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Introduction  

Free convection flow involving coupled heat and mass 

transfer occurs frequently in several areas of chemical 

engineering and manufacturing process areas.  A few 

representative fields of interest in which combined heat and 

mass transfer plays an important role are designing of chemical 

processing equipment, formation and dispersion of fog, 

distribution of temperature and moisture over agricultural fields 

and fruit trees, crop damage due to freezing and environmental 

disorders.  Thermal radiation has become a significant branch of 

engineering sciences and is an essential aspect of various 

scenarios in mechanical, aerospace, chemical and solar power 

engineering. 

Extensive research work has been published on semi-

infinite vertical plate with different boundary conditions.  An 

exact solution to the Navier-Stokes equation of the flow of a 

viscous incompressible fluid past an impulsively started infinite 

horizontal plate moving in its own plane was first examined by 

Stokes [1] which is being often referred as Rayleigh’s problem 

in the literature. Later, Stewartson [2] presented analytic 

solution to the viscous flow past an impulsively started semi-

infinite horizontal plate.  Subsequently, the problem of 

Stewartson was examined by Hall [3] by using finite difference 

method of a mixed explicit-implicit type, which was tested for 

convergence and its stability. Soundalgekar [4] for the first time 

obtained the exact solution of the Stokes problem for the case of 

infinite vertical plate.  One of the first models for combined 

radiative hydromagnetic heat transfer considering the case of 

free convective channel flows with an axial temperature gradient 

was analysed and discussed by Moss [5]. Chang et al. [6] 

examined the effect of radiation heat transfer on free convection 

regimes in enclosures, with applications in geophysics and 

geothermal reservoirs.  Later, Soundalgekar et al. [7] studied the 

finite difference analysis of mass transfer effects on flow past an 

impulsively started infinite isothermal vertical plate in a 

dissipative fluid. Thereafter, Mahajan et al. [8] reported the 

influence of viscous heating dissipation effects in natural 

convective flows, showing that the heat transfer rates are 

reduced by an increase in the dissipation parameter. The mass 

transfer effects on the flow past an impulsively started infinite 

vertical plate with constant mass flux and chemical reaction was 

studied by Das et al. [9]. Thereafter, Sacheti et al. [10] obtained 

an exact solution for unsteady MHD free convection flow on an 

impulsively started vertical plate with constant heat flux while, 

Hossain et al. [11] studied the radiation effects on mixed 

convection along a vertical plate with uniform surface 

temperature using the Rosseland flux model.  The coupled 

magnetic field and thermal radiation effects in non-gray fluid 

boundary layer heat transfer, using a Runge-Kutta Merson 

quadrature was analysed by Takhar et al. [12].  Subsequently, 

Shankar et al. [13] discussed the effect of mass transfer on the 

MHD flow past an impulsively started infinite vertical plate with 

variable temperature or constant heat flux. Muthucumaraswamy 

et al. [14] studied the problem of unsteady flow past an 

impulsively started isothermal vertical plate with mass transfer 

by an implicit finite difference method.  While, Abd EI-Naby et 

al [15] studied the radiation effects on MHD unsteady free-

convection flow over vertical plate with variable surface 

temperature. The influence of viscous dissipation and radiation 

on unsteady MHD free convection flow past an infinite heated 

vertical plate in a porous medium with time dependent suction 

was investigated by Isreal-Cookey et al. [16].  

Muthucumaraswamy [17] studied the natural convection on flow 

past an impulsively started vertical plate with variable surface 

heat flux. Radiation and mass transfer effects on two 

dimensional flows past an impulsively started isothermal vertical 

plate was studied by Ramachandra Prasad et al. [18].  In all the 

investigations mentioned above, viscous mechanical dissipation 

is neglected.  Such effects are important in geophysical flows 

and also in certain industrial operations and are usually 

characterized by the Eckret number.  A number of authors have 

considered viscous heating effects on Newtonian flows.  Very 

recently, the network simulation method [NSM] to study the 

effects of viscous dissipation and radiation on unsteady MHD 
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free convection flow past a vertical porous plate was used by 

Zueco [19]. 

In all above investigations and analysis, the fluid to consider 

is to be electrically non-conducting.  However, the flow of 

Newtonian electrically conducting fluids is also of great interest 

in high speed aerodynamics, astronautical plasma flows; MHD 

boundary layer control, MHD accelerator technologies and the 

applications are many from the view of science and technology.  

However, the interaction of radiation with mass transfer of 

an electrically conducting dissipative fluid past an impulsively 

started isothermal vertical plate has received a little attention.  

Hence, the present study is attempted. 

Mathematical Formulation 

In a situation of two dimensional unsteady laminar natural 

convection flows of a viscous, incompressible, electrically 

conducting, radiating fluid past an impulsively started semi-

infinite vertical plate in the presence of transverse magnetic field 

with viscous dissipation is considered.  The fluid is assumed to 

be gray, absorbing-emitting but non-scattering.  The x - axis is 

taken along the plate in the upward direction and the y - axis is 

taken normal to it.  The fluid is assumed to be slightly 

conducting and hence the magnetic Reynolds number is much 

less than unity and the induced magnetic field is negligible in 

comparison with the transverse applied magnetic field.  Initially, 

it is assumed that the plate and the fluid are at the same 

temperature T

 
and concentration level C


 
everywhere in the 

fluid.  At time 0t  , the plate starts moving impulsively in the 

vertical direction with constant velocity 0u
 

against the 

gravitational field.  Also, the temperature of the plate and the 

concentration level near the plate are raised to wT 
 
and wC  , 

respectively and are maintained constantly thereafter.  It is 

assumed that the concentration C  of the diffusing species in the 

binary mixture is very less in the comparison to the other 

chemical species, which are present and hence the Soret and 

Dufour effects are negligible.  It is also assumed that there is no 

chemical reaction between the diffusing species and the fluid.  

Then, under the above assumptions, in the absence of an input 

electric field, the governing boundary layer equations with 

Boussinesq’s approximation are 

Continuous equation 

  0
u u

x y

 
 

 
         

(1)

           

      

 

Momentum conservation
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Energy conservation 
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Species conservation 
2

2
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    (4)            

The initial and boundary conditions are as follows: 

0

0, 0, 0, ,

0 , 0, , at  0

0, , as   

w w
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 (5)          

Thermal radiation is assumed to be present in the form of a 

unidirectional flux in the y - direction i.e., 
rq  (transverse to the 

vertical surface).  By using the Rosseland approximation, the 

radiative heat flux 
rq  is given by  

44

3

s
r

c

T
q

k y

 
 


                           (6) 

where s  is the Stefan-Boltzmann constant and 
cK  - the mean 

absorption coefficient.  In the Rosseland approximation, the 

present analysis is limited to optically thick fluids.  If 

temperature differences within the flow are sufficiently small, 

then equation (6) can be linearized by expanding 
4T  into the 

Taylor series aboutT
 , which after neglecting higher order 

terms takes the form: 
4 3 44 3T T T T 
                    (7) 

In view of equations (6) and (7), equation (3) reduces to 
232 2
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                                    (8)        

The nondimensionless quantities introduced in these equations 

are defined as 
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                (9)        

In a situation where only one dimensional flow is 

considered, the above set of equations (1), (2), (8) and (4) are 

reduced to the following non-dimensional form: 

00
V

V V
Y


   

  

(where 0 1V  )                   (10) 
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The corresponding initial and boundary conditions are as 

follows 

0 : 0, 0 0

0 : 1, 1, 1 at  0

0, 0, 0 as  
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Solution of the problem 

Assuming a trial solution for the above governing equations as: 

   0, i tU y t U y e   

   0, i tT y t T y e 
 

   0, i tC y t C y e    

The solution
 
for the equations (11), (12) and (13) subject to the 

conditions (14), is found to be 

     7 2 1

4 6 4 6, 1
m y m y m yU y t m m e m e m e

        

  2,
m yT y t e

  

  1,
m yC y t e

  

Here the constants are not given because sake of brevity. 

Skin-friction: The dimensionless shearing stress on the surface 

of a body, due to the fluid motion, is known as skin-friction and 

is defined by the Newton's law of viscosity. 

The skin-friction is 

 7 4 6 2 4 1 6

0

1
y

U
m m m m m m m

y




 
       

 
 

Results and discussion 

The effect of the frequency of excitation over the velocity 

field is illustrated in Fig. 1.  It is noticed that as the frequency of 

excitation increases the velocity field decreases.  Further, it is 

observed that as we move far away from the plate the velocity 

decreases rapidly initially and thereafter the decrease is found to 

be slow. Fig. 2 illustrates the effect of the radiation parameter on 

the velocity profiles.  It is observed that, increase in radiation 

parameter contributes to the decrease in velocity field.  Further, 

as we move away from the plate the effect of higher values of 

radiation parameter is not that prominent as compared to the 

smaller values. The effect of magnetic intensity of the velocity 

profiles is shown in Fig. 3.  While all other participating 

parameters in the velocity field are held constant and magnetic 

intensity is increased, a drop in the velocity field is noticed.  

When the magnetic intensity is relatively small the velocity field 

increases initially and thereafter it decreases substantially.  The 

effect of magnetic field is found to have zero effect on the 

velocity field as we move far away from the plate. The effect of 

Schmidt number on velocity field is exhibited in Fig. 4. As the 

Schmidt number increases the velocity field decreases.  Far 

away from the plate it is noticed that the Schmidt number has no 

effect on the velocity field.  

The effect of Prandtl number on the velocity field is shown 

in Fig. 5.  As the Prandtl number increases the velocity field is 

found to be decreasing.  As we move away from the plate it is 

noticed that at higher values of Prandtl number does not 

contribute much on the velocity field but a smaller values 

contributes to the increase in the velocity. The effect of the 

solutal Grash of number on the velocity profiles is illustrated in 

Fig. 6.  The increase in the solutal Grash of number contributes 

to the raise in the velocity field.  Moreover, it is observed that 

the effect is almost zero as we move far away from the plate. 

Fig. 7 illustrates the effect of thermal Grashof number on 

velocity field.  While all other parameters in the velocity field 

are held constant, increase in the thermal Grashof number 

contributes to the raise in the velocity field.  However, the effect 

is found to be absolutely zero as we move away from the 

bounding surface.  

The contribution of radiation parameter on the temperature 

field is illustrated in Fig. 8.  It is observed that for the smaller 

values of radiation parameter the fall in temperature is perfectly 

linear.  However, the situation is not same for relatively higher 

values of the radiation parameter.  

The variation in temperature profiles with respect to Prandtl 

number is illustrated in Fig.9.  In general it is noticed that as the 

Prandtl number increases the temperature decreases.  At the 

higher values of the Prandtl number the profiles are found to be 

more parabolic.  For sufficiently smaller values the relation 

between the Prandtl number and temperature field is perfectly 

linear.  

The contribution of Schmidt number on the concentration 

profiles is shown in Fig. 10.  It is noticed that increase in the 

Schmidt number contributes to the decrease in the concentration 

of the fluid media.  It is observed that relatively for the smaller 

values of the Schmidt number the concentration is perfectly 

linear.  Increase in the Schmidt number contributes to the 

parabolic nature of the profiles. The effect of the frequency of 

excitation on the concentration field is illustrated in Fig. 11.  As 

the frequency of excitation increases the concentration is found 

to be decreasing.   

The effect of thermal Grash of number on skin-friction is 

observed in Fig. 12.  It is noticed that as thermal Grash of 

number increases, the skin-friction is found to be increasing.  

Further, it is noticed that the effect of thermal Grash of number 

remains constant as the frequency of excitation increases. The 

effect of Prandtl number on skin-friction is illustrated in Fig. 13.  

It is noticed that as the Prandtl number increases, the skin-

friction on the bounding surface decreases.  It is noticed that, as 

the frequency of excitation increases with respect to the Prandtl 

number, not much of significant change is noticed.  However, as 

both the parameters increasing the skin-friction is found to have 

a negative effect.  
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Fig. 1 Effect of frequency of excitation on velocity profiles 
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Fig. 2.Effect of radiation parameter on velocity profiles 
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Fig.3. Effect of magnetic parameter on velocity profiles 
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Fig. 4.  Effect of Schmidt number on velocity profiles 
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Fig. 5.  Effect of Prandtl number on velocity profiles 
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Fig. 6.  Effect of solutal Grashof number on velocity profiles 
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Fig. 7.  Effect of thermal Grashof number on velocity 

profiles 
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Fig. 8.  Effect of radiation parameter on temperature 
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Fig. 9.  Effect of Prandtl number on temperature 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

C
O

N
C

E
N

T
R

A
T

IO
N

 

 

Sc = 0.10

Sc = 0.20

Sc = 0.50

Sc = 1.00

Gr = 1.00
Gm = 1.00
Pr = 0.71
M = 1.00
N = 1.00

 = 0.10

 
Fig. 10.  Effect of Schmidt number on concentration 
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Fig. 11. Effect of frequency of excitation on concentration 
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Fig. 12.  Effect of thermal Grashof number on skin-friction 
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Fig. 13.  Effect of Prandtl number on skin-friction 
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