$\boldsymbol{P}_{\mathbf{4 k + 1}}$-Factorization of complete bipartite graphs

U S Rajput and Bal Govind Shukla
Department of mathematics and astronomy, Lucknow University, Lucknow.

ARTICLE INFO

Article history:

Received: 27 January 2012;
Received in revised form:
25 March 2012;
Accepted: 16 April 2012;

Keywords

Complete bipartite Graph,
Factorization of Graph,
Spanning Graph.

Abstract

$P_{2 p}$-factorization of a complete bipartite graph for p an integer was studied by Wang [1]. Further, Beiliang [2] extended the work of Wang [1], and studied the $P_{2 k}$-factorization of complete bipartite multigraphs. For even value of k in P_{k}-factorization, the spectrum problem is completely solved $[1,2,3]$. However for odd value of k i.e. P_{3}, P_{5}, P_{7} and P_{9}, the path factorization have been studied by a number of researchers [4, 5, 6, 7]. Again, P_{3}-factorizations of complete bipartite multigraphs and symmetric complete bipartite multi-digraphs were studied by Wang and Beiliang[8]. Also, Beiliang and Wang have shown that Ushio conjecture is true for $4 k-1$ factorization of complete bipartite graphs[9]. In the present paper we shall show that ushio conjecture is also true for $4 k+1$ factorization of complete bipartite graphs. That is, we shall prove that a necessary and sufficient condition for the existence of a $P_{4 k+1}$-factorization of $\quad K_{m, n}$ is (1) $(2 k+1) m \geq 2 k n$, (2) $(2 k+1) n \geq 2 k m,(3) m+n \equiv 0(\bmod 4 k+1)$, (4) $(4 k+1) m n /[4 k(m+n)]$ is an integer.

Mathematics Subject Classification-68R10, 05C70, 05C38.

© 2012 Elixir All rights reserved.

Introduction

Ushio conjecture [11] for path factorization of complete bipartite graphs is as follows:
If \boldsymbol{k} is odd, and m and n be positive integers. Then $K_{m, n}$ has P_{k}-factorization if and only if:
(1) $(k-1) m \geq k n$,
(2) $(k-1) n \geq k m$,
(3) $m+n \equiv 0(\bmod k)$,
(4) $k m n /[(k-1)(m+n)]$ is an integer.

In this paper, we shall prove that Ushio conjecture is true for the path factorization of $P_{4 k+1}$-factorization of complete bipartite graphs, that is we shall prove the theorem given below.
Theorem 1: Let k, m, n be positive integers, there exist a $P_{4 k+1}$-factorization of $K_{m, n}$ if and only if:
(1) $(2 k+1) m \geq 2 k n$,
(2) $(2 k+1) n \geq 2 k m$,
(3) $m+n \equiv 0(\bmod 4 k+1)$,
(4) $(4 k+1) m n /[4 k(m+n)]$ is an integer.

Mathematical Analysis

We first give the proof of necessity of theorem 1 , which is given in theorem 2. The sufficiency of theorem 1 is proved by theorem 3.
Theorem 2: Let k, m, n be positive integers. Then for $P_{4 k+1}$ - factorization it is necessary that:
(1) $(2 k+1) m \geq 2 k n$,
(2) $(2 k+1) n \geq 2 k m$,
(3) $m+n \equiv 0(\bmod 4 k+1)$,
(4) $(4 k+1) m n /[4 k(m+n)]$ is an integer.

Proof: Let r be the number of $P_{4 k+1}$-factor in the factorization and e be the number of copies of $P_{4 k+1}$ in any factor.
Then $e=\frac{m+n}{4 K+1}$, and $r=\frac{(4 K+1) m n}{4 K(m+n)}$
hence conditions (3) and (4) are necessary.
Let a and b be the number of copies of $P_{4 k+1}$ with its end points in Y and X in a particular $P_{4 k+1}$-factor respectively. Then ,
$(2 k) a+(2 k+1) b=m$, and $(2 k+1) a+(2 k) b$
Hence,

$$
a=\frac{(2 k+1) n-(2 k) m}{4 k+1}, \text { and } b=\frac{(2 k+1) m-(2 k) n}{4 k+1}
$$

Conditions (1) and (2) are therefore, necessary. This proves the necessecity of the theorem 1.

Now we will prove the sufficiency of theorem 1. Which is given by theorem 3 .
Theorem 3: Let k, m, n be positive integers. Then for $P_{4 k+1}$-factorization, it is sufficient that:
(1) $(2 k+1) m \geq 2 k n$,
(2) $(2 k+1) n \geq 2 k m$,
(3) $m+n \equiv 0(\bmod 4 k+1)$,
(4) $(4 k+1) m n /[4 k(m+n)]$ is an integer.

The proof of this theorem, consist of the following lemmas.
Lemma 1: Let a, b, p and q be positive integers. If $\operatorname{gcd}(a p, b q)=1$, then $\operatorname{gcd}(a b, a p+b q)=1$.
We prove the following result which is used later in the paper.
Lemma 2: If $K_{m, n}$ has a $P_{4 k+1}$-factorization, then $K_{s m, s n}$ has a $P_{4 k+1}$-factorization for every positive integer S.
Proof: Let $K_{S_{s} S}$ is a 1- factorable [10] and $\left\{F_{1}, F_{2}, \ldots, F_{s}\right\}$ be a 1 - factorization of it. For each i with $1 \leq i \leq s$, replace every edge of F_{i} by a $K_{m, n}$ to get a spanning subgraph G_{i} of $K_{s m, s n}$ such that the graph $G_{i}^{\prime} s\{1 \leq i \leq s\}$ are pair wise edge disjoint and there union is $K_{s m, s n}$. Since $K_{m, n}$ has a $P_{4 k+1 \text {-factorization, it }}$ is clear that the G_{i} is also $P_{4 k+1}$ - factorable, and hence $K_{s m, s n}$ is also $P_{4 k+1}$ factorization.
Lemma 2 implies that there are three cases to consider.
Case $(\mathbf{1}) \mathbf{2 k m}=(2 k+1) n$:
In this case, let
$F_{j}=\left\{x_{i+2 j} y_{i}, x_{i+2 j+1} y_{i}: 1 \leq i \leq 4 k\right\}, 1 \leq j \leq 2(2 k+1)$.
It is easy to see that it is a $P_{4 k+1}-$ factor of $K_{4 k, 4 k+2}$.
Then $\mathrm{U}_{1 \leq j \leq 2(2 k+1)} F_{j}$ is a $P_{4 k+1}$-factorization of $K_{4 k, 4 k+2} \cdot K_{m, n}$ has $P_{4 k+1}$-factorization.
Case $(2)(2 k+1) m=2 k n:$
Obviously, $K_{m, n}$ has a $P_{4 k+1}$-factorization.

Case(3) $(2 k+1) m>(2 k) n$
and
$(2 k+1) n>(2 k) m:$
In this case, let
$b=\frac{(2 k+1) n-2 k m}{n}, b=\frac{(2 k+1) m-2 k n}{4 k+1}$,
$e=\frac{m+n}{4 k+1}, \quad$ and $r=\frac{(4 k+1) m n}{4 k(m+n)}$.
Then, from condition (1) to (4) in theorem (2), a, b, e and r are integers, and $0<a<m$ and $0<b<n$.
We
have
$(2 k) a+(2 k+1) b=m$ and $(2 k) b+(2 k+1) a=n$. Hence,
$r=\frac{(k+1)(a+b)}{2}+\frac{a b}{4 k(a+b)}$.
Further, let $Z=\frac{a b}{2 k(a+b)}$ be a positive integer.
Let $\operatorname{gcd}((2 k) a,(2 k+1) b)=d$.
Then, $2 k a=d p$ and $(2 k+1) b=d q$, where $\operatorname{gcd}(p, q)=1$.
Therefore,

$$
z=\frac{d p q}{2 k((2 k+1) p+2 k q)}
$$

These equalities imply the following equalities:
$d=\frac{2 k[(2 k+1) p+2 k q] z}{p q}$,
$r=\frac{(p+q)\left[(2 k+1)^{2} p+4 k^{2} q\right] z}{2 p q}$,
$m=\frac{2 k(p+q)[(2 k+1) p+2 k q] z}{p q}$,
$n=\frac{\left[(2 k+1)^{2} p+4 k^{2} q\right][(2 k+1) p+2 k q] z}{(2 k+1) p q}$,
$a=\frac{p[(2 k+1) p+2 k q] z}{p q}$ and
$b=\frac{2 k q[(2 k+1) p+2 k q] z}{(2 k+1) p q}$.
Let $2 k=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \ldots p_{\gamma}^{k_{\gamma}}$, where $p_{1}, p_{2}, \ldots, p_{\gamma}$ are distinct prime numbers with $k_{1}, k_{2}, \ldots, k_{\gamma}$ positive integers.
Also, let $\quad 2 k+1=q_{1}^{h_{1}} \cdot q_{2}^{h_{2}} \ldots q_{\omega}^{h_{\omega}}$,
where $q_{1}, q_{2}, \ldots, q_{\omega}$ are distinct prime numbers with $h_{1}, h_{2}, \ldots, h_{\omega}$ positive integers.

Now we can establish the following lemma.
Lemma 3:
If
gcd

Where $\quad 1 \leq \alpha \leq \beta \leq \gamma, 0 \leq i_{j} \leq k_{j}$ (when
$1 \leq j \leq \alpha) \quad$ or $\quad 0<i_{j}<k_{j} \quad$ (when
$\alpha+1 \leq j \leq \beta$);
$\operatorname{gcd}\left(q,(2 k+1)^{2}\right)$
$=q_{1}^{j_{1}} \cdot q_{2}^{j_{2}} \ldots q_{\mu}^{j_{\mu}} \cdot q_{\mu+1}^{2 h_{\mu+1-j \mu+1}} \ldots q_{\varepsilon}^{2 h_{\varepsilon}-j_{\varepsilon}} q_{\varepsilon+1}^{2 h_{\varepsilon+1}} \ldots q_{\omega}^{2 h_{\omega}}$,
where $\quad 1 \leq \mu \leq \varepsilon \leq \omega, \quad 0 \leq j_{i} \leq h_{i}($ when
$1 \leq i \leq \mu$) or $0<j_{i}<h$,(when $\mu+1 \leq i \leq \varepsilon$).
Let
$s=p_{1}^{i_{1}} \cdot p_{2}^{i_{2}} \ldots p_{a}^{i_{\alpha}}, t=p_{1}^{k_{1}-i_{1}} p_{2}^{k_{2}-i_{2}} \ldots p_{a}^{k_{a}-i_{a}}, u=p_{\alpha+1}^{i_{a+1}} \cdot p_{a+2}^{i_{a}+\ldots} \ldots p_{\beta}^{i_{\beta}}$,
$v=p_{\alpha+1}^{k_{\alpha+1}-i_{\alpha+1}} p_{\alpha+2}^{k_{\alpha+2}-i_{\alpha+2}} \ldots p_{\beta}^{k_{\beta}-i_{\beta}}, w=p_{\beta+1}^{k_{\beta+1}} p_{\beta+2}^{k_{\beta+2}} \ldots p_{\gamma}^{k_{\gamma}}$,
$s^{\prime}=q_{1}^{j_{1}} q_{2}^{j_{2}} \ldots q_{\mu}^{j_{\mu}}, t^{\prime}=q_{1}^{h_{1}-j_{1}} q_{2}^{h_{2}-j_{2}} \ldots q_{\mu}^{h_{\mu}-j_{\mu}}$,
$u^{\prime}=q_{\mu+1}^{j_{\mu+1}} q_{\mu+2}^{j_{\mu+2}} \ldots q_{\varepsilon}^{j_{\varepsilon}}$,
$v^{\prime}=q_{\mu+1}^{h_{\mu+1}-j_{\mu+1}} q_{\mu+2}^{h_{\mu+2}-j_{\mu+2}} \ldots q_{\varepsilon}^{h_{\varepsilon}-j_{\varepsilon}}$,
$w^{\prime}=q_{\varepsilon+1}^{h_{\varepsilon+1}} q_{\varepsilon+2}^{h_{\varepsilon+2}} \ldots q_{\omega}^{h_{\omega}}$.
Also, let
$p=s u v^{2} w^{2} p^{r}, \quad q=s^{r} u^{r} v^{\prime 2} w^{\prime 2} q^{r}$.
Now three cases are possible:
Case (1): If $\quad t^{r} \equiv 1(\bmod 2) \quad$ and
$v^{r} w^{t} \equiv 1(\bmod 2)$, then for some positive integer Z^{\prime}
$m=4 s t u t^{\prime}\left(s u v^{2} w^{2} p^{\prime}+s^{\prime} u^{\prime} v^{\prime 2} w^{\prime 2}\right)\left(t^{\prime} v w p^{\prime}+\right.$
$n=2 s u v w v^{\prime} w^{\prime}\left(s^{\prime} t^{\prime} u^{\prime} p^{\prime}+s t^{2} u q^{\prime}\right)\left(t^{\prime} s v w p^{\prime}+t s^{\prime} v^{\prime} w^{\prime} q^{\prime}\right) z^{\prime}$,
$a=2 s u v w p^{\prime} t^{\prime}\left(t^{\prime} v w p^{\prime}+t v^{\prime} w^{\prime} q^{\prime}\right) z^{\prime}$,
$b=2 s t u v^{\prime} w^{\prime} q^{\prime}\left(v w t^{\prime} p^{t}+t v^{\prime} w^{\prime} q^{\prime}\right) z^{\prime}$,
$r=t^{\prime} v^{\prime} w^{\prime}\left(s u v^{2} w^{2} p^{\prime}+s^{\prime} u^{\prime} v^{\prime 2} w^{\prime 2} q^{\prime}\right)\left(s^{\prime} t^{\prime 2} u^{\prime} p^{\prime}+s t^{2} u q^{\prime}\right) z^{\prime}$,
$d=2 s t u t^{\prime}\left(v w t^{\prime} p^{r}+t w^{\prime} v^{\prime} q^{\prime}\right) z^{\prime}$.
Case (2): if $\quad t^{\prime} \equiv 0(\bmod 2) \quad$ and
$v^{r} w^{t} \equiv 1(\bmod 2)$, then for some positive integer Z^{I}
$m=2 s t u t^{\prime}\left(s u v^{2} w^{2} p^{\prime}+s^{\prime} u^{\prime} v^{\prime 2} w^{\prime 2}\right)\left(t^{\prime} v w p^{\prime}+t v^{\prime} w^{\prime} q^{\prime}\right) z^{\prime}$,
$n=s u v w v^{\prime} w^{\prime}\left(s^{\prime} t^{2} u^{\prime} p^{\prime}+s t^{2} u q^{\prime}\right)\left(t^{\prime} s w p^{\prime}+t s^{\prime} v^{\prime} w^{\prime} q^{\prime}\right) z^{\prime}$,
$a=\operatorname{suvwp}^{\prime} t^{\prime}\left(t^{\prime} v w p^{\prime}+t v^{\prime} w^{\prime} q^{\prime}\right) z^{\prime}$,
$b=s t u v^{\prime} w^{\prime} q^{\prime}\left(v w t^{\prime} p^{\prime}+t v^{\prime} w^{\prime} q^{\prime}\right) z^{\prime}$,
$r=t^{\prime} w^{\prime} v^{\prime}\left(s u v^{2} w^{2} p^{\prime}+s^{\prime} u^{\prime} v^{\prime 2} w^{\prime 2} q^{\prime}\right)\left(s^{\prime} t^{\prime 2} u^{\prime} p^{\prime}+s t^{2} u q^{\prime}\right) z^{\prime} / 2$, $d=s t u t^{\prime}\left(v w t^{\prime} p^{\prime}+t w^{\prime} v^{\prime} q^{\prime}\right) z^{\prime}$.
Case
(3):
If
$t^{\prime} \equiv 1(\bmod 2)$
and $v^{\prime} w^{\prime} \equiv 0(\bmod 2)$, then for some positive integer Z^{\prime}
$m=2 s t u t^{\prime}\left(s u v^{2} w^{2} p^{\prime}+s^{\prime} u^{\prime} v^{\prime 2} w^{\prime 2}\right)\left(t^{\prime} v w p^{\prime}+t v^{\prime} w^{\prime} q^{\prime}\right) z^{\prime}$,
$n=s u v w v^{\prime} w^{\prime}\left(s^{\prime} t^{2} u^{\prime} p^{\prime}+s t^{2} u q^{\prime}\right)\left(t^{\prime} s v w p^{\prime}+t s^{\prime} v^{\prime} w^{\prime} q^{\prime}\right) z^{\prime}$,
$a=s u v w p^{\prime} t^{\prime}\left(t^{\prime} v w p^{\prime}+t v^{\prime} w^{\prime} q^{\prime}\right) z^{\prime}$,
$b=s t u v^{\prime} w^{\prime} q^{\prime}\left(v w t^{\prime} p^{\prime}+t v^{\prime} w^{\prime} q^{\prime}\right) z^{\prime}$,
$r=t^{\prime} w^{\prime} v^{\prime}\left(s u v^{2} w^{2} p^{\prime}+s^{\prime} u^{\prime} v^{\prime 2} w^{\prime 2} q^{\prime}\right)\left(s^{\prime} t^{\prime 2} u^{\prime} p^{\prime}+s t^{2} u q^{\prime}\right) z^{\prime} / 2$, and
$d=s t u t^{\prime}\left(v w t^{\prime} p^{\prime}+t w^{\prime} v^{\prime} q^{\prime}\right) z^{\prime}$.
Proof. We are now giving the proof of each case of lemma 3 .
If $\quad \operatorname{gcd}(p, q)=1 \quad \operatorname{gcd}\left(p, 4 k^{2}\right)=s u v^{2} w^{2}$, $\operatorname{gcd}\left(q,(2 k+1)^{2}\right)=s^{\prime} u^{\prime} v^{\prime 2} w^{\prime 2}$
and
$p=s u v^{2} w^{2} p^{\prime}$ and $q=s^{r} u^{T} v^{\prime 2} w^{\prime 2} q^{T}$ hold,
then
$\operatorname{gcd}\left(s u v^{2} w^{2} p^{\prime}, s^{\prime} u^{\prime} v^{\prime 2} w^{\prime 2} q^{\prime}\right)=\operatorname{gcd}\left(s^{\prime} u^{\prime} t^{\prime 2} p^{\prime}, s u t^{2} q^{\prime}\right)=1$
From lemma 1 , it is clear that
$\operatorname{gd}\left(s u w^{2} w^{2} p^{\prime}+s^{\prime} u^{\prime} v^{\prime 2} w^{2} q^{\prime} p^{\prime} q^{\prime}\right)=\operatorname{gdd}\left(s^{\prime 2} u^{\prime} p^{\prime}+s t^{2} u q^{\prime}, p^{\prime} q^{\prime}\right)=1$.
Since,
$r=\frac{\left(s u v^{2} w^{2} p^{\prime}+s^{\prime} u^{\prime} v^{\prime 2} w^{\prime 2} q^{\prime}\right)\left(s^{\prime} t^{\prime 2} u^{\prime} p^{\prime}+s t^{2} u q^{\prime}\right) z}{2 p^{\prime} q^{\prime}}$
is an integer, hence, we see that $\frac{z}{2 p^{\prime} q^{\prime}}$ must be an integer.
Let $Z_{1}=\frac{z}{\left(2 p^{\prime} q^{r}\right)^{p}}$, then
$d=\frac{2 \operatorname{sut}\left(t^{\prime} v w p^{\prime}+t v^{\prime} w^{\prime} q^{\prime}\right) z_{1}}{v^{\prime} w^{\prime}}$.
Depending on the values of parameters t^{r} and $v^{r} w^{\prime}$ the proof of three cases of lemma 3 are as follows.
Gaser $^{\prime}\left(w^{r} \psi^{\prime} \overline{\bar{Z}}^{\prime}, 1(\bmod 2)\right.$ and $v^{\prime} w^{\prime} \equiv 1(\bmod 2):$
Since $\operatorname{gcd}\left(2, v^{\prime} w^{\prime}\right)=\operatorname{gcd}\left(s t u, v^{\prime} w^{\prime}\right)=1$ and
$\operatorname{gcd}\left(v w t^{\prime} p^{t}+t v^{\prime} w^{\prime} q^{\prime}, v^{\prime} w^{\prime}\right)=1, \quad$ therefore,
$\frac{z_{1}}{\left(v^{\prime} w^{\prime}\right)}$ is an integer. Let $Z_{2}=\frac{z_{1}}{\left(v^{\prime} w^{\prime}\right)}$, hen
$n=\frac{2 s u w v^{\prime} w^{\prime}\left(s^{\prime} t^{\prime 2} u^{\prime} p^{\prime}+s t^{2} u q^{\prime}\right)\left(t^{\prime} s w p^{\prime}+t s^{\prime} v^{\prime} w^{\prime} q^{\prime}\right) z_{2}}{t^{\prime}}$.
and \quad Since $\operatorname{gcd}\left(2, t^{\prime}\right)=\operatorname{gcd}\left(s u v w v^{\prime} w^{\prime}, t^{\prime}\right)=1$ and $\operatorname{gcd}\left(t^{\prime} s v w p^{\prime}+t s^{\prime} v^{\prime} w^{\prime} q^{\prime}, t^{\prime}\right)=\operatorname{gcd}\left(s^{\prime} t^{\prime 2} u^{\prime} p^{\prime}+s t^{2} u q^{\prime}, t^{\prime}\right)=1$, therefore $\frac{z_{2}}{t^{I}}$ is an integer.
Let $Z^{r}=\frac{z_{2}}{t^{r}}$, then the equalities in Case (1) hold.
Case $(2): t^{\prime} \equiv 0(\bmod 2)$ and $v^{\prime} w^{t} \equiv 1(\bmod 2):$

Since $\operatorname{gcd}\left(2, v^{\prime} w^{\prime}\right)=\operatorname{gcd}\left(\operatorname{stu}, v^{\prime} w^{\prime}\right)=1$ and $\operatorname{gcd}\left(v w t^{r} p^{r}+t v^{r} w^{r} q^{r}, v^{r} w^{r}\right)=1$,
hence $\frac{z_{1}}{\left(v^{\prime} w^{\prime}\right)}$ is an integer. Let $Z_{2}=\frac{z_{1}}{\left(v^{\prime} w^{\prime}\right)}$, then $n=\frac{2 s u v w v^{\prime} w^{I}\left(s^{\prime} t^{\prime 2} u^{\prime} p^{\prime}+s t^{2} u q^{I}\right)\left(t^{\prime} s w w p^{I}+t s^{I} v^{\prime} w^{I} q^{I}\right) z_{2}}{t^{I}}$.
Since,
$\operatorname{gcd}\left(2, t^{\prime}\right)=2, \operatorname{gcd}\left(s u w w v^{\prime} w^{I}, t^{\prime}\right)=\operatorname{gcd}\left(t^{\prime} s w w p^{t}+t s^{\prime} v^{\prime} w^{I} q^{I}, t^{\prime}\right)=1$ also
$\operatorname{gcd}\left(s^{\prime} t^{\prime 2} u^{r} p^{r}+s t^{2} u q^{r}, t^{r}\right)=1$, therefore $\frac{2 z_{2}}{t^{\prime}}$ is an integer.
Let $Z^{\prime}=\frac{2 z_{2}}{t^{\prime}}$, then the equalities in (2) hold.
Case $(3): t^{r} \equiv 1(\bmod 2) \operatorname{and} v^{r} w^{r} \equiv 0(\bmod 2)$
Since, $\operatorname{gcd}\left(2, v^{\prime} w^{\prime}\right)=2$, and
$\operatorname{gcd}\left(s t u, v^{\prime} w^{\prime}\right)=\operatorname{gcd}\left(v w t^{\prime} p^{\prime}+t v^{\prime} w^{\prime} q^{\prime}, v^{\prime} w^{\prime}\right)=1$,
hence $\frac{2 z_{1}}{\left(v^{\prime} w^{l}\right)}$ is an integer.
Let $Z_{2}=\frac{2 z_{1}}{\left(v^{\prime} w^{\prime}\right)}$, then
$n=\frac{s u v w v^{\prime} w^{\prime}\left(s^{\prime} t^{\prime 2} u^{\prime} p^{\prime}+s t^{2} u q^{\prime}\right)\left(t^{\prime} s v w p^{\prime}+t s^{\prime} v^{\prime} w^{\prime} q^{\prime}\right) z_{2}}{t^{\prime}}$
Since, $\operatorname{gcd}\left(2, t^{\prime}\right)=\operatorname{gcd}\left(\operatorname{suvw} v^{\prime} w^{\prime}, t^{\prime}\right)=1$ and $\operatorname{gcd}\left(t^{\prime} s v w p^{\prime}+t s^{\prime} v^{\prime} w^{\prime} q^{\prime}, t^{\prime}\right)=\operatorname{gcd}\left(s^{\prime} t^{\prime 2} u^{\prime} p^{\prime}+s t^{2} u q^{\prime}, t^{\prime}\right)=1$ therefore $\frac{z_{2}}{t^{\prime}}$ is an integer.
Let $Z^{I}=\frac{z_{2}}{t^{\prime}}$ then the equalities in case (3) hold.
This proves the lemma 3.
We now give the direct construction of case (1) by taking $Z^{I}=1$ in lemma 3. We will call this as lemma 4.
Lemma 4. For any positive integers $s, t, u, v, w, s^{\prime}, t^{\prime}, u^{I}, v^{\prime}, w^{\prime}, p$ and q, let
$m=4 s t u t^{\prime}\left(s u v^{2} w^{2} p+s^{\prime} u^{\prime} v^{\prime 2} w^{\prime 2} q\right)\left(v w t^{\prime} p+t v^{\prime} w^{\prime} q\right)$,
$n=2 s u v w v^{\prime} w^{\prime}\left(s^{\prime} t^{\prime 2} u^{\prime} p+s t^{2} u q\right)\left(v w p t^{\prime} s+q t s^{\prime} v^{\prime} w^{\prime}\right)$. Then $K_{m, n}$ has a $P_{4 k+1}$ - factorization.
Proof.
Let
$a=2 s u v w p t^{\prime}\left(t^{\prime} v w p+t v^{\prime} w^{\prime} q\right), b=2 s t u v^{\prime} w^{\prime} q\left(v w t^{\prime} p+t v^{\prime} w^{\prime} q\right)$
and $r=t^{\prime} v^{\prime} w^{\prime}\left(s u v^{2} w^{2} p+s^{\prime} u^{\prime} v^{\prime 2} w^{\prime 2} q\right)\left(s^{\prime} t^{\prime 2} u^{\prime} p+s t^{2} u q\right)$,
then $\quad r_{1}=t^{\prime}\left(s u v^{2} w^{2} p+s^{\prime} u^{\prime} v^{\prime 2} w^{\prime 2} q\right) \quad$ and $r_{2}=v^{\prime} w^{\prime}\left(s^{\prime} t^{\prime 2} u^{\prime} p+s t^{2} u q\right)$.
Let X and Y be two partite set of $K_{m, n}$ such that
$X=\left\{x_{i, j}: 1 \leq i \leq r_{1} ; 1 \leq j \leq m_{0}\right\}$
and
$Y=\left\{y_{i, j}: 1 \leq i \leq r_{2} ; 1 \leq j \leq n_{0}\right\}$,
where $m_{0}=\frac{m}{r_{1}}=4 \operatorname{stu}\left(v w p t^{I}+t v^{I} q w^{r}\right)$
and $n_{0}=\frac{n}{r_{2}}=2 s u v w\left(\nu w p t^{I} s+q t s^{I} v^{I} w^{I}\right)$.
Now for each i, x, y, z and z^{\prime},
$1 \leq i \leq t^{\prime} p, 1 \leq x \leq v w, 1 \leq y \leq s u v w$,
$1 \leq z \leq t$ and $0 \leq x^{t} \leq 1$,
let
$f(i, x, y)=\operatorname{suv}^{2} w^{2}(i-1)+\operatorname{suvw}(x-1)+y$,
$g\left(i, y, z, x^{I}\right)=s^{I} t^{I} u^{I} v^{I} w^{\prime}(i-1)+\operatorname{suvw}(z-1)+y+x^{I}$ and
$h\left(i, x, y, x^{r}\right)=2 \operatorname{suww}(i-1)+2 \operatorname{su}\left(v w^{I} p+t v^{\prime} w^{\prime} q\right)(x-1)+2 y+x^{I}-1$,
here stuvw $+1=s^{I} t^{I} u^{I} v^{I} w^{I}$ and set

$1 \leq j \leq 4 s u\left(v w t^{\prime} p+t v^{\prime} w^{\prime} q\right), 1 \leq x \leq v w$,
$\left.1 \leq y \leq s u v w, 1 \leq z \leq t, 0 \leq x^{t} \leq 1\right\}$.
For each i, x, y, z and x^{\prime},
$1 \leq i \leq v^{\prime} w^{\prime} q, 1 \leq x \leq s t u, 1 \leq y \leq v w, 1 \leq z \leq t$ and $0 \leq x^{\prime} \leq 1$, Let
$\varphi(i, x, y, x)=\operatorname{su} v^{2} w^{2} t^{f} p+s^{\prime} t^{f} v^{\prime} w^{\prime}(i-1)+v w(x-1)+y+x^{r}$,
$\psi(i, x, z)=s^{\prime} t^{\prime 2} u^{\prime} v^{\prime} w^{\prime} p+s t^{2} u(i-1)+s t u(z-1)+x$
and
$d\left(i x, y, x^{\prime}\right)=2 \operatorname{susw} t^{\prime} p+2 x+2 \operatorname{stu}(i-1)+2 \operatorname{ssi}\left(\cos ^{\prime} p+w^{\prime} w^{\prime} q\right)(y-$

1) $+x^{\prime}-1$,
and let

$1 \leq j \leq 4 s u\left(w w t^{\prime} p+t v^{\prime} w^{\prime} q\right), 1 \leq x \leq s t u, 1 \leq y \leq w, 1 \leq z \leq t$,
$\left.0 \leq x^{I} \leq 1\right\}$.
Let $F=\mathrm{U}_{1 \leq i \leq t^{\prime} p+v^{\prime} w^{\prime} q} E_{i_{x}}$ then it is easy to see that the graph F
is a $P_{4 k+1^{-}}$factor of $K_{m, n}$. Define a bijection σ from $X \cup Y$ onto $X \cup Y$
in such a way that $\sigma\left(x_{i, j}\right)=x_{i+1, j}, \sigma\left(y_{i, j}\right)=y_{i+1, j}$.
For each $i \in\left\{1,2, \ldots, r_{1}\right\}$ and each $j \in\left\{1,2, \ldots, r_{2}\right\}$, let
$F_{i, j}=\left\{\sigma^{i}(x) \sigma^{j}(y): x \in X, y \in Y, x y \in F\right\}$.

It is easy to show that the graphs $F_{i, j}\left(1 \leq i \leq r_{1}, 1 \leq j \leq r_{2}\right)$ are $P_{4 k+1}$-factor of $K_{m, n}$ and there union is $K_{m, n}$.
Thus $\left(F_{i, j}: 1 \leq i \leq r_{1}, 1 \leq j \leq r_{2}\right)$ is a $P_{4 k+1^{-}}$ factorization of $K_{m, n}$.

This proves the lemma 4 . Similarly we can prove the direct constructions of cases (2) and (3).
Proof (Theorem 3):
Applying lemmas 2-4, we see that for the parameters k, m and n satisfying conditions (1)-(4) in theorem $1, K_{m, n}$ has a $P_{4 k+1}$-factorization. This proves the sufficiency of the conditions given in theorem 3 .
Proof (Theorem 1):
Combining theorem 2 and 3, we complete the proof of theorem 1. This proves that Ushio conjecture for $P_{4 k+1}$-factorization of $K_{m, n}$ is true.

References:

[1] Wang H: $P_{2 p}$-factorization of a complete bipartite graph, discrete math. 120 (1993) 307-308.
[2] Beiling Du : $P_{2 k}$-factorization of complete bipartite multi graph. Australasian Journal of Combinatorics 21 (2000), 197 199.
[3] Ushio K: G-designs and related designs, Discrete Math., 116(1993),299-311.
[4] Ushio K: P_{3} - factorization of complete bipartite graphs. Discrete math. 72 (1988) 361-366.
[5] Wang J and Du B: P_{5} - factorization of complete bipartite graphs. Discrete math. 308 (2008) $1665-1673$.
[6] Wang $\mathrm{J}: P_{7}$ - factorization of complete bipartite graphs. Australasian Journal of Combinatorics, volume 33 (2005), 129137.
[7] U. S. Rajput and Bal Govind Shukla: $P_{9}-$ factorization of complete bipartite graphs. Applied Mathematical Sciences, volume 5(2011), 921-928.
[8] Wang J and Du B: P_{3} - factorization of complete bipartite multigraphs and symmetric complete bipartite multi-digraphs. Utilitas Math. 63 (2003) 213-228.
[9] Du B and Wang J: $P_{4 k-1}$-factorization of complete bipartite graphs. Science in China Ser. A Mathematics 48 (2005) 539-547.
[10] Harary F: Graph theory. Adison Wesley. Massachusetts, 1972.
[11] Ushio K: G-designs and related designs, Discrete Math., 116 (1993) 299-311.

