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Introduction  

Three well-known global changes are increasing carbon 

dioxide in the atmosphere, alterations in the biochemistry of the 

global nitrogen cycle and continuing land-use/land-cover 

change(LU/LC) (Vitousek, 1994), which generates many 

environmental consequences globally and locally, such as the 

release of greenhouse gases, the loss of biodiversity and the 

sedimentation of lakes and streams (Walker, 2004). In particular, 

it is recognized as the major driver of the loss of biodiversity 

and ecosystem services (Haines-Young, 2009). The effects of 

land-use changes on biodiversity may be greater than climate 

change, biotic exchange, and elevated carbon dioxide 

concentration at the global scale (Sala, 2000). Deforestation is 

known one of the most important elements in LU/LC. Globally, 

deforestation has been occurring at an alarming rate of 13 

million hectares per year (FAO, 2005). 

The Mediterranean area is one of the most significantly 

altered hotspots on Earth (Myers et al., 2000), It has been 

intensively affected by human activity for millennia (Covas and 

Blondel, 1998; Lavorel et al., 1998; Blondel and Aronson, 1999; 

Vallejo et al., 2005). As a result, only 4.7% of its primary 

vegetation has remained unaltered (Falcucci et al., 2007). 

Agricultural lands, evergreen woodlands and maquis habitats 

that dominate the Mediterranean basin are the result of 

anthropogenic disturbances over centuries or even millennia 

(Blondel and Aronson, 1995; Blondel, 2006). 

Although Iran has 14.4 million hectares of forestlands, it is 

still not safeguarding its natural heritage properly. A report by, 

the United Nations’ Food and Agriculture Organization (FAO), 

does not present a hopeful scenario for the Iranian environment. 

As an example, it reports that 11.5% of the country’s northern 

forests have been destroyed beyond recognition 

(http://earthtrends.wri.org). Its high deforestation rate has placed  

Iran among the top ten Asia and Pacific countries that 

destroy forests, with economic losses estimated at 6,800 billion 

rials (http://earthtrends.wri.org).  

The Zagros region is located in the west of Iran running 

from northwest to southeast. Total forest area is about 5.2 

million hectares. Population pressure has led to encroachments 

on the forestland, for agricultural and garden use, collection of 

fuel wood, mining, human settlements, grazing, utilization of 

branches and leaves of oak trees for feeding domestic animals, 

etc. People have been forced to be highly dependent on these 

degraded forests and so the forests have been reduced 

quantitatively and qualitatively. Since 1965 natural regeneration 

has been severely reduced while pests and diseases have 

increased (Fattahi, 2003). 

Amini et al.(2009) carried out a study on deforestation 

modeling and correlation between deforestation and 

physiographic parameters, man made settlements and roads 

parameters in the Zagros forests (Armerdeh forests, Baneh, Iran) 

using remote sensing and Geographic Information System 

(GIS). The result of forest change detection using forest maps of 

1955 and 2002 showed that 4853 ha of the forest area have been 

reduced and 953 ha increased in this period. The Spearman 

correlation test and logistic regression model were used to 

investigate correlation between changed forests and the 

mentioned parameters. The result showed that there is an inverse 

relationship between deforestation and distance from roads. 

Minimum and maximum deforestation were at north and east 

aspects, respectively. The result of applying logistic regression
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model indicated that distance from road is more effective than 

other parameters on deforestation in the study area.  

Lambin (1994) and Mas et al. (2004) mention that 

deforestation models are motivated by the following potential 

benefits 

(1) to provide a better understanding of how driving factors 

govern deforestation,  

(2) to generate future scenarios of deforestation rates,  

(3) to predict the location of forest clearing and,  

(4) to support the design of policy responses to deforestation. 

According to Kaimowitz and Angels(1998), one way to 

model deforestation is to make use of empirical models. Several 

studies have analyzed land-use change under these approaches 

(Mertens and Lambin, 2000; Pontius et al., 2004; Pontius and 

Spencer, 2005; Rogan et al., 2008 and Schneider and Pontius, 

2001). Logistic regression performs binomial logistic regression, 

in which the input dependent variable must be binary in nature, 

that is, it can have only two possible values (0 and 1). Such 

regression analysis is usually employed in estimating a model 

that describes the relationship between one or more continuous 

independent variable(s) to the binary dependent variable. 

Logistic regression analysis fits the data to a logistic curve 

instead of the line obtained by ordinary linear regression. In 

addition to the prediction, logistic regression is also a useful 

statistical technique that helps to understand the relation 

between the dependent variable (change) and independent 

variables (causes) (Mas et al., 2004).  

In the particular case of deforestation, the spatial forest 

change is a categorically dependent variable, which results from 

the interaction of several explanatory variables. Logistic 

regression and GIS have been demonstrated as useful tools to 

analyze deforestation by many authors (Echeverria et al., 2008; 

Etter et al., 2006c; Loza, 2004; Ludeke et al., 1990; McConnell 

et al., 2004; Rossiter and Loza, 2008 and Van Gils and Loza, 

2006). 

Logistic regression analysis has the advantage of taking into 

account several independent explanatory variables for prediction 

of a categorical variable (Van Den Eeckhaut et al., 2006). In this 

case, the dependent variable is either change or no change that 

has occurred in the forests areas.  

Landsat MSS, TM and ETM
+
 data have been broadly 

employed in studies toward the determination of LU/LC since 

1972, the starting year of Landsat program, mainly in forest and 

agriculture areas (Campbell, 2007). The rich archive and 

spectral resolution of satellite images are the most important 

reasons for their use. 

The aim of change detection process is to recognize LU/LC 

between two or more periods of time (Muttitanon and Tiipathi, 

2005). There are many techniques developed in literature using 

post classification comparison, conventional image 

differentiation, image ratio, image regression and manual on-

screen digitization of change principal components analysis and 

multi date image classification (Lu et al., 2005). A variety of 

studies have addressed that post-classification comparison was 

found to be the most accurate procedure and presented the 

advantage of indicating the nature of the changes(Mas, 1999; 

Yuan et al., 2005). In this study, change detection comparison 

technique (at the pixel level) (i.e., maximum likelihood method) 

was applied to the LU/LC maps derived from satellite imagery. 

The main objective of this study is to analyze and predict 

processes of forest conversion in the Zagros forests in western 

Iran. In order to reach the goal, the following specific objectives 

are considered:  

(1) To determine and quantify forest changes that occurred in 

the Zagros forests from 1988 to 2007.  

(2) To identify and analyze the most significant explanatory 

variables that lead to forest conversion in the Zagros forests. 

(3) To establish a predictive model based on logistic regression 

and its validation 

Materials and Methods 

Study area 

The study area is situated in the province of Ilam, west of 

Iran between 33º35´ and 33º43´ latitude and between 46º17´ and 

47º13´ longitude (Figure 1) and covers about, (225,593), ha. The 

main species of these forests consists; Quercus brantii, Q. 

infectoria and Q. libani that dominant species is Q. brantii. It 

covers a diversity of elevation, slope, population and land-use, 

etc. Beside the undamaged natural environment in some parts, a 

major part of the area has been changed by agriculture and 

grazing activities (Fattahi, 2003). 

 
Fig. 1: Location of study area 

Land-cover maps 

Multi-temporal Landsat satellite images from April 01, 

1988(path 167, row 37), March 20, 2001 and May 24, 2007, are 

obtained from the Global Land Cover Facility 

(http://www.landcover.org), University of Maryland. The dates 

of these three images are chosen to be as closely as possible in 

the same vegetation season. The resolutions of all images are 

adjusted from 28.5 m * 28.5 m to 30 m * 30 m. All visible and 

infrared bands (except the thermal infrared band) are used for 

the purpose of classification. Remote sensing image processing 

is performed using IDRISI Andes 15.0. 

The 1:25,000 digital topographic maps of the national 

cartographic Center of Iran have been used for geo-referencing 

of above mentioned three images. A Digital Elevation Model 

(DEM) generated from 20-m contour lines are used to create 

slope and elevation maps. Digital Elevation Model (DEM) is 

produced from the standard topographic maps with the scale of 

1:25,000. DEM is created by using ArcGIS 9.2 GIS software. 

Road networks and human settlements are manually digitized 

using ArcGIS 9.2 at the same scale. Pixel dimensions of all 

maps are in 30*30 m resolution. 

Pre-processing 

Landsat 2007 image is geo-referenced (Universal Transver 

Mercator-UTM(zone 38N), WGS84) to the maps of DEM, road 

networks, and human settlements, with an RMS error of less 

than 5 m by using nearest neighborhood resampling method. 

The other two Landsat images are then geo-referenced to the 

2007 image (image to image registration), with an error of less 

than 10 m. The radiometric corrections and systematic errors are 

removed from the data set providers.  

The model discussed in this paper follows four sequential 

steps: (1) Elaboration of maps of deforestation obtained by 

overlaying maps of forest-cover from more than one point in 

time, (2) Quantification of the relationships between 

deforestation and the causes (3) Statistical selection of the most 

significant explanatory variables, (4) Prediction of future 

deforestation in a business-as-usual way. 



Ali Akbar Jafarzadeh et al./ Elixir Agriculture 44 (2012) 7104-7111 
 

7106 

Methods 

IDRISI Andes 15.0 was used to determine deforestation 

rates using three different land-use/land-cover maps from 1988, 

2001 and 2007. The land-use/land-cover map of 1988 is 

produced by supervised maximum likelihood classification 

using training sites to identify forest, river, cropland, rangeland, 

barren land and settlement areas. The same methodology is 

applied to produce the land-use/land-cover maps of 2001 and 

2007. Then, the classified land-use/land-cover maps are 

reclassified into two categories as forest and non-forest. Only 

forest areas are reclassified as "forest". While river, cropland, 

rangeland, barrenland and settlement areas are reclassified as 

"non-forest". The change from forest to non-forest is classified 

as deforestation. Finally, these maps are used to calculate the 

area of each land-use/land-cover type at each time period and to 

measure the deforestation rate from 1988 to 2007. 

Classification accuracy is evaluated by calculating overall 

accuracy and Kappa coefficient using an independent sample of 

116 Ground Control Points (GCPs) obtained from field work. 

Areas of forest are calculated for the three dates and then annual 

rates of forest clearing are estimated. As a following step, 

images are overlaid in order to produce a digital map of 

deforestation that represents changes in forest cover. Therefore, 

the deforestation maps present only two classes: forest 

persistence (forest in both dates) and deforestation coded 0 and 

1, respectively (Figure 5 and 6). 

The drivers  

The first step for deforestation modelling is to identify and 

collect information about factors that play a major role in the 

deforestation occurrence. An attempt is made to determine the 

relationship between deforestation, and environmental and 

socioeconomic factors, which are considered as priori elements 

that could influence deforestation such as distance from 

settlements, distance from roads, distance from forest edge, 

elevation, slope and forest fragmentation index. All these 

variables are integrated in a GIS and co-registered geometrically 

with the forest-cover-change map derived from the analysis of 

remote sensing images. Several spatial explanatory variables 

describing potential proximate causes of deforestation are 

generated as follow: 

1. Elevation: A Digital Elevation Model (DEM) is constructed 

from the contour lines. Where the lines are digitized at the 

1:25,000 scale, at intervals of 20 meter. The resulting elevation 

map is binned with 200 meter intervals. 

2. Slope: Slope is another important factor that is generated from 

elevation using ArcGIS 9.2. 

3. Distance from forest edge: It is calculated as a series of one-

pixel-wide buffers expanding from all interfaces between pixels 

classified as forest and non-forest. To remove the influence on 

this distance, calculations of isolated pixels are classified as 

forest or non-forest, and the land-cover map is first smoothed 

using a 3*3 pixel low pass filter. For this smoothing, the most 

frequently occurring class in the window is assigned to the 

central pixel of a moving window. 

4. Distance to the nearest road: This variable is calculated as a 

series of buffers of 100 m expanding from each road segment. 

Most of the roads in the study area are gravel roads with quality 

largely dependent on the maintenance efforts and it is highly 

variable in time. Each road is, therefore, treated as equally 

suitable for transport of goods and people. 

5. Distance to the nearest settlement: It is calculated as a series 

of buffers of 100 m, expanding from each center. Only the 

officially registered village, district and town centers are taken 

into account. The following procedure is used to obtain the 

variable distances for steps 4 and 5. 

(1) Road networks and human settlements shape files were 

imported.  

(2) Raster files were created from each of the vector files.  

(3) The Operator DISTANCE was applied. 

6. Forest fragmentation index: In this study, fragmentation index 

is estimated using Matheron method (Matheron, 1970). 

Matheron method, calculated in 3*3 pixels windows, is defined 

as:  

NN

N
M

F

NFF

*

  

where NF-NF  is the number of boundaries between forest and 

non-forest pixels, Nf is the number of forest pixels and N is the 

total number of pixels. The numerator measures the number of 

pairs of adjacent pixels classified as forest and non-forest (i.e. 

the length of the perimeter line of forest pixels) and the 

denominator normalizes this count by the size of the forest and 

entire area (Mertens and Lambin, 1997).      

Logistic Regression Model (LRM) 

Forest conversion is modelled and analyzed using logistic 

regression model (LRM) in IDRISI Andes 15.0. The purpose of 

modelling was (i) to assess the relative signification of six 

explanatory variables on forest change during the period 1988-

2007; and (ii) to predict probability of deforestation for future. 

LRM is a variation of ordinary regression which is used when 

the dependent (response) variable is a dichotomous variable. 

In this study, as mentioned before, the dependent variable is 

a binary presence or absence event, where 1= forest change and 

0= no change, for the period 1988-2007. The logistic function 

gives the probability of forest change as a function of the 

explanatory variables. In other words, the probability of forest 

change for each pixel is a function of the values that the other 

variables have for the same pixel. According to Schneider and 

Pointius (2001) the function is a monotonic curvilinear response 

bounded between 0 and 1, given by a logistic function of the 

form: 

 
where: p is the probability of forest loss in the cell, E(Y) the 

expected value of the binary dependent variable Y, β0 is a 

constant to be estimated, βi’s are coefficients to be estimated for 

each independent variable Xi. The logistic function can be 

transformed into a linear response with the transformation: 

 
Hence 

 
The transformation (Eq. (2)) from the curvilinear response 

(Eq. (1)) to a linear function (Eq. (3)) is called a logit or logistic 

transformation. The transformed function allows linear 

regression to estimate each βi. Since each of the observations is a 

pixel, the final result is a probability score (p) for each pixel. 

In LRM, the significance of the coefficients βi is tested with 

the Wald test, which is obtained by comparing the maximum 

likelihood estimate of every βi with its estimated standard error 

(Hosmer and Lemeshow, 1989; Eastman, 2006). It is the 

coefficient divided by its standard error. Thus, if the relative 

error is high, the Wald statistic is small. This gives an idea of the 

significance of each predictor: the greater the absolute value, the 
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more significant. Note that the sign of the Wald statistic is the 

same as that of the coefficient, and thus gives the direction of the 

effect: increase or decrease in probability due to the predictor.  

Accordinge to Ayalew and Yamagishi (2004), in order to 

appropriately interpret the meanings of Eq. (1), one has to use 

the coefficients as a power to the natural log(e). The result 

represents the odds ratio or the probability that an event will 

occur divided by the probability that it fails to do so. If the 

coefficient is positive, its transformation to log value will be 

greater than one, meaning that the event is more likely to occur. 

If it is negative, then the transformed log value will be less than 

one and the odds of the event occurring decrease. A coefficient 

of 0 has a transformed log value of 1, and it does not change the 

odds one way or the other. For a positive coefficient, the 

probability plotted against the values of an independent variable 

follows an S-shaped curve. A mirror image will be obtained for 

a negative coefficient (Ayalew et al., 2005). 

Calibration of the Model 

To calibrate the LRM, the explanatory variables are 

incorporated in the IDRISI’s LRM as independent variables. The 

forest change for the period 1988-2001 is incorporated as the 

dependent variable. The stepwise method is used to select the 

best set of predictor variables since the study considered 6 

different predictor sets. Finally, Van Gils and Loza (2006) 

methodology is used to select the best-fitted model with the 

minimum amount of predictors measured by means of the 

Akaike Information Criterion (AIC) index. The smaller the AIC 

is, the better the fit of the model. The results are the regression 

equation of the best-fitted predictors set and a map of probability 

of deforestation. 

Prediction of the Model 

The prediction for forest change between the year 2001 and 

the year 2007 is performed using the obtained probabilities of 

deforestation for the year 2001. For the new prediction, the 

dynamic variables such as distance from forest edge, distance 

from roads and fragmentation index are changed as long as they 

were in the year 2001. The variables, distance from settlements, 

elevation and slope remained the same. The result is a new map 

of probability of forest change for the year 2007. 

Model Validation 

The observed forest change map of 2007 is used to assess 

the accuracy of probability of forest change with the Relative 

Operation Characteristic (ROC) curve, which is an effective and 

widely used method for evaluating the discriminating power of a 

statistical model (Hu and Lo, 2007; Pontius and Schneider, 

2001). Eastman (2006) also mentions that ROC can be used to 

determine how well a continuous surface predicts the locations 

given the distribution of a Boolean variable (in this study, forest 

change is the Boolean variable). A ROC curve is a graph of the 

true positive and false positives fractions. The ROC works for 

two or more land types. If a grid cell is simulated as change in a 

scenario, it is a ‘positive’. Therefore, a ‘true-positive’ is a cell 

which is categorized as change in both actual and the modeled 

scenario. Conversely, a ‘false-positive’ is a cell that is 

categorized as non-change in reality and as change in the 

modeled scenario. ROC plots the rate of true-positives on the 

vertical axis versus the rate of false-positives on the horizontal 

axis. If the sequence of the suitability values matches perfectly 

the sequence in which real land-cover change has occurred, then 

ROC equal to 1. As model performance improves, the curve 

moves towards the upper left corner and the area under ROC 

increases accordingly.  

 

Results 

Accuracy assessment was performed for 1988, 2001 and 

2007 LU/LC maps (forest/non-forest). The overall accuracy of 

the classified maps for the years 1998, 2001 and 2007 ranged 

from 83% to 87%, and Kappa indices varied from 0.71 and 0.73. 

Figures 2, 3 and 4 display the 1988, 2001 and 2007 land-cover 

maps (forest/non-forest) created for the study area, respectively. 

These images are then overlaid in order to generate the digital 

forest change detection maps for two intervals; namely, 1988–

2001 and 2001-2007 (Figures 5 and 6). The results of forest 

change detection in the Zagros forests show that, 28.2% of 

primary forest has been lost from 1988 to 2007.  

 
Fig. 2:  Forest and non-forest map of 1988 

 
Fig. 3: Forest and non-forest map of 2001 

 
Fig. 4: Forest and non-forest map of 2007 

 
Fig. 5: Cross 1988-2001 

 
Fig. 6: Cross 2001-2007 

This study selected the set predictor Step 6 as the best 

combination to be used in the prediction (Table 1). The selection 

procedure is performed as follows. According to Ayalew and 

Yamagishi (2005), a key starting point could be the model Chi-

square, whose value provides the usual significance test for 

logistic regression. It is a difference between −2lnL 

(L=likelihood) for the best-fitting model (Predictor set) and 

−2lnL0 for the null hypothesis in which all the coefficients are 
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set to 0. The value measures the improvement in fit that the 

independent variables brought into the regression. In this study, 

the high value Chi-square (for the predictor set Step6) indicates 

that the occurrence of forest change is far less likely under the 

null hypothesis (without the forest conversion influencing 

parameters) than the full regression model (where the 

parameters are included). The goodness of fit is an alternative to 

Chi-square for assessing the significance of LRM. It is 

calculated based on the difference between the observed and the 

predicted values of the dependent variable. The smaller this 

statistic is the better fit it indicates. Model step6 has a value of 

359,634, which is the smallest Goodness of fit statistic among 

the model sets. The pseudo R-square value, which can be 

calculated from 1− (ln L/ln L0), indicates how the logit model 

fits the dataset (Menard, 1995). Thus, pseudo R-square equal to 

1 indicates a perfect fit,  

whereas 0 shows no relationship. When a pseudo R-square 

is greater than 0.2, it shows a relatively good fit (Clark and 

Hosking, 1986; Ayalew et al., 2005). The pseudo R-square of 

the Step6 predictor set is 0.23. Under ROC, the step6 predictor 

set obtained an accuracy of 0.96% and provided the smallest 

AIC index making it the best-fitted predictor set(Table 2). 

Regression equation best-fitted step6 predictor set. 

Linear probability (logit)=1.95 

-0.36* Distance from roads log 

-0.45* Distance from settlements log 

-0.31* Distance from forest edge log 

  0.23* Fragmentation index 

 -0.35* Slope 

 -0.52* Elevation              

The relative contribution of the explanatory variables can be 

assessed using the corresponding coefficients in the LRM. 

According to Eastman (2006), the intercept can be thought of as 

the value for the dependent variable when each independent 

variable takes on a value of zero. The coefficients indicate the 

effects of each of the explanatory variables on the dependent 

variable. 

Figures 7 and 8 show the results of the calibration and the 

prediction of the LRM. The color in the figures indicates the 

degree of probability of deforestation. Areas in dark blue show 

high probability for forest conversion, while, areas in other 

colors have decreasing probability for deforestation. Figure 9 

illustrates the real change occurred for the period 2001 to 2007, 

areas in black are areas of changes. Figure 10 illustrates the 

ROC curve for the LRM. The Area under the ROC Curve is 

0.961. 

 
Fig. 7: Map of probabilities of deforestation obtained by 

LRM (calibration 2001) 

 
Fig. 8: Map of probabilities of deforestation obtained by 

LRM (Prediction 2007) 

 
Fig. 9: Forest change year 2007(1=change; 0= No change) 
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Fig. 10: Predictive performance assessment LRM 

(AUC/ROC) 

Discussions 

There may be many driving factors of forest conversion, 

and they may vary from place to place. In this case study, 

selected spatial variables comprise a considerable share of the 

factors driving forest changes. In particular, the accessibility 

variables seem to be more important than the topographical 

ones. Many of these factors have been found to be important in 

other areas. For example, Merten and Lambin (1997) identified 

proximity to road, town and forest/non-forest edge as important 

drivers of forest change in southern Cameroon. Elevation and 

proximity to road are highlighted as important factors of forest 

change in the lowlands of Sumatra, Indonesia (Linkie et al., 

2004). Elevation, slope, proximity to road, settlement and 

proximity to forest/non-forest edge are the key factors of forest 

change in southeast Mexico (Mas et al., 2004). The modelling of 

forest conversion considered six explanatory variables: Distance 

from forest edge, distance from roads, distance from settlements, 

elevation, slope and fragmentation index. In the LRM analysis, 

six predictor sets are compared. The best fitted predictor set is a 

combination of all the variables incorporated into the model. For 

this combination, the AUC is 96% and the AIC index is the 

lowest for the tested predictor sets. 

Among continuous variables, distance from settlements is 

the best single predictor for forest change (1988–2007), with a β 

value of -0.45. This means that the probability of forest change 

decreases in direct proportion to the increase in distance from 

the borders. In other words, the model assigns higher values of 

probability of change to areas, which are closer to the forest 

borders. Distance from roads and distance from forest edge have 

the nearly same negative value (β= -0.36; β= - 0.31). The model 

assigns the similar significance to these two variables. The 

negative value means that the probability of forest change 

decreases in direct proportion to the increase in distance from 

roads and forest edge. In other words, the model assigns higher 

values of probability of change to areas which are closer to roads 

and forest edge. Finally, forest change has positive relation with 

fragmentation index (β=+0.23). This means that fragmented 

forest is degraded more than protected area. Many studies have 

attributed road infrastructure to one main cause of deforestation. 

Geist and Lambin (2002) and Krutilla, et al., (1995) argued that 

the construction of roads requires clearing of vegetation that 

leads to deforestation. Greater access to forests and markets will 

accelerate the deforestation. 
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The variables, distance from settlements and distance from 

roads are significant factor for forest conversion in this study, as 

well as mentioned by other studies (Echeverria et al., 2008; Etter 

et al., 2006a; Etter et al., 2006b; Geist and Lambin, 2001; Loza, 

2004; Vanclay et al., 1999), In the particular case of the 

deforestation in the Zagros forests, it is believed that first people 

settle land reached beyond existing roads and then they develop 

roads to reach the already taken lands. However, this is difficult 

to verify with the data and the analysis provided by this study.   

Meanwhile, among categorical variables, elevation is the best 

single predictor for forest change (1988–2007), with a β value of 

-0.52. This means that the probability of forest change decreases 

in direct proportion to the increase in elevation from the lower 

elevations. In other words, the model assigns higher values of 

probability of change to areas, which are located in lower 

altitudes (in other words, more accessible areas). Finally, slope 

also has good negative association (β = -0.35) with forest 

change. It means with increase in slope, forest change decreases 

due to decreasing accessibility to that. The findings obtained in 

this study are in contrast to the study carried out by Loza (2004), 

who found that the topography is not a significant factor for 

forest conversion. In the Zagros forests, deforestation is less 

frequent in areas with steep slope and this study found that flat 

areas are strongly susceptible to forest conversion. The 

topography of Loza’s study area presents mostly hills (lower 

altitude) and flat areas. 

The involvement of some variables such as land tenure 

status, and other socio-economic data (level of income, level of 

education), which have contributed to deforestation might be 

incorporated in the model. Zagros forests have threats such as 

the construction of a road across the area, population density and 

agroforestry. The aim of this research is to predict probabilities 

of forest conversion. However, areas of change (not only 

probabilities) can be predicted by incorporation of methods such 

as Markov Chains, Geomod and Cellular automata. While this 

study considered only two categories, Forest and Disturbed 

Forest, further studies could model additional categories of land-

cover. 

Conclusion 

The identification of the areas vulnerable to forest changes 

is fundamental in the Zagros forests and has important 

implications for biodiversity conservation in the region. One of 

the most important applications would be to relate the spatial 

patterns of forest changes to the spatial distribution of species. 

From a protected area management perspective, the prediction 

maps of forest change patterns can help protected area managers 

to identify places, where conservation and forest management 

efforts should be focused. At a larger scale, the prediction of 

forest change patterns can aid long-term sustainable forest 

management. Policy implication of the result model prediction is 

that the government should take more attention to the population 

problem and have to create non-agricultural sectors jobs in order 

to reduce pressure on forest, especially at district which will face 

serious deforestation. This study investigated the conversion of 

forest using remote sensing, GIS and logistic regression model 

in the Zagros forests of west of Iran. The LRM is parameterized 

to simulate the conversion of forest in the near future. It is 

shown that the utility of a combination of statistical modeling 

approach and spatial analysis is necessary in order to analyze 

and predict deforestation. Distance from forest settlements, 

distance from roads, distance from forest edge, fragmentation 

index, elevation and slope are found to be the important 

variables in the model for explaining the pattern of deforestation 

observed in the Zagros forests.  
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Table 1: Coefficients of logistic regression using 6 sets of explanatory variables 
 Coefficients 

Variables Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

Intercept 0.39 1.01 1.21 1.80 2.23 1.95 

Distance from roads -0.60 -0.52 -0.38 -0.29 -0.30 -0.36 
Distance from settlements  -0.57 -0.43 -0.40 -0.41 -0.45 

Distance from forest edge   -0.38 -0.31 -0.30 -0.31 

Fragmentation index    0.29 0.25 0.23 
Slope     -0.44 -0.35 

Elevation      -0.52 
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Table 2:  Other statistics of logistic regression using 6 sets of explanatory 

variables 
Statistics Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

Total number of pixel 2,507,925 2,507,925 2,507,925 2,507,925 2,507,925 2,507,925 

−2lnL (L=likelihood) 241,734 230,936 229,930 219,983 214,249 201,426 

−2ln L0 435,731 430,328 356,701 383,941 361,618 340,231 

Model chi square 51,928 53,765 55,321 570,551 589,318 59,601 

Goodness of fit 401,369 400,187 391,442 376,964 368,980 359,634 

Pseudo R-square 0.15 0.18 0.21 0.22 0.22 0.23 

AUC 0.76 0.79 0.83 0.87 0.91 0.96 

Odds ratio 4.21 4.37 4.41 4.46 4.30 5.05 

AIC 247,651 238,756 220,908 217,781 215,645 201,341 

 


