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Introduction  

Centrality and Centralization 

The idea of the centrality of individuals and organizations in 

their social networks was one of the earliest to be pursued by 

social network analysts. The immediate origins of this idea are 

to be  found in the sociometric concept of the ‟star‟ - that person 

who is the most ‟popular‟ in his or her group or who stands at 

the center of attention. The formal properties of centrality were 

initially investigated by Bavelas (1950), and, since his 

pioneering work, a number of competing concepts of centrality 

have been proposed. As a result of this proliferation of formal 

measures of centrality, there is considerable confusion in the 

area. What unites the majority of the approaches to centrality is 

a concern for the relative centrality of the various vertices in the 

graph the question of so-called ‟vertex centrality‟. But from this 

common concern they diverge sharply. In this paper we will 

review a number of measures of vertex centrality, focusing on 

the important distinction between „local‟ and „global‟ vertex 

centrality. A vertex is locally central if it has a large number of 

connections with the other vertices in its immediate environment 

if, for example, it has a large „neighborhood‟ of direct contacts. 

A vertex is globally central, on the other hand, when it has a 

position of strategic significance in the overall structure of the 

network. Local centrality is concerned with the relative 

prominence of a focal vertex in its neighbourhood, while global 

centrality concerns prominence within the whole network. 

Related to the measurement of vertex centrality is the idea of the 

overall ‟centralization‟ of a graph, and these two ideas have 

sometimes been confused by the use of the same term to 

describe them both. Freeman‟s important and influential study 

(1979), for example, talks of both ‟vertex centrality‟ and ‟graph 

centrality‟. Confusion is most likely to be avoided if the term; 

centrality‟ is restricted to the idea of vertex centrality, while the 

term ‟centralization‟ is used to refer to particular properties of 

the graph structure as a whole. Centralization, therefore, prefers 

not to the relative prominence of vertices, but to the overall 

cohesion or integration of the graph. Graphs may, for example, 

be more or less centralized around particular vertices or sets of 

vertices. A number of different procedures have been suggested 

for the measurement of centralization, contributing further to the 

confusion which besets this area. Implicit in the idea of 

centralization is that of the structural „center‟ of the graph, the 

vertex or set of vertices around which a centralized graph is 

organized. There have been relatively few attempts to define the 

idea of the structural center of a graph, and it will be necessary 

to give some consideration to this. 

Centrality: Local and Global 

 The concept of vertex centrality, originated in the 

sociometric concept of the ‟star‟. A central vertex was one 

which was ‟at the center‟ of a number of connections, a vertex 

with a great many direct contacts with other vertices. The 

simplest and most straightforward way to measure vertex 

centrality, therefore, is by the degrees of the various vertices in 

the graph. The degree, it will be recalled, is simply the number 

of other vertices to which a vertex is adjacent. A vertex is 

central, then, if it has a high degree; the corresponding agent is 

central in the sense of being ‟well-connected‟ or ‟in the thick of 

things‟. A degree-based measure of vertex centrality, therefore, 

corresponds to the intuitive notion of how well connected a 

vertex is within its local environment. Because this is calculated 

simply in terms of the number of vertices to which a particular 

vertex is adjacent, ignoring any indirect connections it may 

have, the degree can be regarded as a measure of local centrality. 

The most systematic elaboration of this concept is to be found in 

Nieminen (1974). 

 Degree-based measures of local centrality can also be 

computed for vertices in directed graphs, though in these 

situations each vertex will have two measures of its local 

centrality, one corresponding to its indegree and the other to its 

outdegree. In directed graphs, then, it makes sense to distinguish 

between the ‟in-centrality‟ and the ‟out-centrality‟ of the various 

vertices. 
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A degree-based measure of vertex centrality can be 

extended beyond direct connections to those at various path 

distances. In this case, the relevant ‟neighbourhood‟ is widened 

to include the more distant connections of the vertices. A vertex 

may, then, he assessed for its local centrality in terms of both 

direct (distance 1) and distance 2 connections or, indeed, 

whatever cut-off path distance is chosen. The principal problem 

with extending this measure of vertex centrality beyond distance 

2 connections is that, in graphs with even a very modest density, 

the majority of the vertices tend to be linked through indirect 

connections at relatively short path distances. Thus, comparisons 

of local centrality wares at distance 4, for example, are unlikely 

to be informative if most of the vertices are connected to most 

other vertices at this distance. Clearly, the cutoff threshold 

which is to be used is a matter for the informed judgment of the 

researcher who is undertaking the investigation, but distance 1 

and distance 2 connections are likely to be the most informative 

in the majority of studies. 

 
Figure 1 

It is important to recognize that the measurement of local 

centrality does not involve the idea that there will be any 

unique,‟central‟ vertex in the network. In Figure 1, for example, 

vertices A, B and C can each be seen as local centers: they each 

have a degree of 5, compared with degrees of 1 or 2 for all other 

vertices. Even if vertex A had many More direct connections 

than vertices B and C it would not be ‟the‟ center of the 

network: it lies physically towards one ‟side‟ of the chain of 

vertices, and its centrality is a purely ‟local‟ phenomenon. The 

degree, therefore, is a measure of local centrality, and a 

comparison of the degrees of the various vertices in a graph can 

show how well connected the vertices are with their local 

environments. This measure of local centrality has, however, 

one major limitation. This is that comparisons of centrality 

mores can only meaningfully be made the members of the same 

graph or between graphs which are the same size. The degree of 

a vertex depends on, among other things, the size of the graph, 

and so measures of local centrality cannot be compared when 

graphs differ significantly in size. The use of the raw degree 

score may, therefore, be misleading. A central vertex with a 

degree of 25 in a graph of 100 vertices, for example, is not as 

central as one with a degree of 25 in a graph of 30 vertices, and 

neither can be easily compared with a central vertex with a 

degree of 6 in a graph of 10 vertices, In an attempt to overcome 

this problem, Freeman (1979) has proposed a relative measure 

of local centrality in which the actual number of connections is 

related to the maximum number which it could sustain. A degree 

of 25 in a graph of 100 vertices, therefore, indicates a relative 

local centrality of 0.25, while a degree of 25 in a graph of 30 

vertices indicates a relative centrality of 0,86, and a degree of 6 

in a graph of 10 vertices indicate a relative centrality of  0.66.‟ 

Figure 1 shows that relative centrality can also t-e used to 

compare vertices within the same network, It should also be 

clear that this idea can be extended to directed graphs. A relative 

measure, therefore, gives a far more standardized approach to 

the measurement of local centrality. 

The problem of comparison which arises with raw degree 

measures of centrality is related to the problem of comparing 

densities between different graphs, which was discussed in the 

previous chapter. Both are limited by the question of the size of 

the graphs. It will be recalled, however, that the density level 

also depends on the type of relation that is being analyzed. The 

density of an ‟awareness‟ network, I suggested, would be higher 

than that of a ‟loving‟ network. Because both density and vertex 

centrality are computed from degree measures, exactly the same 

considerations apply to measures of vertex centrality. Centrality 

measured in a loving network, for example, is likely to be lower, 

other things being equal, than centrality in an awareness 

network. Relative measures of vertex centrality do nothing to 

help with this problem. Even if local centrality scores are 

calculated in Freeman‟s relative terms, they should be compared 

only for networks which involve similar types of relations. Local 

centrality is, however, only one conceptualization of vertex 

centrality, and Freeman (1979, 1990) has proposed a measure of 

global centrality based around what he terms the ‟closeness‟ of 

the vertices. Local centrality measures, whatever path distance is 

used, are expressed in terms of the number or proportion of 

vertices to which a vertex is connected. Freeman‟s measure of 

global centrality is expressed in terms of the distances among 

the various vertices. It will be recalled that two vertices are 

connected by a path if there is a .sequence of distinct lines 

connecting them, and the length of a path is measured by the 

number of lines which make it up. In graph theory, the length of 

the shortest path between two vertices is a measure of the 

distance between them. The shortest distance between two 

vertices on the surface of the earth lies along the geodesic which 

connects them, and, by analogy, the shortest path between any 

particular pair of vertices in a graph is termed a „geodesic‟. A 

vertex is globally central if it lies at short distances from many 

other vertices. Such a vertex is ‟close‟ to many of the other 

vertices in the graph. 

The simplest notion of closeness is, perhaps, that calculated 

from the ‟sum distance‟, the sum of the geodesic distances to all 

other vertices in the graph (Sabidussi, 1966). If the matrix of 

distances between vertices in an undirected graph is calculated, 

the sum distance of a vertex is its column or row sum in this 

matrix (the two values are the same). A vertex with a low sum 

distance is ‟close‟ to a large number of other vertices, and so 

closeness can be seen as the reciprocal of the sum distance. In a 

directed graph, of course, paths must be measured through lines 

which run in the same direction, and, for this reason, 

calculations based on row and column sums will differ. Global 

centrality in a directed graph, then, can be seen in terms of what 

might be termed ‟in-closeness‟ and ‟out-closeness‟. The Table 1 

compares a sum distance measure of global centrality with 

degree-based measures of absolute and relative local centrality. 

It can be seen that A, B and C are equally central in local terms, 

but that B is more globally central than either A or C. In global 

terms, G and M are less central than B, but more central than the 

locally central vertices A and C. These distinctions made on the 

basis of the sum distances measure; therefore, confirm the 

impression gained from a visual inspection of the graph. This is 

also apparent in the measures for the less central vertices. All the 

remaining vertices have a degree of 1, indicating low local 

centrality, yet the sum distance measure clearly brings out the 

fact that J, K and L are more central in global terms than are the 

other vertices with degree 1. 
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Freeman (1979) adds yet a further concept of vertex 

centrality, which he terms the betweenness. This concept 

measures the extent to which a particular vertex lies ‟between‟ 

the various other vertices in the graph: a vertex of relatively low 

degree may play an important ‟intermediary‟ role and so be very 

central to the network. Vertices G and M in Figure 1, for 

example, lie between a great many pairs of vertices. The 

betweenness of a vertex measures the extent to which an agent 

can play the pan of a ‟broker‟ or ‟gatekeeper‟ with a potential 

for control over others. G could, therefore, be interpreted as an 

intermediary between the act of agents centered on B and that 

centered around A, while M might play the same role for the sets 

of B and C. Freeman‟s approach to betweenness is built around 

the concept of ‟local dependency‟. A vertex is dependent upon 

another if the paths which connect it to the other vertices pass 

through this vertex. In Figure 1, for example, vertex E is 

dependent on vertex A for access to all other parts of the graph, 

and it is also dependent, though to a lesser extent, on vertices G, 

B, M and C. Betweenness is, perhaps, the most complex of the 

measures of vertex centrality to calculate. The ‟betweenness 

proportion‟ of a vertex Y for a particular pair of vertices X and Z 

is defined as the proportion of geodesics connecting that pair 

which pass through Y it measures the extent to which Y is 

‟between‟ X and Z 3 ‟Me ‟pair dependency‟ score of vertex X 

on vertex Y is then defined as the sum of the betweenness 

proportions of Y for all pairs which involve X. The ‟local 

dependency matrix‟ contains these pair dependency scores, the 

entries in the matrix showing the dependence of each row 

element on each column element. The overall ‟betweenness‟ of a 

vertex is calculated as half the sum of the values in the columns 

of this matrix, i.e., half the sum of all pair dependency scores for 

the vertices represented by the columns. Despite this rather 

complex calculation, the measure is intuitively meaningful, and 

it is easily computed with the UCINET and GRADAP programs. 

In Freeman‟s work, then, can be found the basis for a whole 

family of vertex centrality measures: local centrality (degree), 

betweenness and global centrality (closeness), I have shown how 

comparability between different social networks can be 

furthered by calculating local centrality in relative rather than 

absolute terms, and Freeman has made similar proposals for his 

other measures of centrality. He has produced his own relative 

measure of betweenness, and he has used a formula of 

Beauchamp (1965) for a relative closeness measure. 

All these measures, however, are based on raw scores of 

degree and distance, and it is necessary to turn to Bonacich 

(1972, 1987) for an alternative approach which uses weighted 

scores. Bonacich holds that the centrality of a particular vertex 

cannot be assessed in isolation from the centrality of all the other 

vertices to which it is connected. A vertex which is connected to 

central vertices has its own centrality boosted, and this, in turn, 

boosts the centrality of the other vertices to which it is connected 

(Bonacich, 1972). There is, therefore, an inherent Circularity 

involved in the calculation of centrality. According to Bonacich, 

the local centrality of vertex i in a graph, ci, is calculated by the 

formula rijcj, where rij is the value of the line connecting vertex 

i and vertex i and cj is the centrality of vertex j. That is to say, 

the centrality of i equals the sum of its connections to other 

vertices, weighted by the centrality of each of these other 

vertices.  

Bonacich (1987) has subsequently generalized his initial 

approach, did Freeman, to a whole family of local and global 

measures. The most general formula for centrality, he argued, is 

ci = rijcj (+ cj). In this formula, the centrality weighting is itself 

modified by the two parameters; and, is introduced simply as an 

arbitrary standardizing constant which ensures that the final 

centrality measures will vary around a mean value of 1, on the 

other hand, is of more substantive significance. It is a positive or 

negative value which allows the researcher to set the path 

distances which are to be used in the calculation of centrality. 

Where is set as equal to zero, no indirect links are taken into 

account, and the measure of centrality is a simple degree-based 

measure of local centrality. Higher levels of increase the path 

length, so allowing the calculation to take account of 

progressively more distant connections. Bonacich claims that 

measures based on positive values of correlate highly with 

Freeman‟s measure of closeness. A major difficulty with 

Bonacich‟s argument, however, is that the values given to 0 are 

the results of arbitrary choices made by researchers. It is difficult 

to know what theoretical reasons there might be for using one 0 

level rather than another.  

While the original Bonacich measure may be intuitively 

comprehensible, the generalized model is more difficult to 

interpret for values of P which are greater than zero. On the 

other hand, the suggestion that the value of 0 can be either 

positive or negative does provide a way forward for the analysis 

of signed graphs. Bonacich himself suggests that negative values 

correspond to ‟zero-sum‟ relations, such as these involved in the 

holding of money and other financial resources. Positive values, 

on the other hand, correspond to ‟non-zero-sum‟ relations, such 

as those involving access to information. I have discussed 

centrality principally in terms of the most central vertices in a 

graph, but it should be clear that centrality scores also allow the 

least central vertices to be identified. Those vertices with the 

lowest centrality, however this is measured, can be regarded as 

the peripheral vertices of the graph. This is true, for example, for 

all the vertices in Figure 1 which have degree 1. They are locally 

peripheral in so far as they are loosely connected into the 

network. The global centrality scores in Figure 1, however, 

show that vertices J, K and L are not as globally peripheral as 

the other vertices with degree 1. 

Centralization and Graph Centers 

I have concentrated, so far, on the question of the centrality 

of particular vertices. But it is also possible to examine the 

extent to which a whole graph has a centralized structure. The 

concepts of density and centralization refer to differing aspects 

of the overall ‟compactness‟ of a graph. Density describes the 

general level of cohesion in a graph; centralization describes the 

extent to which this cohesion is organized around particular 

focal vertices. Centralization and density, therefore, are 

important complementary measures.  

 
Figure 2 A highly centralized graph 

Figure 2 shows a simplified model of a highly centralized 

graph: the whole graph is organized, in important respects, 

around vertex A as its focal vertex, how is this level of 

centralization to be measured? Freeman (1979) has shown how 
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measures of vertex centrality can be converted into measures of 

the overall level of centralization which is found in different 

graphs. A graph centralization measure is an expression of how 

tightly the graph is organized around its most central vertex. 

Freeman‟s measures of centralization are attempts to isolate the 

various aspects of the simplified notion of centralization. On this 

basis, he identifies three types of graph centralization, rooted in 

the varying conceptions of vertex centrality which Freeman has 

defined. The general procedure involved in any measure of 

graph centralization is to look at the differences between the 

centrality scores of the most central vertex and those of all other 

vertices. Centralization, then, is the ratio of the actual sum of 

differences to the maximum possible sum of differences. The 

three different ways of operationalizing this general measure 

which Freeman discusses follow from the use of one or other of 

the three concepts of vertex centrality. Freeman (1979) shows 

that all three measures vary from 0 to I and that a value of I is 

achieved on all three measures for graphs structured in the form 

of a ‟star‟ or ‟wheel‟. He further shows that a value of 0 is 

obtained on all three measures for a ‟complete‟ graph. Between 

these two extremes lie the majority of graphs for real social 

networks, and it is in these cases that the choice of one or other 

of the measures will be important in illuminating specific 

structural features of the graphs. A degree-based measure of 

graph centralization, for example, seems to be particularly 

sensitive to the local dominance of vertices, while a 

betweenness-based measure is rather more sensitive to the 

‟chaining‟ of vertices. 

Assessing the centralization of a graph around a particular 

focal vertex is the starting vertex for a broader understanding of 

centralization. Measures of centralization can tell us whether a 

graph is organized around its most central vertices, but they do 

not tell us whether these central vertices comprise a distinct set 

of vertices which cluster together in a particular part of the 

graph. The vertices in the graph which are individually most 

central, for example, may be spread widely through the graph, 

and in such cases a measure of centralization might not be 

especially informative. It is necessary, therefore, to investigate 

whether there is an identifiable ‟structural center‟ to a graph. 

The structural center of a graph is a single vertex or a cluster of 

vertices which, like the center of a circle or a sphere, is the pivot 

of its organization, This approach to what might be called 

‟nuclear centralization‟ has been outlined in an unpublished 

work of Stokman and Snijders,,‟ Their approach is to define the 

set of vertices with the highest vertex centrality scores as the 

‟center‟ of the graph. Having identified this set, researchers can 

then examine the structure of the relations between this set of 

vertices and all other vertices in the graph. A schematic outline 

of the Stokman and Snijders approach is shown in Figure 3.  

 
Figure 3 

If all the vertices in a graph are listed in order of their vertex 

centrality - Stokman and Snijders use local centrality then the set 

of vertices with the highest centrality is the center. The boundary 

between the center and the rest of the graph is drawn wherever 

there appears to be a ‟natural break‟ in the distribution of 

centrality scores. The decrease in the centrality score of each 

successive vertex may, for example, show a sharp jump at a 

particular vertex in the distribution, and this is regarded as the 

boundary between the center and its ‟margin‟. The margin is the 

set of vertices hich clusters close to the center and which is, in 

turn, divided from the ‟peripheral‟ vertices by a further break in 

the distribution of centrality scores. The Stokman and Snijders 

concept applies only to highly centralized graphs. In a graph 

such as that in Figure 2, which is centralized around a particular 

set of central vertices, as measured by one of Freeman‟s 

indicators. It may be cry informative to try to identify the sets 

defined by Stokman and Snijders, though there will be an 

inevitable arbitrariness in identifying the boundaries between 

center, margin and periphery.  

A solution to both of these problems, though not one 

pursued by Stokman and Snijders, is to use some kind of clique 

or cluster analysis to identify the boundaries of the structural 

center if the most central vertices, for example, constitute a 

clearly defined and well-bounded ‟clique‟, then it may make 

sense to regard them as forming the nuclear center of the graph. 

But not all graphs will have such a hierarchical structure of 

concentric sets. Where the central vertices do not cluster 

together as the nucleus of a centralized graph, the Stokman and 

Snijders ‟centre‟ will constitute simply a set of locally central, 

though dispersed, vertices. In such circumstances, it is not 

helpful to use the term ‟center‟. It is possible to extend the 

analysis of centralization a little further by considering the 

possibility that there might be an ‟absolute center‟ to a graph. 

The absolute center of a graph corresponds closely to the idea of 

the center of a circle or a sphere; it is the focal vertex around 

which the graph is structured. The structural center, as a set of 

vertices, does not meet this criterion. The absolute center must 

be a single vertex. The center of a circle, for example, is that 

unique place which is equidistant from all vertices on its 

circumference. By strict analogy, the absolute center of a graph 

ought to be equidistant from all vertices in the graph. This idea 

is difficult to operationalize for a graph, and a more sensible 

idea would be to relax the criterion of equidistance and to use, 

instead, the idea of minimum distance. That is to say, the 

absolute center is that vertex which is ‟closest‟ to all the other 

vertices in terms of path distance.  

Christofides has suggested using the distance matrix to 

conceptualize and compute the absolute center of a graph. The 

beat step in his argument follows a similar strategy to that used 

by Freeman to measure ‟closeness‟. Having constructed the 

distance matrix, which shows the shortest path distances 

between each pair of vertices, he defines the eccentricity, or 

‟separation‟, of a vertex as its maximum column (or row) entry 

in the matrix,‟ The eccentricity of a vertex, therefore, is the 

length of the longest geodesic incident to it. Christofides‟s first 

approximation to the idea of absolute centrality is to call the 

vertex with the lowest eccentricity the absolute center. Vertex B 

in sociogram (i) of Figure 4 has an eccentricity of 1, and all the 

other vertices in the graph have eccentricity 2. In this sociogram, 

then, vertex B, with the lowest eccentricity, is the absolute 

center. In other graphs, however, there may be no single vertex 

with minimum eccentricity. There may be a number of vertices 

with equally low eccentricity, and in these circumstances a 

second step is needed. This second step in the identification of 

the absolute center involves searching for an imaginary vertex 

which has the lowest possible eccentricity for the particular 
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graph. The crucial claim here is that, while the absolute center of 

a graph will be found on one of its constituent paths, this place 

may not correspond to any actual vertex in the graph. Any graph 

will have an absolute center, but in some graphs this center will 

be an imaginary rather than an actual vertex. 

This claim is not so strange as it might at first seem. All the 

points in sociogram (ii) in Figure 5.4 base eccentricity 2, and so 

all are equally 'central'. It is possible, however, to conceive of an 

imaginary point, Z, which is mid-way between points A and B, 

as in sociogram (iii), 'Point' Z is distance 0.5 from both A and B, 

and it is distance 1.5 from points C, D and E. The artificial point 

Z is more central than any of the actual points, as its eccentricity 

is 1.5.   

 
Figure 5.4 The absolute center of a graph 

But it is still not possible to find a single absolute centre for 

this sociogram. The imaginary point Z could, in fact, have been 

placed at the midpoint of any of the lines in the sociogram with 

the same results, and there is no other location for the imaginary 

point which would not increase its minimum eccentricity. The 

best that can be said for this graph, therefore, is that there are six 

possible locations for the absolute centre, none of which 

corresponds to an actual point. Moving to the second step of 

searching for an imaginary point as the absolute centre, then, 

will reduce the number of graphs for which there is no unique 

absolute centre, but it does not ensure that a single absolute 

centre can be identified for all graphs. Thus, some graphs will 

have a unique absolute centre, while others will have a number 

of absolute centers. Christofides provides an algorithm which 

would identify, through iteration, whether a graph contains a 

mid-point or actual point which is its unique absolute centre. “In 

sociogram (iv) of Figure 5.4, for example, there is a unique 

absolute centre. Its 'point' Z has an eccentricity of 1.5, compared 

with eccentricity scores of 2.5 for any other imaginary mid-

point, 2 for points A and B, and 3 for points C, D, E, F and G. 

“A Digression on Absolute Density" 

The problem with the existing measures of density, as I 

showed in the previous chapter, is that they are size-dependent. 

Density is a measure which is difficult to use in comparisons of 

graphs of radically different sizes. Density is relative to size. 

This raises the question of whether it might not be possible to 

devise a measure of absolute density which would be of more 

use in comparative studies. I cannot give a comprehensive 

answer to that question here, but the idea of the absolute centre 

of a graph does raise the possibility that other concepts required 

for a measure of absolute density might be formulated along 

similar lines. A concept of density modelled on that used in 

physics for the study of solid bodies, for example, would require 

measures of 'radius', 'diameter' and 'circumference', all of which 

depend on the idea of the absolute centre. The radius of a 

circular or spherical object is the distance from its center to its 

circumference, on which are found its most distant reachable 

points. Translating this into graph theoretical terms, the 

eccentricity of the absolute centre of a graph can be regarded as 

the 'radius' of the graph. The 'diameter' of a graph, as will be 

shown in the following chapter, is defined as the greatest 

distance between any pair of its points. In sociogram (iv) of 

Figure 5.4, for example, the radius is 1.5 and the diameter is 3. 

In this case, then, the diameter is equal to twice the radius, as 

would be the case in the conventional geometry of a circle or a 

sphere. This ill not, however, be true for all graphs. 

In geometry there is a definite relationship between the area 

and the volume of a body, these relationships being 

generalizable to objects located in more than three dimensions. 

The area of a circle is wr' and the volume of a sphere is 4,r3/3, 

where w is the ratio of the circumference to the diameter. 'Me 

general formula for the area of a circle, therefore, is c,21d, and 

that for the volume of a sphere is 4cr'13d, where c is the 

circumference, r is the radius and d is the diameter. Applying 

this to the simple sociogram (iv) of Figure 5.4 would show that 

it has a volume of 4c(I.5)/9, or 1.5c.'3 But what value is to be 

given to c in this formula? If the diameter of a graph is taken to 

be the length of the geodesic between its most distant points (the 

longest geodesic), the circumference might most naturally be 

seen as the longest possible path in the graph. In sociogram (iv), 

this is the path of length 5 which connects point G to point F. 

Thus, the 'volume' of the example sociogram is 7.5. Relatively 

simple geometry has, therefore, enabled us to move a pan of the 

way towards a measure of the absolute density of a graph in 

three dimensions. Density in physics is defined as mass divided 

by volume, and so to complete the calculation a measure of the 

'mass' of a graph is required. Mass in physics is simply the 

amount of matter that a body contains, and the most 

straightforward graph theoretical concept of mass is simply the 

number of lines that a graph contains. In sociogram (iv) there are 

eight lines, and so its absolute density would be 817.5, or 1.06. 

Generalizing from this case, it can be suggested that the 

absolute density of a graph is given by the formula 11(4c,'13d), 

where I is the number of lines. Unlike the relative density 

measure discussed in the previous chapter, this formula gives an 

absolute value which can be compared for any and all graphs, 

regardless of their size. But one important reservation must be 

entered: the value of the absolute density measure is dependent 

on the number of dimensions in which it is measured. The 

absolute density measure given here has been calculated for 

graphs in three dimensions. The concept could be generalized to 

higher dimensions, by using established formulae for 'hyper-

volumes', but such an approach would require some agreement 

about how to determine the dimensionality of a graph.      

Bank Centrality in Corporate Networks 

Studies of interlocking directorships among corporate 

enterprises are far from new, but most of the studies which had 

been carried out prior to the 1970s had made little use of the 

formal technique, of social network analysis. Despite some 

limited use of density measures and cluster analysis, most of 

these studies twit a strictly quantitative approach, simply 

counting the numbers of directorships and interlocks among the 

companies. Levine's influential paper (1972) marked a shift in 

the direction f this research while, at about the same time, 

Mokken and his associates in the Netherlands began a 

pioneering study in the systematic use of graph theory to explore 

corporate interlocks (Helmets et at., 1975). The major turning 

point, however, occurred in 1975, when Michael Schwartz and 

his students presented their major conference paper which 

applied the concept of centrality to corporate networks (Bearden 

et a]., 1975). This long paper circulated widely in cyclostyled 

form and, despite the fact that it remains unpublished, it has 
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been enormously influential. The work of Schwartz's group, and 

that which it has stimulated, provides a compelling illustration 

of the conceptual power of the idea of point centrality 

Michael Schwartz and Peter Mariolis had begun to build a 

database of top American companies during the early 1970s, and 

their efforts provided a pool of data for many subsequent studies 

(see, for example, Marioiis, 1975; Sonquist and Koenig, 1975). 

They gradually extended the database to include the top 500 

industrial and the top 250 commercial and financial companies 

operating in the United States in 1962, together with all new 

entrants to this 'top 750' for each successive year from 1963 to 

1973. The final database included the names of all the directors 

of the 1131 largest American companies in business during the 

period 1962-73; a total of 13,574 directors. This database is, by 

any standard, that for a large social network, As such, it lends 

itself to the selection of substantial sub-sets of data for particular 

years. One such sub-set is the group of the 797 top enterprises of 

1969 which were studied by Mariolis (1975). 

The path-breaking paper of Schwartz and his colleagues 

(Bearden et at., 1975) drew on the Schwartz Marietta database, 

and it analysed the data using Granovetter's (1973) conceptual 

distinction between strong and weak ties. The basis of their 

argument was that those interlocks which involved the full-time 

executive officers the enterprises could be regarded as the 

'strong' ties of the corporate network, while those high involved 

only the part-time non-executive directors were its 'weak' ties. 

The basis of this theoretical claim was that the interlocks which 

were carried by fulltime executive officers were the most likely 

board-level links to have a strategic salience for the enterprises 

concerned. For this reason, they tended to be associated with 

intercorporate shareholdings and trading relations between the 

companies." Interlocks created by non-executive directors, on 

the other hand, involved less of a time commitment and so had 

less strategic significance for the enterprises concerned, 

The top enterprises were examined for their centrality, using 

Bonacich's (1972) measure. This, it will be recalled, is a 

measure in which the centrality of a particular point could be 

measured by a combination of its degree, the value of each line 

incident to it, and the centrality of the other points to which it is 

connected. This is a ,recursive', circular measure which, 

therefore, requires a considerable amount of computation. A 

network containing 750 enterprises, for example, will require the 

solution of 750 simultaneous equations. The first step in 

Bearden et al.'s analysis was to decide on an appropriate 

measure for the value of the lines which connected the 

enterprises. For the weak, undirected lines, Bearden et al. held 

that the value of each should be simply the number of separate 

interlocks, weighted by the sizes of the two boards. This 

weighting rested on the supposition that having a large number 

of interlocks was less significant for those enterprises with large 

boards than it was for those with small boards. The formula used 

in the calculation was bij/SQRT(didj), where bij is the number 

of interlocks between the two companies i and j, and di and dj 

are the sizes of their respective boards. This formula allows 

Bonacich's centrality measure to be calculated on the basis of all 

the 'weak ties' in the graph. 

A more complex formula was required to measure centrality 

in terms of the strong ties. In this case, the measure of the value 

of each line needed to take some account of the direction which 

was attached to the lines in the graph. For those companies 

which were the 'senders' of lines (the 'tails', in the terminology of 

the GraDAP program) the value of the lines was calculated by 

the number of directors 'sent', weighted by the board size of the 

'receiving' company. The attempt in this procedure was to 

weight the line by the salience of the interlock for the receiving 

board. Conversely, for those companies which were the 

'receivers' of interlocks (the 'heads'), the number of directors 

received was weighted by the sender's board size, 16 For the 

final calculation of centrality scores, Bearden el al. introduced a 

further weighting. Instead of taking simply the raw weighted 

scores for the tails and the heads, they took 90 per cent of the 

score for the senders and 10 per cent of the score for the 

recipients. The reasoning behind this weighting of the scores 

was the theoretical judgement that, in the world of corporate 

interlocking, it is 'more important to give than to receive': the 

sending of a director was more likely to be a sign of corporate 

power than was the receiving of a directorship. Thus, the 

arbitrary adjustment to the centrality scores was introduced as a 

way of embodying this judgement in the final results. 

The Bonacich measure of centrality which was calculated 

for the companies in the study correlated very highly, at 0.91, 

with the degrees of the companies. Bearden et al. held, however, 

that the more complex Bonacich measure was preferable 

because it had the potential to highlight those enterprises which 

had a low degree but which were, nevertheless, connected to 

highly central companies. Such a position, they argued, may be 

of great importance in determining the structural significance of 

the companies in the economy. 

Schwartz and his colleagues also used a further approach to 

centrality, which they termed 'peak analysis'. This was later 

elaborated by Mizruchi (1982) as the basis for an interpretation 

of the development of the American corporate network during 

the twentieth century. A point is a peak, it was argued, if it is 

more central than any other point to which it is connected. Mintz 

and Schwartz (1985) extend this idea by defining a bridge as a 

central point which connects two or more peaks (see Figure 5.5). 

They further see a 'cluster' as comprising all the direct contacts 

of a peak, except for those which have a similar distance I 

connection to another peak. Thus, peaks lie at the hearts of (heir 

clusters.,, 

 
Figure 5.5 Peaks and Bridges 

The results which were arrived at through the use of these 

techniques for the measurement of point centrality have become 

widely accepted as indicating some of the most fundamental 

features of intercorporate networks. In summary, Bearden et al. 

argued that the American intercorporate network showed an 

overall pattern of 'bank centrality': banks were the most central 

enterprises in the network, whether measured by the strong or 

the weak ties. Bank centrality was manifest in the co-existence 

of an extensive national interlock network (structured 

predominantly by weak ties) and intensive regional groupings 

(structured by the strong ties). Strong ties had a definite regional 

base to them. The intensive regional clusters were created by the 

strong ties of both the financial and the non-financial 

enterprises, but the strong ties of the banks were the focal 

centres of the network of strong ties. The intercorporate network 
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of 1962, for example, consisted of one very large connected 

components two small groupings each of four or five 

enterprises, and a large number of pairs and isolated enterprises. 

Within the large connected component, there were five peaks 

and their associated clusters, The dominant element in the 

network of strong ties was a regional cluster around the 

Continental Illinois peak, which, with two other Chicago banks, 

was connected with a group of II mid-Western enterprises with 

extensive connections to a larger grouping of 132 enterprises. 

The remaining four peaks in the network of strong ties were 

Mellon National Bank, J.P. Morgan, Bankers Trust and United 

California Bank, their clusters varying in size from four to ten 

enterprises. 

Overlying this highly clustered network of strong, regional 

ties was an extensive national network created by the weak ties 

which linked the separate clusters together. This national 

network, Bearden et al. argued, reflected the common 

orientation to business art airs and a similarity of interests which 

all large companies shared. Interlocks among the non-executive 

directors expressed this commonality and produced integration, 

unity and interdependence at the national level (see also Useem, 

1984). The great majority of the enterprises were tied into a 

single large component in this network, most of the remainder 

being isolates. Banks were, once more, the most central 

enterprises, especially those New York banks which played a 

'national' rather than a 'regional' role. It was the nonexecutive 

directors of the banks who cemented together the overall 

national network. 

The graphs considered in this paper are mostly finite, simple 

and undirected. Many network structures in real life are not 

assigned by central authorities Instead; they are formed by 

autonomous agents who often have selfish motives. Typical 

examples of such networks include the Internet, where 

autonomous systems linked together to achieve global 

connection, peer-to-peer networks where peers connect to one 

another for online file sharing, and social networks where 

individuals connect to one another for information exchange and 

other social functions. 

A key measure of importance of a node is its betweenness 

centrality, which is introduced originally in social network 

analysis. Betweenness with path length constraint is reasonable 

in real world scenarios. In peer-to-peer networks, query requests 

are searched only on nodes with a short graph distance away 

from the query initiator. In social networks, researches show that 

short connections are much more important than long range 

connections. In a decentralized network with autonomous 

agents, each agent may have incentive to maximize its 

betweenness in the network. For example, in computer networks 

and peer-to-peer networks, a node in the network may be able to 

change the traffic that it helps relaying, in which case the 

revenue of the node is proportional to its betweenness in the 

network. So the maximization of revenue is consistent with the 

maximization of the betweenness. In social network, an 

individual may want to gain or control, the most amount of 

information traveling in the network by maximizing her 

betweenness. So it would be interesting to suggest a formation 

of a network, in which every node is a selfish agent who decides 

which other nodes to be connected to in order to maximize its 

own betweenness. Building connections with other nodes incur 

costs. Each node has a budget such that the cost of building its 

connections cannot exceed its budget. Keeping this in mind, we 

have developed or suggested some new constructions out of a 

graph with given number of central vertices. Several interesting 

properties are derived and some of them may appear to be of 

mere academic interest. We are quite inclined to apply them to 

real-life networks and hopefully it will be reported as a 

continuation of this elsewhere. 

Measures of Centrality 

The centrality of a node in a network is a measure of the 

structural importance of the node. A person‟s centrality in a 

social network affects the opportunities and constraints that they 

face. There are three important aspects of centrality: degree, 

closeness and betweenness. 

Degree Centrality 

It is simply the number of nodes that a given node is 

connected to. In general, the greater a person‟s degree, the more 

potential influence they have on the network and vice-versa. For 

example in a gossip network, a person who has more 

connections can spread information more quickly and will also 

be more likely to hear more stuff. This can be both good and 

bad. In a sexual network, high degree centrality implies higher 

risks of disease. The greater a people degree, the greater the 

chance that they will catch whatever is flowing through the 

network, whether good or bad. 

Closeness Centrality  

Closeness centrality is defined as the total graph theoretic 

distance to all other nodes in the network. The larger the number 

the less central they are (because they are farther away from 

everyone). When a node has a low closeness score (i.e., is highly 

central), it tends to receive anything flowing through the 

network very quickly. This is because the speed with which 

something spreads in a network is a function of the number of 

links in the paths traversed. Since nodes with low closeness 

scores are close to all nodes, they receive things quickly. Once 

again, whether this is good or bad depends on the situation. In 

the case of information about what is happening in the company, 

this is usually good. In the case of a new disease that is 

spreading, it is very bad to be one of the first people to get it 

(because doctors have not worked out a treatment yet). 

Betweenness Centrality 

It is defined as the number of geodesic paths that pass 

through a node. It is the number of ‟times‟ that any node needs 

to pass through a given node to reach any other node by the 

shortest path. In a diffusion process, a node that has betweenness 

can control the flow of information, acting as a gatekeeper. This 

is the classic role played by the executive secretary, who can 

acquire a great deal of unofficial power this way. In a network of 

friendship relations, say, among top players in a personal 

computer field, the node with high betweenness can serve as a 

liasion between disparate regions of the network. For example, 

Bill Gates, head of Microsoft, is part of a certain cycle of 

friends. Larry Ellison, head of Oracle, is a part of a different 

cycle of friends Bill and Larry violently do not get along. 

Whenever cooperation is needed between Microsoft and Oracle, 

as in developing standards for network computers it has to be 

arranged by third party that has tie up with both camps.  

We can think of betweenness as a measure of the extent to 

which a node is in a position to exploit many structural holes. A 

structural hole in a graph is a network with lack of connection 

between two nodes. A third party that is connected to the two 

unconnected nodes can sometimes exploit the situation. There 

are two generic benefits to being in the middle. One is the 

information benefit from being plugged into different camps or 

regions of the network. If all your ties are to one group of 
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persons who are all interconnected (a clique), all you ever hear 

is the same information being recirculated. The other is the 

control benefit of being able to play one person against the 

other. If ego is a woman that alter 1 and alter 2 are counting, ego 

can let alter 1 know that alter 2 is buying her an expensive ring 

for her birthday. This may lead to alter 1 trying to top that with 

an even better gift. 

Interpretation in terms of Graph Concepts 

Moxley and Moxley[4] raised an important problem with 

respect to the measurement of centrality in social networks. 

They were concerned with measuring centrality in the large, 

often unconnected networks encountered in natural settings. The 

problem, as they defined it, was that the classical centrality 

measures of Bavelas[1,2], Beauchamp[3] and Sabidussi[5] could 

not be used for unconnected network. In each of these measures 

the centrality of a vertex is a function of the sum of the 

minimum distances between that vertex and all others. Since all 

distance sums are infinite in unconnected networks, these 

measures are useful only in settings where connectivity can be 

assured. Moxley‟s proposed solution for this problem was both 

arbitrary and ad hoc. They suggested that unconnected vertices 

be connected by an imaginary path with a length greater than 

that linking any pair of connected vertices in the network. The 

result is a crude ranking of the centrality of vertices and no 

index whatsoever of the overall centrality of the entire network. 

Moreover, since the rankings themselves are an artifact of a 

series of nonexistent connections, it is difficult to imagine what 

they might mean in terms of human communication. 

The earliest intuitive conception of vertex centrality in 

communication was based upon the structural property of 

betweenness. 

According to this view, a vertex in a communication 

network is central to the extent that it falls on the shortest path 

between pair of other vertices. This idea of vertex centrality was 

introduced by Bavelas[1,2] in his first paper on the subject. He 

suggested that when a particular person in a graph is 

strategically located on the shortest communication path 

connecting pairs of others, that person is in a central position. 

Other members of the network were assumed to be responsive to 

persons in such central positions who could influence the group 

by “withholding information”. 

A vertex is considered to be central here, to the degree that, 

it falls between other vertices on their shortest paths. A vertex 

falling between two others can facilitate, block, distort or falsify 

communication between the two; it can more or less completely 

control their communication.  

But if it falls on some but not all of the shortest paths 

connecting a pair of vertices, its potential for control is limited. 

All this suggests that we need to generalize the graph theoretical 

notion of betweeness. Given a vertex, vk in a graph and an 

unordered pair of vertices, {vi; vj} where i ≠ j≠ k; we can define 

the partial betweeness bij(vk), of vk with respect to (vi; vj)in the 

following way.  

If vi and vj are not reachable from each other, vk is not 

between them, so in that case let bij(vk) = 0: If vi and vj are 

reachable, assume that they are indifferent with respect to the 

routing of their communication among alternative shortest paths. 

Thus, the probability that a message passes through any 

particular shortest path among alternatives is equal to {1=gij} 

where gij = the number of shortest path links between vi and vj . 

The potential of a vertex vk for control of information passing 

between vi and vj then may be defined as the probability that vk 

falls on a randomly selected shortest path connecting vi and vj . 

If gij(vk) = the number of shortest paths linking vi and vj that 

contain vk, then bij(vk) = (gij(vk))=(gij)is the probability we seek. 

bij(vk) is the probability that a vertex vk falls on a randomly 

selected shortest path linking vi with vj .  

To determine the overall centrality of a vertex, vk, we need 

merely to sum its partial betweeness values for all unordered 

pairs of vertices where i ≠ j ≠ k. CB(vk) = Σ
n
 i<jΣnbij(vk), where n 

= the number of vertices in the graph. The sum CB(vk); is an 

index of the overall partial betweenness of a vertex vk. 

Whenever vk falls on the only shortest path connecting a pair of 

vertices, CB(vk) is increased by 1. When there are alternative 

shortest paths, CB(vk) is increased in proportion to the frequency 

of occurrence of vk among those alternatives. Both locating and 

counting shortest paths becomes tedious and difficult as the 

networks increase in size. CB(vk) indexes the potential of a 

vertex for control by counting its opportunities for control. 

It is the simplest and in many cases probably the most 

useful betweenness based measure of centrality. Since CB(vk) is 

essentially a count, its magnitude depends upon two factors. (i) 

the arrangement of edges in the graph that define the location of 

vk with respect to shortest paths linking pairs of vertices; and ii) 

the number of vertices in the graph. For certain classes of 

substantive problems it is desirable to create a measure that 

eliminates the impact of the number of vertices from the 

measure. For example, consider a vertex vi in a graph containing 

five vertices. Let us say vi has a value, CB(vi) = 6. On the other 

hand, assume a vertex, vj, in a graph of 25 vertices, where CB(vj) 

= 6. Both vi and vj have the same potential for control in absolute 

terms, they can facilitate or inhibit the same number of 

communications. However, they differ markedly in their relative 

potential for control within their respective networks. vi can 

dominate more than half of the communications between pairs 

of vertices in its graph, while vj can control only slightly more 

than one percent.  

To the degree that this potential for control is perceived as 

relative by participants in networks, vi and vj are in quite difficult 

positions with respect to centrality. What is needed in this 

context is a measure that is relative to its maximum value in 

terms of the number of vertices in the graph. Consider S a totally 

disconnected graph with n = the number of vertices (n ≥ 3) and 

m = 0, the number of edges. For such a graph let r = 0, the 

number of unordered pairs, {vi; vj}, where vi and vj are mutually 

reachable and CB(vk) = 0 the centrality index of a vertex vk. Now 

if we add an edge to S;m = 1 and r = 1; but still CB(vk) = 0, since 

with only one edge, no vertex can fall on a path between any 

others. However, when we add second edge and let m = 2; it can 

be added either such that r = 3 and CB(vk) = 1 for a vertex if 

there is a connection with the previous edge as in the graph P3 U 

K1; where P3 = vivkvj and K1 = vh or such that r = 2 and CB(vk) = 

0 for all vertices as in in the graph 2K2; where the first copy of 

K2 is, K2 = vivj and the second copy of K2 is K2 = vhvk: The 

former case, then shows a vertex vk, that falls on a path between 

vi and vj .  

This is the most central graph possible with m = 2. When 

successive new edges are added, maximum centrality is 

maintained only if all new edges are connected to the center 

vertex, vk. This will be true until there are (n-1) edges linking vk 

with every other vertex in S. Under these conditions each vertex 

is reachable from all others either directly (in the case of vk 

itself) or through vk, S is connected. Since all vertices are 

reachable there are nC2 paths connecting the unordered pairs in 
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S. Out of these nC2 paths (n-1) are connected to vk, so the 

number of paths connecting pairs of vertices where vk falls on 

the path between them is C(vk) = nC2 − (n − 1) = (n
2
 − 3n + 

2)=2. Any new edge added to S after this stage must directly 

link two vertices that previously were connected only through vk. 

Each new edge will, therefore, define a new shortest path that 

will reduce C(vk) by one.  

Thus, maximum vertex centrality can be obtained only 

when the number of edges equals n − 1 and there exists a vertex 

vk, that falls on all shortest paths of length greater than one. The 

relative centrality of any vertex in a graph, then, may be 

expressed as a ratio, C ′B(vk) = 2CB(vk)=(n
2
−3n+2). Values of 

C′B(vk) may be compared between graphs. Both CB(vk) and 

C′B(vk) may be determined for any symmetric graph whether 

connected or not. Thus, these measures solve the problem raised 

by Moxley and Moxleys[4] of determining the centrality of 

vertices in unconnected graphs. However, both measures take 

their maximum values only for vertices that are the centers of 

stars or the hubs of wheels. There are two distinct views on the 

meaning of the term centrality, when it refers to a property of a 

whole graph. One of these, based on graph theory, views a graph 

as exhibiting centrality to the degree that all of its vertices are 

central. They have limited utility and may be applied only to 

problems like the design of maximally efficient communication 

networks. The alternative view leads to the development of 

measures of graph centrality based upon the dominance of one 

vertex. In this conception, a network is central to the degree that 

a single vertex can control its communication.  

They turn out to be related empirically to a wide range of 

behavioral characteristics of communicating groups including 

perception of leadership, frequency of error, rate of activity, 

speed of organization and personal satisfaction or morale. What 

is needed here is a graph centrality measure of the second, more 

general, and type. We can define CB(vk) as the largest centrality 

value associated with any vertex in the graph under 

investigation. Then a natural measure of the dominance of the 

most central vertex is CB = Σ
n
i=1[C′B(vk) − CB(vi)]=(n − 1), 

which is the average difference in centrality between the most 

central vertex and all others. C′B varies between 0 and 1. Its 

value is 0 for all graphs of any size where the centralities of all 

vertices are equal. Its value is 1 only for the wheel or star. Thus 

C′B is an expression of the natural prescription that: ”A 

communication network is considered structurally centralized to 

the degree that the network approaches that of a wheel network, 

and decentralized to the degree that the graph is an all-channel 

(complete)”. The original application of the centrality idea was 

in the study of communication in small groups.  

The study related to speed activity and efficiency in solving 

problems and personal satisfaction and leadership in small group 

settings. All of these variables were demonstrated to be related 

to centrality in some way. The range of applications, for the 

concept of centrality has been very wide, for instance, its impact 

on urban growth, study of the diffusion of a technological 

innovation in the steel industry, in inter organizational relations, 

to explain political integration in Indian civilization, to name a 

few. These several studies used perhaps a dozen different 

measures of centrality. While many are related, it is clear that 

there is little consensus on the solution to the problem of 

measuring centrality. Where then do these three new measures 

fit into this picture? The three numbers, CB(vk);C′B(vk) and C′B 

are more generally applicable than most of the alternatives. They 

are not limited to use in connected networks. The important 

question in considering applications and the one that is most 

often neglected-involves considering the relevance of the 

particular structural attribute measured to the substantive 

problem being studied. Thus, the use of these three measures is 

appropriate only in networks where betweenness may be viewed 

as important in its potential for impact on the process being 

examined. Their use seems natural in the study of 

communication networks where the potential for control of 

communication by individual vertices may be substantively 

relevant. 

Scope for Practical Applications 

The study of various parameters related to the concept of 

distance graphs has tremendous scope for applications. For 

example, consider the problem of placing sensors in a building 

or a utility network in order to detect contamination of the air or 

water supply. Practical motivation for this problem derives from 

recent world events including Tokyo‟s subway incident, 

London‟s poison gas bomb plot and various government 

warnings. While more effective sensors are currently being 

developed to address the increasing threats of contamination, 

these new sensors are likely to be expensive. Hence we resort to 

algorithmic techniques to place sensors in a network in such a 

way that cost is minimized and contamination can still be 

quickly detected. Two main goals are 1) Contamination 

detection and 2) Source identification. Two natural constraints 

for sensor placement are: (i) sensor constrained, that is, allowing 

only a fixed number of sensors and (ii) time constrained, that is, 

requiring contamination detection or source identification within 

a given time limit. These two goals and two constraints define 

various sensor placement problems. 

Formal Description of Sensor Placement Problem  

We model the network as a directed weighted graph G = 

(V,E). V is a set of vertices representing possible locations for 

the sensors. There may be rooms in a building or pipe junctions 

in a water network. E is a set of edges representing flow between 

the vertices. These may be airways or hallways in a building or 

pipes in a utility network. In the sensor constrained variant of 

our problem, we are given a maximum number of sensors, Smax, 

and we want to minimize the time from contamination detection 

or source identification. 

Role of Shortest Paths 

Each edge (i, j) has weight rij R
+
 which is the time it takes 

for contaminant to pass from vertex i to vertex j. One uses the 

shortest path metric to define the actual translocation rates in the 

graph. That is., for any two vertices i, j the translocation rates rij 

is defined as the length of the shortest path between i and j; rij is 

infinite if no such path exists. Since the shortest path metric 

defines the actual translocation rates in the graph, the triangle 

inequality is valid. One can construct an adjacency matrix 

representation of the effective translocation rates in the graph by 

using any all-paths shortest paths algorithm for directed 

weighted graphs with no negative weights.  

Thus, the input graph is a weighted complete graph 

(possibly with some infinite weight edges), where some edges 

represent the actual flow conduits and the rest are inferred to 

represent the effective translocation rates. Given this input, the 

goal is to place sensors on the vertices so that it is always 

possible to detect the contamination and identity the vertex that 

is the source of contamination. A sensor s can detect 

contamination at vertex v if there exists a directed path from v to 

s. s detects contamination at v within time t if the length of the v 

− s path is at most t. 
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Importance of finding the center of a graph 

In the sensor-constrained contamination detection problem, 

we are given a weighted digraph G = (V,E) with positive weights 

rij and a positive integer Smax, which is the maximum number of 

sensors to be used. The aim is to place the sensors onto the 

vertices of the graph in such a way that minimizes the maximum 

contamination detection time. This problem is equivalent to the 

Asymmetric K-CENTER Problem, which is well known to be 

NP-hard. 

Asymmetric K-CENTER 

Given a complete digraph G = (V,E) of shortest (weighted) 

path distances between the vertices that satisfies triangle 

inequality, and a positive integer k. Find a subset of vertices S, 

|S| = k, which minimizes the longest distance from a vertex in S 

and any vertex in the graph. That is, find appropriate S that 

minimizes, cost(S), defined as: Cost(S) = MaxvV minsSd(s, 

v).  

Theorem 3.4 The sensor-constrained contamination detection 

problemis equivalent to the Asymmetric K-CENTER Problem. 

Proof :To show the reduction in either direction, we equate K = 

Smax and retain the underlying digraph G with the edge weights 

reversed d(i, j) = rij . Since the edge weights use the shortest path 

metric, the triangle inequality is satisfied. A solution to the 

Asymmetric K-CENTER is a subset of at most k vertices, S, that 

minimizes the distance from a vertex in S to a vertex in the 

graph. That is, this is a subset of at most Smax vertices such that 

the maximum time from any vertex to a vertex in S is a 

minimum among all such subsets. That is, this is a subset of 

vertices such that a placement of sensors at these vertices 

minimizes the contamination detection time. 

Rooted Trees as Model for Water and Other Distribution 

Networks 

Let G be any graph with one central vertex. The graph G* is 

a rooted (graph) tree. A rooted tree is a tree graph with a special 

vertex designed as a root. All the edges are oriented away from 

the root. That is, for any edge (i, j), it is oriented from i to j. If i 

is on the path from the root to j.  Water and other distribution 

networks can in some cases be modeled as rooted trees. In such 

a network there is a single supply source and it is delivered 

along a unique path to each destination. This model does not 

take into account possible back flow, this is, and it assumes the 

flow moves from the source to the destination only. 

Detection There must be sensor in each leaf of the tree (a 

vertex with no outgoing edge), otherwise there is no way to 

detect contamination at that vertex. For a detection time limit T, 

the following procedure can be used to find the minimum set of 

sensors that ensures contamination detection within time T. 

Procedure 

1. Place a sensor at each leaf. 

2. Follow the edges in the reverse direction from the current 

sensors and mark all the vertices that have distance at most T to 

a sensor as”covered”. 

3. Put a sensor at each uncovered vertex that is first on the path 

from a sensor to the root. 

4. Repeat steps 2 and 3 until all vertices are covered. 

Theorem 3.6 In a rooted tree graph, for any vertex at most two 

sensors are sufficient to uniquely identify contamination at that 

vertex. (The two sensors are not necessarily the same for all the 

vertices). 

Proof In a tree with no vertices of degree 2 every internal vertex 

has a set of descendants different from the set of descendants of 

its child (besides the child itself) and each internal vertex has at 

least one pair of descendants such that it is their least common 

ancestor. Thus, for any internal vertex it is sufficient to have 

sensors at some two vertices whose least common ancestor it is. 

These are two sensors identity their least common ancestor as 

the contamination source in such a tree. Placing a sensor at any 

vertex of degree 2 uniquely identities contamination at that 

vertex and effectively converts the tree to a tree with no vertices 

of degree 2. 
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