw and wv are not dominated by 

D so that D is not a total edge dominating set of S(Kp).  Hence D 

must cover at least p – 1 vertices of Kp.  Further D has no 

isolated edges and hence it follows that 2 / 2 .D p     Thus 

' ( ( )) 2 / 2 .t pS K p      

(2) Let (X,Y) be the bipartition of Km,n with X m and Y  = 

n.  By Theorem 2.10, we have 
'

1( ( , )) 2( ) 2( ) 2 2 .t S Km n p m n m n       Further 

any total edge dominating set for  must contain at least 

2n edges for dominating the  edges incident with the vertices of 

X and m of the vertices of Y and 2(n-m) edges for dominating 

the edges incident with the remaining n – m vertices.  Hence 

2 2( ) 2 .D m n m n    Thus 
'

,( ( )) 2 .t m nS K n   
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Theorem 2.12 Let T be any tree of order p 3 and n be the 

number of pendant edges  

of T. 

(1) 
' ( ( )) 2 2 .tn S T p n     

(2)   if and only if T is isomorphic 

to K1,n or P4. 

(3)    if and only if any internal vertex of T is 

adjacent to at least two pendant vertices. 

Proof (1) Let u1v1,u2v2,.......,unvn be the pendant edges of T such 

that .  Let wi be the vertex of S(T) that subdivides 

the edge uivi.  Any total edge dominating set of S(T) contains the 

edges uiwi, i = 1,2,......,n and hence 
' ( ( ) .t S T n  Further 

E(S(T)\S where S is the set of all pendant edges of S(T) forms a 

total edge dominating set of S(T) and hence 
' ( ( )) 2 2 .t S T p n     

       (2) Suppose 
' ( ( )) 2 2 .t S T p n     We claim that 

diam(T)  3. Suppose diam(T)  4. Let P = (v1,v2,...,vk, vk+1) be 

path of length k in T.  Let wi be the vertex of S(T) subdividing 

the edge vivi+1, 1   i  k.  Now  2 3( ( )) \ )E S T S w v  is a 

total edge dominating set of cardinality 2p – 2 – n - 1, which is a 

contradiction.  Hence diam(T)  3.  If diam(T)=2 then T is 

isomorphic to K1,n . 

Suppose diam(T) = 3.  Let P4=(u1,u2,u3,u4) be a path of 

length 3 in T.  We claim that T = P4.  Suppose deg u2  3.  

Since diam(T) = 3 any vertex 3w u  which is adjacent to u2 is 

a pendant vertex of T.  Let N(u2) = {u1,u3,w1,w2,...,wr}.  Let x be 

a vertex subdividing the edge u2u3.  Now 

2( ( )) \ ( { })E S T S u xU is a total edge dominating set of 

cardinality 2p-2-n-1, which is a contradiction.  Hence deg u2 = 2.  

Similarly deg u3 = 2 and hence T is isomorphic to P4. 

Conversely, 

if T =  then 
' ( ( )) 4 2 2t S T p n      and  

 if T = k1,n then 
' ( ( )) 1 2 2 .t S T p p n       

(3)Suppose 
' ( ( )) .t S T n   Let u1v1,u2v2,....,unvn be the 

pendant edges of T such that     deg T vi =1.   Let wi be the vertex 

of S(T) that subdivide the edge uivi.  Since any total edge 

dominating set of S(T) contains the edges  for all i = 

1,2,....,n and 
' , { | 1,2,....., }t i in S u w i n     is the unique 

minimum total edge dominating set of S(T).  The edge induced 

subgraph S  is isomorphic to a union of stars with 

and every non pendant edge of T joins the centers of 

two such stars.  Hence any internal vertex of T is adjacent to at 

least two pendant vertices. 

The converse is obvious. 

Definition 2.13 The total edge domatic number of G, denoted by 
' ( )td G or 

'

td  is the maximum order of a partition of the edge 

set E into total edge dominating sets of G. 

Example 2.14 (i)  
'

td (Pn) = 1. 

    

                              (ii)  
'

td (Cn) =     2 if n  0(mod 4 

1 otherwise. 

(iii) 
'

td (K1,n) = / 2 .n    

                                (iv)  
'

td (Km,n) = max{m,n} if m,n 2. 

Remark 2.15 Since for any graph G, 
'

td (G) = ( ( )),td L G  by 

Theorem 1.3 it follows that for any (p,q)-graph G without 

isolated edges, 
'

td (G) min(
' '( , / )tq  . 

Theorem 2.16 

(1) For any (p,q)-graph without isolated 

edges,
' ' 1t td q    and equality holds if and onlly if G = 

mP3. 

(2) If G is connected and p 4, then 
' '

t td q    and 

equality holds if and only if G=C4,K1,4,K1,3 or P4. 

Proof (1) By Remarks 2.5 and 2.15, we have 

 and 
' '.td    Hence 

 Further 
' ' 1t td q     if and only if  

and  Since 
'

't

t

q
d


  and 

' ' 1,t td q     it follows 

that 
'

' 1
t

t

q
d

q d


 
 which implies 

' '( )( 1) 0.t tq d d    

Since 
' 0,tq d   we have 

' '1td    and hence G=P3 . 

(2) By(1), P3 is the only connected graph with 
' ' 1t td q     

and hence 
' '

t td q    for any connected graph with p 4.  

Suppose 
' '

t td q   .  We consider the following cases. 

Case(i)  

Then  and .   Since 

'

'
,t

t

q
d


 we have 

'

't

t

q
d

q d



 so that 

' '( 1).t td q d  Further 
'2 tq d  and hence 

' 2 ' '2 ( 1)t t td d d   so that 
' 2.td   If  

' '1td    then G = 

P3 , which is a contradiction since p 4.  If 
' '2td    then G 

= C4 . 

Case (ii)  

Then 
' 2c   and 

'

td = q - 2. Now Since 
'

't

t

q
d


 , we have 

'
2

2t

q q
q


    so that 4.q   

If q=3, then G = P4 or K1,3.  If q=4, then G = K1,4.  Thus G is 

isomorphic to C4, K1,4, K1,3 or P4. 

The converse is obvious. 
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