
 Rasmita Dash et al./ Elixir Comp. Sci. & Engg. 44 (2012) 7188-7191

7188

Introduction

The main challenge in dealing with risk management is to

provide the user with meaningful visual tool [4]. Although,

the current decision makings and risk assessment

methodologies include visualizations, not all phases in software

development are included [1].

As a result the risk assessment from one phase to another

can be significantly complicated. A significant way to show the

relationship of risk assessment from one to another is to

integrate all phases in software development. By doing this,

software developers can discover the risks earlier and help them

to determine the execution of their risk plan.

With the knowledge of risk management, software

developers will be ready to define a standard process and

methods when developing software.

In this paper, we will discuss on the traditional

software development process model - “Waterfall Model”. The

waterfall model has a clear objective where each process

takes the input from the previous step.

We have considered few risks that can be arise in

different phases of software development. And we have

discussed their effects on the project parameters. Finally we

have taken a visualization tool that is based on this

traditional software development process model.

Methodology

In order to produce good software, it is important to

take risk into account. The basic problem is that in waterfall

model the project risk remains higher throughout the software

process development.

As stated by [4], others risk analysis techniques and tools

such as decision trees, causal analysis, gap analysis, Pareto

analysis, sensitivity analysis are very well defined but used

only limited visualization tools.

Ease of use is required to construct visualization tools

which represent the interconnected of stages in software

development projects.

Firstly “Waterfall” model was selected for the analyses of

risks in the development phases. Here risks involving in the

software development phases were identified. The identified

risks are analyzed for their impact on cost, schedule, repute

of the organization, some other phases and some other factors.

Further the probability of occurrence of these risks were also

identified and analyzed in Table: 1.

With the visualization standards which consists of all

phases in this traditional development approach, this

visualization tool can be a blueprint which applicable to

commonly problems in software development projects. A

visualization tool should be thought of as a user control task

and not as report component [8]. In actual software

development, a project seldom reaches a situation where the

developers cannot control the software development, or need

considerable help from a senior manager in order to get the

Tele:

E-mail addresses: rasmita02@yahoo.co.in
 © 2012 Elixir All rights reserved

Risk assessment visualization model for software development
Rasmita Dash and Rajashree Dash

Department of School of Computer Science and Engineering, Siksha O Anusandhan University, Bhubaneswar, Orissa, India.

ABSTRACT

Software risk management is the practice of assessing risks that affects the software

development projects, process or products. Most software development confronts great risks

and risks might occur in the whole development process. This paper explores the different

risks involved in various phases of the software development process and defines mitigation

steps after analyzing risks. The objective of this research is to construct a visualization tool

for software risk assessment for all phases in software development process.

 © 2012 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 4 January 2012;

Received in revised form:

17 February 2012;

Accepted: 3 March 2012;

Keywords

Risk management,

Risk assessment,

Development Model,

Visualization tool.

Elixir Comp. Sci. & Engg. 44 (2012) 7188-7191

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

mailto:rasmita02@yahoo.co.in

 Rasmita Dash et al./ Elixir Comp. Sci. & Engg. 44 (2012) 7188-7191

7189

project back on track. The more complex a system is, the more

the we must be able to predict early on, in the development

process, those components of the software system that are

likely to have a high fault rate [2]. As been mentioned earlier,

there is no specific tool that can manage risk for the entire

development. The risk assessment are usually done in

particular phase depend on the purpose and the type of

software produced

Proposed Tool

The objective of this research is to construct a visualization

tool for risk assessment for all phases in software development.

Risk Assessment Visualization Model (RAVM) is divided

into 5 modules that cover the basic phases according to

Waterfall Model. There are planning, requirement analysis,

design, coding & implementation and integration modules. The

modules of RAVM are shown in Figure 3. Next, we present the

proposed risk assessment methods used in RAVM modules

Fig.2. Risk Assessment Visualisation Model

To begin with, software was developed based on the

project development description. As the first modules in RAVM,

the initial phase of the development is planning. This phase is

planned at general level and the most detailed level will be

covered in next phase.

RAVM in Planning Phase

In RAVM, a risk baseline is determined in planning

modules so that risk assessed is related to work and not people.

RAVM will use a method of formal risk assessment where

users need to answer questionnaires based on a risk taxonomy

checklist. It is most useful if the project managers conduct the

risk assessment at the early phase of the projects. The inputs

from questionnaires will be reserved in a risk repository for

future reference. The risk repository contains list of all possible

risk in different levels of software development. Once

completed the interview-based risk assessment, RAVM will

evaluate identified risks and categorize the risks. The evaluation

will rate at scale

RAVM in Requirement Analysis Phase

In requirement module of RAVM, the goal for this

phase is to understand the requirements document and stabilize

the requirements as soon as possible. The primary risks are that

wrong software will be developed if the requirements are not

testable and fixed. As a result, the software projects will not

complete as schedule. These are measured in terms of following

attributes

 Understandability

 Ambiguity

 Completeness

 Consistency

 Volatility

For requirement risks, RAVM will indicate the problems

based on the requirement metrics and attributes used. For

example the higher the ambiguity terms, the higher the project is

at risk. Then it determines how these risks affect the project

parameters based on their sensitivity.

As for requirement changes, RAVT will still capable to

assess the risk. The problem is the later the changes, the more

resources need to fix them.

RAVM in Design Phase

As for design, it can be depicted by showing the data flow,

control flow and the functional or non-functional structures. In

RAVM, we proposed to use the following matrices that decides

the sensitivity of the risks

 Understandabilitty

 ambiguity

 Completeness

 Cohesion and Coupling

 Fan- in/ Fan-out

By using this attributes, ambiguity can be measured by the

amount of the detail, completeness is by number of modules.

Fan-in is the count of calls to a given module and fan-out is

the count of calls from a given module.

RAVM in Coding Phase

To evaluate risk in this phase a combination of static and

dynamic model can be developed based on the source code.

There are many approaches for static testing like review,

walkthrough, inspection where as actually executing code with

a given test case is called as dynamic testing.

RAVM in Integration Phase

As testing is the last part of the project, it’s always under

pressure and time constraint. To save time and money it is

required to prioritize the testing work. How will prioritize

testing work? For this more important and less important

testing work needs to be identified. How will you decide

which work is more or less important? Here comes need of

risk-based testing. So RAVM will gather information from risk

repository and evaluate based on the weight-age determined by

users

Conclusion

The purpose of this research is to identify the different

kinds of risk that can be raised in different phases of software

development and to construct a visualization tool for risk

assessment in software development life cycle. But not

every risk factor is fully controllable and several risk

exceed the authority of software manager. Nonetheless,

risk analysis and assessment with a visualization tool is

quite effective in the identification of significant

problems. So it can provide enormous advantages to an

organization by cutting down on costs and ensuring proper

delivery as per schedule.

References:

1.Abdullah Tahir, Mateen Ahmed, Sattar. Ahsan Raza, Mustafa

Tasleem,”Risk Analysis of Various Phases of Software

Development”, European Journal of Scientific Research,

vol.40,no.3,pp.369-376,2010.

2. Adens Gillia,”The Role of Risk in a Modern Software

Development Process”,TASSC Technical paper, 2004.

3. H Ammar, T Nikzadeh, and J. B. Dugan,”A

Methodology for Risk Assessment of Functional

Specifications using Colored Petri nets”, Software Metrics

 Rasmita Dash et al./ Elixir Comp. Sci. & Engg. 44 (2012) 7188-7191

7190

Attribute Value Description

Probability Very likely

Probable

Improbable

High chances of

risk,

Threat>70%

Risk like this

may turn into a

problem once in

a while

30%<threat>70%

Less chances of

risk

Threat<30%

Impact Catastrophic

Critical

Marginal

Unrecoverable

failure of system

information

Cost turnover >

50%

Minor system

damage with

recoverable

operational

capacity

Cost turnover

exceeding 10%

and less than

50%

Minor

 systemdam

age to

project with

recoverable loss

of operational

capacity

Cost turnover <

10%

Table1.Sample Attribute Value

Symposium, Proceeding, Fourth International, pp.108 – 117,

1997.

4. Hall, M. Elaine,” Managing Risk – Methods for Software

System Development”, Addition Wesley,1998.

5. Hua He, Zhi-Yong Zhou, “Risk Management System

of Construction Enterprise”, Enterprise economy,

vol.281no.1pp.,68-69,2004

6. “Risk Management for Software: Learning to Contain,

Mitigate and Manage the Uncertainties of Software

Development “, Tim Lister.

7. The Treasury Board of Canada Secretarial .Integrated risk

management framework[R], Ottawa:Treasury Board of

Canada,1-17, 2002,

8. Lev Virine, Lisa Rapley,“Visualization of Probabilistics

usines ModelsIn Proceedings”, Winter Simulation

Conference, 2003.

9 W.Eric Wong, Yu Qi,Kendra Cooper,(2005), “Source Code

Based Software Risk Assessing”, ACM Symposium on Applied

Computing, pp.1485 – 1490,2005.

 Rasmita Dash et al./ Elixir Comp. Sci. & Engg. 44 (2012) 7188-7191

7191

Software Development

Phases
Risk

Planning Financial justification

Client knowledge

Complexity

Availability

Requirement Analysis Functional

requirements

Non-functional

requirements

No resource planning

Design Functional

complexity

Algorithmic

complexity

Module dependency

Use of appropriate

data structure

Coding &

Implementation
Use of reusable

components

Expertise of reusable

components

No team coordination

Resource

insufficient

Testing Difficult project

module integration

Project is complex to

implement

Running out of fund

Table.2 Risk in SDLC

