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ABSTRACT

Keywords

In this paper we discuss the concept of total edge domination in graphs. We prove that for
any connected (p,q) — graph G with A < q-1, }/t' <
maximum degree of an edge in G and characterize trees and unicyclic graphs which attain
this bound. We also prove that }; (S(G)) <2(p—/3,) for any connected graph G. We

q- A" where A denotes the

also determine the value of total edge domatic number dt' for some families of graphs.

Edge domination number,
Total edge domination number.

Introduction

By a graph G = (V,E) we mean a finite undirected graph
without loops or multiple edges Terms not defined have are used
in the sense of Harary[1].

A set SCE is said to be an edge dominating set if every
edge in E — S is adjacent to some edge in S. The edge
domination number of G is the cardinality of a smallest edge
dominating set of G and is denoted by y . The degree of an
edge e = uv of G is defined by deg e = deg u + deg v — 2. The
minimum (maximum) degree of an edge in G is denoted by

S (A). Forareal no x, LXJ denotes the largest integer < x

and (X—| denotes the smallest integer =x. We need the
following theorems.

2
Theorem 1.1[2] If G is a graph with p >3 then 7, < t?pJ .

Theorem 1.2[2] (i) If G is a graph without isolated vertices ,then
7, Sp-A+1

(ii)If G is connected and A = p — 1, then ¥,
< p-A
Theorem 1.3[2] For any (p,q) - graph G without isolated
vertices, d, <min(J, p/y,)
Theorem 1.3[2] If G is a
7(8(G)) =7r.(S(G))

Main results
Definition 2.1 Let G = ( V,E) be a graph without isolated edges.
An edge dominating set X of G is called a total edge dominating

set if the edge induced subgraph <X > has no isolated edges. The

minimum cardinality of a total edge dominating set is called the
total edge domination number of G and is denoted by

connected graph, then

7/t' (G)or y,. The upper total edge domination number of G is
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E-mail addresses: vela67_mepco@yahoo.co.in
© 2012 Elixir All rights reserved

© 2012 Elixir All rights reserved.

the maximum cardinality taken over all minimal total edge
dominating sets of G and is denoted by I,

Example 2.2
4 % ifn =0 or 2(mod 4)
L n-1 .
M 7 (Pn) = T if n =1(mod 4)
n+1 .
—— ifn=3(mod 4)
2
-
K
n
— ifn =0 (mod 4
5 ( )
i) 7, (C,) = < _n;l ifn =1 or 3 (mod 4)
n+2 .
T if n=2(mod 4)
-

(i) 7', (K, ) =2
(iv) 7 (K,,)=min{m,n} ifmn>L1.

Theorem 2.3 y't(Kp) = {Z—;J if p=>3.

Proof Let V(K,) :{Vl,vz, .......... Vp} . Let
C, =VV,,1<i<p-1. If p I(mod 3), let

D={e |1<i<p-land i = 0(mod3)}U{e,,}.

=0 or
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Clearly D is a total edge dominating set of Kpand
2p
D Hence K .
/| 2P | v )| 22|
Now let D be any total edge dominating set of Kp . If there

exist two vertices, say V, V; of Kp which are not incident with

any edge of D, then the edge ViV; is not dominated by D. Hence

D must cover at least p — 1 vertices of Kp . Further <D> has no

isolated edges and hence |D|Z[M—|:LQJ

3 3
Thus;/t(K) {ZBpJ

Theorem 2.4 yt'(\Np) = p/2].

Proof Let V (\Np) = {Vl,vz, ........... ,Vp} , degV,=p-1 and

EW,)=

{wv, [2<i< p} U{v2v3’v3v4, ............ VoV, ,vpvz}.Then
{ViVo,ViVayeeiinnens VaVp} if piseven

S= {ViVo,ViVayeeinaniens ViVp} if p is odd

is a total edge dominating set of Wp so that }/'t

W,)<| p/2].
Now let S be a minimum total edge dominating set of Wp .

Since any two adjacent edges e;, e, of S dominate at most four
edges of Cpq = (V2,V3,eeeeee. Vp,V2) in Wp (including possibly e;

and e, it follows that |S| > |_ p/ ZJ .Hence

j/lt(Wp):I_p/ZJ_

Remark 2.5 If G is a graph without isolated edges, then
7.(G) =7,(L(G)) where L(G) denoted the line graph of G.
Hence it follows from Theorems 1.1 and 1.2 that

. 2q
() Vi —[ 3 J
(i) 7,'<q-A"+1

(iii) If G is connected and A" < q—1 then y <q—A'

29|
For the graphs given in Figure 4.1 7/t =4= 3

/ \ /. "\
l(,,*w_m____.‘;. ¢ »
\ . /

\ /
\ /
\ /

—d —d
Figure 2.1
Theorem 2.6 For any tree T with A'< p—2,y, <q—A" if

and only if

4<diam(T) <6 and T is isomorphic to one of the following.
(1) Ps,Pg Or P+

(2) Any tree with exactly one vertex u of degree > 3 satisfying
the following condition. If there exists a pendant vertex x with
d(u,x) = 4, then there exists at most one pendant vertex y with
d(uy) = 2.

(3) Any tree obtained from a tree described in (2) by attaching
any number of pendant vertices to exactly one vertex v of N(u)
such that in the resulting tree v has degree > 3.

Proof Let T be a tree with A'<p—2. Suppose

4 <diam(T) <6 and T is isomorphic to one of the trees given

in the hypothesis. Then |S| = A’ where S is the set of all pendant
edges of G and E(G) \ S is the unique minimum total edge
dominating set of T so that ,'< g —A'

Conversely suppose that 7,'< —A" . Then diam(T) >4

and |S| =A". Since E(T)\S is the unique minimum total edge

dominating set of T, it follows that diam(T) <6 and T has at
most one vertex of degree =3 or two adjacent vertices of
degree = 3. We consider the following cases.

Case(i) T has no vertex of degree = 3.

In this case, T=Ps,Ps or P.

Case(ii) T has exactly one vertex, say u of degree > 3.

Suppose there exists a pendant vertex x in T such that d(u,x) = 4.
Let P = (u, uy, Uy, Uzus = X) be the u — x path of length 4. If
there exist two pendant vertices, say yi,Y» such that d(u,y,) =
d(u,y,) = 2.then E(T)\(S U {uw, }is a total edge dominating
set of T so that ¥, =g —A"—1 < g — A" which is a
contradiction. Hence there is at most one pendant vertex y with
d(uy) =2.

Case(iii) T has exactly two adjacent vertices, say u, v of degree
2> 3. First we claim that there exist at least deg(u) — 2 pendant
vertices adjacent to v otherwise there exist vertices uy,u,,Vi,Vs,
such that d(u,u) = d(u,u,) = d(v,vy) =d(v,v,) = 2 and in this case

E(T)\(S u{uv}) is a total edge dominating set of T with

cardinalityg — A" — 1, which is a contradiction. Hence we
assume that there exist deg(u) — 2 pendant vertices adjecent to u
in T. Let T, be the tree obtained by deleting these deg u — 2
pendant vertices adjacent to u. Clearly T, is a tree with exactly

one vertex v of degree >3 and ¥; = q(T;) — A(Ty). Hence
T, is of the form described in (2) and the result follows.
Notation2.7(i) Let G be a graph with vertex set
V={V, Vo, V). Let Ky Koo K be non negative integers.
Take k; copies of Pj.q, i=1,2,........ ,n where P; denotes the path on
i vertices. Then the graph obtained from G by identifying one
end vertex of each P; with vl is denoted by
G*Vl(klpz,kzpa, ............ kam+1).

If such paths are attached at more than one vertex of G, the
above notation can be extended in an obvious way.
(if)Let C,, be the cycle (v1,va,.......... Vp,V1). The graph obtained by
attaching a pendant edge, say wv; to C,, is denoted by E,. Thus
Erz = Cn * 1?1[:F2:]
Example 2.8 Let G = Cy = (v, V.75, 7;). Then
G = vy(2Py,2P3, P, ) * v, (2P;,P3) * v3(3P;) and

Ey = v, (2P,, Py, P,) * w(3P,) are given in Figure 2.1
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Figure 2.1
Theorem 2.9 Let G be a connected unicyclic graph with cycle

C, = (vy, V5, cceen, Uy ¥y). Theny: = g — A'ifand only
if G is isomorphic to one of the following

1.Cg = vy (a1 Py) = vg(a,, P, ) where aiyq, a5y = 0.
2.C,*v,(b,,R,) *Vv.(b,,P,,b,,P,) where

bi,.byy =0and by, <1,

3.E; * vy (cy4P5) * w(cayPy) where €44,€5 = 0

4.Cy* vy(dyy Py) #vy(dsy Py) where dyy,dyy = 0

5.Cy* vy(€y, P, Py) = vy(e5, P55, P3) where
€11,€3y = 0and ey, <1
6.Cy * vy (fi1Ps, fi2P3. fi3 Ps) * v5(f21 P3) where

fijz0andfi, =2orfi; =1

7.Ey * w(gy1 Py, 915 P3) * v1(821 P2 922 Pss G923 Py)
where g;; = 0 and g,; = 1.

8.C3 * vy (hyy Py, hy, Ps) # vy (hyy Py)

where hyq.hyy = 0and by, < 1,

9.C3* “1(inpzri12p3] # 0, (I39P5, 155 P5,123P;) where
L11:L91, 829003 2 0 and iy, < 1.

10. Cy * vy (13 Ps. J12P3, J13Ps) * v (Jag Py. 22 P3)
where

jli;jlizyji:i;j:l;_jl:: = 0 ﬂ.’nd Il.f jliz = 2or }.13 = 1 the’n j:: 5 1

Cy * vy (kyy Py kyy Py, kygPy) = vy (kg Py) * v (Py)
where kll’ kj_:.l' kj_g and k!l =0

11. C3* vy (133 P;, 115 P3) * v5 (153 Py, Py) * v5(Py)
where ly4,l5y = 0andly; =1

12. Cq = vy(my Py) * vy (myy Py,myy Py,mogPy) = v3 (Py)

where m;; = 0 and my; = 2 ormy; =1
13. Ey #*w(ny  Py,ny, Py) = vy (nyq Pyyyy Py, Mog Py)
wheren;; = 0 and nyy = 1

14. E3 *w(q43P5,q43P3,q12Ps) * v4 (921 P;)
q;; =0andqyz =1

where

Proof Let G be a connected unicyclic graph with cycle C = C,=
(V1,Vyereeens WVn,V1), Let e = uv be an edge of maximum degree

A" and let S denote the set of all pendant edges of G. Clearly
S| = A"—2

Now suppose¥; = q —A'. Since E(G)\(S u{el})
where e; is any edge of C is a total edge dominating set of G, it

follows that |S| = A" —1 or A'- 2. Hence G has at most
three vertices of degree > 3

. Math. 44 (2012) 7213-7217

If there exist two non adjacent vertices wy,w, with deg w; >3
and deg w,> 3, then |S| = A" — 1 and in this case there exist

two adjacent edges ey, e, of C such that E(G)\ (S U {e1 €, })

is a total edge dominating set of cardinality g — A" — 1, which
is a contradiction. Thus any two vertices of degree =3 are
adjacent.

Hence if G has three vertices of degree =3, then these
three vertices form a triangle and hence C = C; and in this case
at least one vertex of C; has degree exactly 3.

We now claim that the edge e = uv of maximum degree lies on
C or incident with a vertex of C. If both u and v are not on C,

then |S| = A" — 1 and there exist two adjacent edges ej,e, of
C such that E(G)\ (S u{el,ez }) is a total edge dominating

set of cardinalityg — A" — 1, which is a contradiction . Hence
at least one of u,v lies on C.
Now if the length of C is at least 7 then there exist edges

4,85, €3 on C such that E(G)\ (S u{el,e2 ,es}) is a total

edge dominating set of cardinality < g — A" — 1 which is a
contradiction. Hence the length n of C is at most six.

Now, suppose 4 <n<6. Then G has at most two vertices of
degree >3 and |S| = A" —2 . If G has no vertex of degree
= 3, then G=C,,Cs or Cg which is isomorphic to the graph given
in (1),(2) or (4).

We now assume that G has at least one vertex of degree
> 3. Without loss of generally we assume that deg; >3 and

deg v,=2. Then D = E(G) \ (S u{vzvl,vzvs}) is a minimum

total edge dominating set of cardinality @ — A’ we now
consider the following cases.
Case(i) C =Ce.

If G contains an induced subgraph H isomorphic to the
graphC; * 7y (P3), then D\{vsve} is a total edge dominating set
of G, which is a contradiction. Hence G is isomorphic to the
graph given in (1)

Case(ii) C = Cs.

If G contains an induced subgraph H isomorphic to the
graph Cz # 17, (P,), then D\{vyvs} is a total edge dominating
set of G, which is a contradiction. Therefore distance of every
vertex from Cs is at most 2.

Subcase (a) e lies on Cs.

Let e = vyvs. If G contains an induced subgraph H

isomorphic to Cs*vy(P3)*vs(Ps), then

DU {vV, })\{V,V5, V,V, } is a total edge dominating set of G,

which is a contradiction. Hence G is isomorphic to the graph
given in (2).
Subcase(b) e is incident with a vertex of Cs

Let e = vyv. Since distance of any vertex from Cs is at most
2, all the vertices adjacent to w are all pendant vertices. Since by
Subcase(a), all the vertices adjacent to v; other than v are all
pendant vertices, G is isomorphic to the graph given in (3).
Case(iii) C = C,.

If G contains an induced subgraph H isomorphic to the
graph C4*vy(Ps). Then D\{v;u;} where u; is a vertex of H

adjacent to 74 in H is a total edge dominating set, which is a

contradiction. Hence all the vertices not on C, ar at distance of at
most 3 from C,.
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Subcase(a) e lieson C,4
Let e = vyv,. If G contains an induced subgraph H
isomorphic to Cz*vyi(P3)*V4(2P3) or Cs*vy(P3)*v4(P4), then

DU{v,v, ) \{Vv,v,, vV, } is a total edge dominating set of G,

which is a contradiction. Hence G is isomorphic to the graph
given in (4),(5) or (6).
Subcase(b) e is incident with a vertex of Cy.

Let e = v;v. If G contains an induced subgraph H
isomorphic to Es * 17, (P3).then D \ {e} is a total edge
dominating set of G, which is a contradiction. Hence G is
isomorphic to the graph given in (7).

Case(iv) C =Ca.

Suppose G contains an induced subgraph H isomorphic to
the graphCy * 17, (P;). Let P = (v, 14,5, Ug, Uy W) be
the vi-w path of length 5 which is edge disjoint from Cj in H.
Then E(G)\(S W {vyvs,viUy,U1U5}) is a total edge dominating set
of cardinality = g — A" — L which is a contradiction. Hence
the distance of any vertex not on Cz is at most 4 from Ca.

Suppose G contains an induced subgraph H isomorphic to
Ca*V(2Ps) orCy * v (Pg) * v5(P5). If H = Cy*vy(2P) then
E(G\ (S W{V,V;,V,U,, V U, }) where uy,u, are the vertices not

on C; and adjacent to %7y in H is total edge dominating set of
cardinality = g — A" — 1 which is a contradiction. If H =
Ca*vi(Ps)*vo(Ps) , then E(G)\(S U{v,v,,V,u;,V,U,}) where
ug,U, are the vertices not on C; and adjacent to v;,v, respectively
in H, is a total edge dominating set of cardinality

= g — A" — 1 which is a contradiction. Hence there is at most
one path of length four which is edge disjoint from Cz in G.

I IS| = A"— 1 thenD = E(G)\(SU{wV.}) isa
minimum  total edge dominating set of G  with

cardinality ¢ — A" If [S| = A" — 2, then G contains a vertex
of Cs, say V3, of degree 2 and

D, =E(G)\(SU{v,v,,V,v,})is a minimum total edge

dominating set of G with cardinality g — A, .
Subcase(a) e lies on Cs.

Suppose |5| = A" —2. Then e=v;v,. If G contains an
induced subgraph H isomorphic to Cs*v;(Ps)*vy(P3) or
Cs*vy(Ps,P3), then D\{v,u;} where u; is a vertex not on C; and
adjacent to v, in H, is a total edge dominating set of G, which is
a contradiction. Hence all the vertices of G other than uy,
adjacent to both v; and v, are all pendant vertices so that G is
isomorphic to the graph given in (8). If G contains an induced
subgraph  H  isomorphic to  Cz*v;(2P3)*v,(2P3)  or
C3*V1(P4)*V2(2P3) or Cs*vy(P4)*v,(P,), then D \{v;v,} is a total
edge dominating set of G, which is a contradiction. Hence G is
isomorphic to the graph in (9) or (10).

Suppose |5| = A" —1. without loss of generality we
assume that deg v; = 3 and e =v,v,. If G contains an induced
subgraph  H  isomorphic  to  Cz*vi(2P3)*vy(ps)  or
C3*V1(P4)*V,(P3)*v3(P,) then D\{v;v,} is a total edge dominating
set, which is a contradiction. Hence G is isomorphic to one of
the graphs given in either (11),(12) or (13).

Subcase(b) e is incident with a vertex of 5.
Let € = ¥4 7. In this case G has at most two vertices of

degree >3 and 5| =A"—2. 1t G contains an induced
subgraph H isomorphic to Ez*vi(P3)*v(2P3) or Ez*vi(P3)*Vv(P,),

S.Velammal et al./ Elixir Dis. Math. 44 (2012) 7213-7217

then D,\{e} is a total edge dominating set of G, which is a
contradiction. Hence G is isomorphic to one of the graphs given
in (14) and (15).

Conversely suppose that G is isomorphic to one of the
graphs given in the hypothesis. Then if |S| = A" — 1, then
E(G)\S U {e} is a minimum total edge dominating set of
cardinality ¢ —4A" and if t|S|=A"—1, then
E(G)\S U{e,,e,}) where 4, €, are the adjacent edges of C
incident with a vertex of degree 2, is a minimum total edge
dominating set of cardinality g — A'. Hence ¥, = g — A",
Theorem 210 For any graph G of order
0.7,(SG) <2(p-A).

Proof Let X ={uVv,|1<i<fB}be a maximum edge
independent set of G. Then X is an edge dominating set of G.

Let w; be the vertex of S(G) which is adjacent to both u; and v;.
Let S be the set of vertices of G which are not incident with any

edge of X. If S = 0 then
D = {ul'l-‘l-’l, lelyu:W:, W:E?:, CET .,'Lt-ge W.E' ,WE" 'E?E’ }
is a total edge dominating set of S(G) so that
7.(S(G)) <28 =2(p—p). Suppose S#0. Let
S={X1,X,.....Xn}. Since G is connected and <S> is independent,
each Xx; is adjacent to some z; ( z; = u,or vy, in G. Lety; be the
vertex of S(G) adjacent to both x; and z; in S(G). Then I}y =
{'LIE-lWl, Wliplyu:W:, W: 'L'J:, pen omuw
forms a total edge dominating set of G so that
7t(S(G))S|D| =2B+2n=2B+2(p-28)=2(p-5)

The inequality in Theorem 2.10 cannot be improved further.
In fact equality holds for K, and K, , as shown in the following

theorem.
Theorem 2.11 (1) }/'t(S(Kp)) = 2|_ p/ 2—|.
@ 7.(S(K,,))=2n (m<n).

Proof (1) Since ﬁi[KF,:l = EJ by Theorem 2.10, it follows

that ', (S(Kp)) < 2p—2Lp/2J =2(p/2—|. To prove the

reverse inequality, let D be a total edge dominating set for S(Kp).
Suppose there exist two vertices, say u,v of K such that neither
u nor v is incident with any edge of D. Let w be adjecent to u
and v in S(K). Now the edges uw and wv are not dominated by
D so that D is not a total edge dominating set of S(K;). Hence D
must cover at least p — 1 vertices of K, Further D has no

isolated edges and hence it follows that |D| > 2|_p/2—‘. Thus

7 (S(K,) =2 p/2].

(2) Let (X,Y) be the bipartition of K, , with |X| =mMmand |Y| =
n. By Theorem 2.10, we have
7 (S(Km,n)) <2(p— A) =2(m+n)—2m = 2n. Further

any total edge dominating set for S(K,,, .} must contain at least

2n edges for dominating the edges incident with the vertices of
X and m of the vertices of Y and 2(n-m) edges for dominating
the edges incident with the remaining n — m vertices. Hence

ID|=2m+2(n—m) =2n.Thus 7, (S(K,,,)) =2n.

.,u& WE _,WE__ 'i'.?E 21 ¥y Ko
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Theorem 2.12 Let T be any tree of order p=3 and n be the
number of pendant edges
of T.

(1) n<y (S(T))<2p-2-n.

) ¥.(S(T))=2p —2 —n if and only if T is isomorphic
to Kynor Py,

@) ¥: [S(T)) =mn if and only if any internal vertex of T is

adjacent to at least two pendant vertices.
Proof (1) Let uivy,Usvs,....... ,U,v,, be the pendant edges of T such

that degrv; = 1. Let w; be the vertex of S(T) that subdivides
the edge u;v;. Any total edge dominating set of S(T) contains the

edges uw;, i = 12,...n and hence ¥, (S(T)>n.Further

E(S(T)\S where S is the set of all pendant edges of S(T) forms a
total edge dominating set of S(T) and hence

7(S(T)<2p-2-n.

(2) Suppose y (S(T))<2p—2-n. We claim that
diam(T) <3. Suppose diam(T) = 4. Let P = (V1,Vy,...,Vi, Vis1) b€
path of length k in T. Let w; be the vertex of S(T) subdividing
the edge Vivi, 1 < i <k. Now E(S(T))\SU{w,v,}) isa
total edge dominating set of cardinality 2p —2 —n - 1, which is a
contradiction. Hence diam(T) <3. If diam(T)=2 then T is
isomorphic to Ky .

Suppose diam(T) = 3. Let P,=(uy,upUs,Us) be a path of
length 3 in T. We claim that T = P,. Suppose deg u, =3.
Since diam(T) = 3 any vertex W # U, which is adjacent to u, is

a pendant vertex of T. Let N(uy) = {uy,Us,Wy,W>,...,w,}. Let x be
a vertex subdividing the edge  uyus. Now

E(S(T))\(SU{u,x})is a total edge dominating set of

cardinality 2p-2-n-1, which is a contradiction. Hence deg u, = 2.
Similarly deg u; = 2 and hence T is isomorphic to P,.
Conversely,

if T=Pythen  (S(T))=4=2p—2—n and
if T=kythen 7, (S(T))=p—-1=2p—-2-n.

(3)Suppose y't (S(T)) =n. Let upvy,Upvy,....,uv, be the

pendant edges of T such that  deg  vi=1. Let w; be the vertex
of S(T) that subdivide the edge ujv;. Since any total edge

dominating set of S(T) contains the edges u;W; for all i =
1,2,....,n and y't =n,S={uw |[i=12,....,n} is the unique
minimum total edge dominating set of S(T). The edge induced
subgraph <S> is isomorphic to a union of stars Kml_with
1; = 1 and every non pendant edge of T joins the centers of
two such stars. Hence any internal vertex of T is adjacent to at
least two pendant vertices.

The converse is obvious.
Definition 2.13 The total edge domatic number of G, denoted by

d',(G)or d is the maximum order of a partition of the edge

set E into total edge dominating sets of G.

Example 2.14 (i) d (P, =1.
(i) d,(Cp) =< 2ifn =0(mod 4

1 otherwise.
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(i) d' (Ki) = | /2],

(iv) d(Knp)=max{mn}ifmn>2.
Remark 2.15 Since for any graph G, d, (G) = d,(L(G)), by
Theorem 1.3 it follows that for any (p,q)-graph G without
isolated edges, d , (G) <min((5,q/7,).

Theorem 2.16
(1) For any (p,q)-graph isolated

edges, y't +d't < (+1and equality holds if and onlly if G =
mPs.

(2) If G is connected and p=4, then y't +d't <g and
equality holds if and only if G=C4,Ky 4,K;30r Py.

without

Proof (1) By Remarks 25 and 215, we have
ve=g-—A+1 and d, <5, Hence
r;-l—d;iq—ﬂ“-l-l—l-ﬁ’iq—l-l Further

yo+d, =q+1 ifand only if ¥, = q —A' +1,d. =&
q

and A"= &' Since d| S}/—, and y,+d, =q+1, it follows
t
that d, < q which implies (q—d)(d,-1)<O0.
q-d,+1

Since —d't >0, we have d't =1=¢ and hence G=P;.
(2) By(1), Ps is the only connected graph with 7, +d, <q+1
and hence y't er't < for any connected graph with p=4.

Suppose y't +d 't = (. We consider the following cases.
Case(lA'<gqg—1

Then ¥, =g —A"+1,d. =& and A'=4"  Since

d't Sﬂ. , we have d't < g , ) that
V q- d t

d, >q(d, —2).Further q>2d, and hence

d’>2d,(d, - sothatd, <2. If d, =1=5 thenG =
P5, which is a contradiction since p>4. 1f d, =2=0 then G

:C4.
Case (i) A'=g— 1

Then 7/'c =2 and d't: q - 2. Now Since d't Si., we have
7t

q—ZSjlzﬂsomqu4.

t
If g=3, then G = P, or Ky 3 If g=4, then G = Ky4. Thus G is
isomorphic to C4, Ky 4, Ky 30r Py.
The converse is obvious.
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