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Introduction  
Marine viruses infect not only plankton but cultivated 

stocks of Crabs, Oysters, Mussels, Clams shrimp, Salmon and 

Catfish, etc. are all susceptible to various kinds of viruses. We 

observed that the viruses are nonliving organisms, in the sense, 

they have no metabolism when out side the host and they can 

reproduce only by infecting the living organisms. Viral infection 

of the phytoplankton cell is of two types, namely, Lysogenic and 

Lytic. In lytic viral infection, when a virus injects its DNA into a 

cell, it hijacks the cell's replication machinery and produces 

large a number of viruses. As a result, they rupture the host and 

are released into the environment. On the other hand, in 

lysogenic viral infection, the DNA of the viruses do not use the 

machinery of the host themselves, but their genes are duplicated 

each time as the host cell divides. Many papers have already 

been developed which have used this kind of lysogenic viral 

infection [1, 3, 12, 13]. 

Plankton pattern formation is dependent on the interplay of 

various physical (temperature, light) and biological (nutrient 

supply, fish predation) factors. The pattern formation focuses on 

environment, social and technological sciences where the 

nonlinearities conspire to from spatial patterns observe. The 

pattern formation in living systems is probably one of the most 

exciting subjects in modern biology and ecology.  

We observed that the pattern formations in the population 

dynamics of both aquatic system and natural environment[7, 9]. 

Our mainly study the pattern formation in marine ecosystem 

taking the phytoplankton dynamics. Plankton system is study an 

important area for research in marine ecology. Sometimes are 

stationary, spiral, traveling or disordered in space and time often 

referred as spatiotemporal chaos. The diffusion of population is 

capturing the spatial distribution (i.e. pattern) of both susceptible 

and infected class of population. The reaction-diffusion 

equations modeling predator-prey interactions show a wide 

spectrum of ecologically relevant behavior resulting from 

intrinsic factors alone[6, 10]. 

This study is partially motivated by few works, namely, (i) a 

SIAM review paper [8] that considers the reaction - diffusion 

system as a model for marine plankton dynamics, (ii) a study on 

diffusion induced chaos [11] and (iii) a phytoplankton dynamics 

with susceptible and infective classes [4]. Our mathematical 

model is an extension of temporal model presented by [4], in 

spatiotemporal domain. 

In this paper, we have introduced the spatially extended of 

the system and analyze four different cases of the system. In the 

first case, Proposed and analyzed the model , in second case, 

determined the diffusion driven stability condition, in third case, 

numerical simulation of chaos and pattern formation in 1-D and 

2-D. Fourth case, conclusion and discuss are given. 

 

Mathematical Model 

    A mathematical model of phytoplankton dynamics is 

proposed by considering the population densities of susceptible 

and infected phytoplankton as sP  and iP  respectively, at any 

instant of time T . The population of susceptible phytoplankton 

is assumed to be growing logistically with intrinsic growth rate 

r  and carrying capacity K . Let 1a  be the disease contact rate 

and 1d  be the removal rate of the diseased phytoplankton 

population, out of which 1c  fraction of infected phytoplankton 

rejoin the susceptible phytoplankton population, because, dead 

infected phytoplankton become nutrients for the growth of 

susceptible phytoplankton after bacterial decomposition and 

partially through natural recovery process in the ecosystem. The 

proposed mathematical model can state by the following 

reaction diffusion equations: 
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where 1a , 1c , 1d ,   are all positive constant and 
2  is the 

usual laplacian operator for two dimensional, i , ( 1,2=i ) are 

diffusion coefficients and a , b , c , d  are positive constants. 

The Holling type-II the functional response 
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where, n is the outward normal to .  and the parameters  , 

 ,  ,  ,   are positive constant. We assume that the system 

is defined on two dimensional bounded domain, denoted by   

and consider the zero-flux boundary conditions. 

 

Diffusion-driven Instability 

Now, in this subsection, we will explore the possibility of 

diffusion-driven instability with respect to the equilibrium 

solution, i.e., the spatially homogenous solution ),( ** vu  of the 

reaction diffusion system. Obviously, the interior equilibrium 

point 
*E  for the non-spatial system is a spatially homogeneous 

steady-state for the reaction-diffusion system (3)-(4). We 

assume that 
*E  is stable in the non-spatial system, which means 

that the spatially homogeneous equilibrium is stable with respect 

to spatially homogeneous perturbations. 

The conditions for the diffusion instability to occur in 

system (3) and (4), we take small heterogeneous perturbation 

following form:  
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 where   and   are chosen to be small and ),(= yx kkk  is 

the wave number. Substituting (7)-(8) into (3) and (4), 

linearizing the system around the interior equilibrium 
*E , we 

get the characteristic equation as follows:  

 

                     
0,|=| 2IJ kk                                        (9) 

 with  

.= 2

2221

12

2

11





















kaa

aka

J k   

where, 2I  and k are second order identity matrix and wave 

number respectively and  

2*

*
*

11
)(

21=







u

v
ua , 




=12a , 

2*

*

21
)(

=




u

v
a ,       0=22a . 

The diffusion instability conditions when at least one of (9) the 

eigenvalues of the systems matrix crosses the imaginary axis. 

The characteristic equation following form:  
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We obtain that a change in stability will occur when at least one 

of the following two inequalities does not hold:  
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where ija  are the elements of the matrix 
*J . Since   and 

2k  

are positive, both the inequalities always holds as 

0<)(= *

11 Jtra  by the stability condition of the non-spatial 

steady state. Hence in this system, the diffusion-driven 

instability never occurs. 

Numerical simulation is carried out for the linear stability of 

the system (3)-(4) taking same parameter values as in the 

previous subsection. Moreover, it is observed that the increment 

of ratio diffusivity coefficient stabilizes the system (see Fig. 1). 

 
 Figure  1: Plot of max Re ))(( k  against k, parameter 

values are given in text. 
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Now, in the next two subsection, we perform numerical 

simulation of the spatiotemporal system (3)-(4) evolution of 

pattern with respect to the time T . 

 

One Dimensional Case 

In this subsection, we will study of the following system for one 

dimensional case.  
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The numerical solutions of the phytoplankton dynamics (i.e., u, 

v) are plotted with one space coordinate and time. Computer 

experiments are done in one dimension with domain size 6000 

and we checked the sensitivity of the results to the choice of the 

time and space steps and their values are chosen sufficiently 

small. The parameter values and initial data: 2= , 

0.8= , 1= , 0.0001= , 1= , 4=h , 
210= t , 

0.3= . Varying the time to the four basic one-dimensional 

dynamics, namely stationary, intermittent chaos and chaos 

covering (almost all) of the domain (see Fig. 2). 

 
Figure  2: The red lines for susceptible phytoplankton, and 

green lines for infected phytoplankton population density. 

Simulations are obtained for different time scales: In figure 

(a)T=5, in (b) T=800, in (c) T=2000, in (d) T=10000. 

 

 

 

 

Two-Dimensional Case 

The numerical solutions of the phytoplankton dynamics (3)-

(4) are plotted for two dimensional (i.e.,) space x  and y  

coordinate with time t  with square domain 600)(600  is 

used for figure 3. The reaction diffusion equation is solved using 

finite difference technique semi implicit in time along with zero 

flux boundary condition and non-zero asymmetrical initial 

condition. The parameter values are 1= , 0.4= , 

0.6= , 2.0= , 0.0001= , 0.5= , 4=h , 

1/6=t  and initial condition (5)-(6). The time evolution of 

the system led to the formation of spiral patterns, followed by 

irregular patches covering the whole domain (see Fig. 3). The 

size of these patches has been related to the characteristic length 

of observed plankton patterns in the ocean. 

 
Figure 3: Susceptible phytoplankton densities [first column] 

and infected phytoplankton densities [second column] 

population density of the system. Spatial patterns are 

obtained different time scale. Plots show population density 

of (a)-(b) 300=T , (c)-(d) 600=T , (e)-(f) 900=T . 

 

Conclusion 

In this paper, a phytoplankton dynamics namely, susceptible 

and infected population with spatial movement have been 

studied. Also we have studied the reaction diffusion model in 

both one and two dimension space coordinates. For one 

dimensional case, we shown that how modest changes in a 

single parameter of the system time T, can lead to dramatic 

changes in the qualitative dynamics of solutions(see Fig.2). 

Furthermore, the dynamics of the spatially extended system are 

complicated and will depend on the system parameters, the 

initial data, and also the specifics of habitat geometry. There are 

situations where the local dynamics of solutions gives us 

important clues to the behavior in the spatially extended 

situation. For two dimensional case, numerical experiments for 

different values time T and different types of initial conditions 

for obtained different types of pattern (see Fig. 3). Hence, the 

the rate of growth of susceptible phytoplankton due to the dead 

infected phytoplankton (which become nutrients of susceptible 
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phytoplankton after bacterial decomposition) is a major factor 

for the stability of the system. 
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