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Further, Beiliang [2] extended the work of Wang [1], and studied the Pz j.-factorization of
complete bipartite multigraphs. For even value of k in Pk—factorization, the spectrum

problem However for odd value of Kk ie.

PEJ P.i!
[4, 5, 6, 7]. Again, P —factorizations of complete bipartite multigraphs and symmetric

complete bipartite multi-digraphs were studied by Wang and Beiliang[8]. Also, Beiliang and
Wang have shown that Ushio conjecture is true for

4k — 1 factorization of complete bipartite graphs[9]. In the present paper we

Keywords is completely solved [1, 2, 3].

Complete bipartite Graph,
Factorization of Graph,
Spanning Graph.

P? and Py, the path factorization have been studied by a number of researchers

shall show that ushio conjecture is also true for 4k + 1 factorization of complete bipartite
graphs. That is, we shall prove that a necessary and sufficient condition for the existence of a

K, s (1) (2k+1)m = 2kn,

(2)R2Ek+1In=2kM,(3)m +n = O Grnod 4k + 1),
(4) (4k + 1)ymn/[4k(m + n)] Isan integer.
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(3)m+n =0 (mod4k+ 1),
(4) (4k + Dymn/[4k(m + n)] is an integer.

Mathematical Analysis

We first give the proof of necessity of theorem 1, which is
given in theorem 2. The sufficiency of theorem 1 is proved by
theorem 3.

Theorem 2: Let k, M, 7 be positive integers. Then for

P, ;. ; 1 -factorization of

Introduction
Ushio conjecture [11] for path factorization of complete
bipartite graphs is as follows:

If k is odd, and 7712 and 11 be positive integers. Then Kmm has
P, -factorization if and only if:

(1) (k—1)m = kn,

(2)(k—1)n=km,

(3)ym+n =0 (mod k),

(4) kmn/[(k — 1)(m + n)Jisan integer.

Pq- I+ 1- factorization it is necessary that:

(1) 2k +1)m= 2kn,

In this paper, we shall prove that Ushio conjecture is true
for the path factorization of Pq, I+ 1 -factorization of complete
bipartite graphs, that is we shall prove the theorem given below.
Theorem 1: Let k, 111, 1. be positive integers, there exist a

PM_,_ 1 -factorization of Kmm if and only if:
(1) (2k+1)m = 2kn,
(2)(2k + Dn=2km,
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(2)2k+ 1)n= 2km,

(3)m+n =0 (mod 4k + 1),

(4) (4k + 1)ymn/[4k(m + n)] is an integer.

Proof: Let r be the number of Py, -factor in the

factorization and € be the number of copies of Py, 4 in any

factor.
(4K+1)mn

4K(m+n)

m+n
Then & = ,and ¥ =
AK+1
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hence conditions (3) and (4) are necessary.
Let @ and D be the number of copies of Py, 4 with its end

points in Y and X in a particular Py, , ;-factor respectively.

Then ,

(2k)a+ (2k+1)b=m,and Rk + 1]a+(2k]gzn 4k +1 !

Hence,
(Zk+1In—-(2k)m (Zk+1)m—(2km
= ,and b = .
ak+1 dk+1

Conditions (1) and (2) are therefore, necessary. This proves the
necessecity of the theorem 1.

Now we will prove the sufficiency of theorem 1. Which is
given by theorem 3.

Theorem 3: Let K, 7,1 be positive integers. Then for

P=1-F.:+ 1 -factorization, it is sufficient that:

(1) 2k + 1)m = 2kn,

(2)(2k+ 1)n= 2km,

(3)m+n =0 (mod 4k + 1),

(4) (4k + 1ymn/[4k(m + n)]is an integer.

The proof of this theorem, consist of the following lemmas.
Lemma 1: Let @,b,pand q be positive integers. If

ged(ap,bg) = 1,thenged(ab, ap + bg) = 1.
We prove the following result which is used later in the paper.
Lemma 2: If K, , has a Py, . ;-factorization, then Ky oy

has a Pq_ 1+ 1 -factorization for every positive integer 5.

Proof: Let K 5 is a 1- factorable [10] and { Fy, F, ..., F;}
be a 1- factorization of it. For each i with 1 <X 1 =X g, replace
every edge of Fl- by a Kmn to get a spanning subgraph Gl- of
K sn such that the graph G;'s {1 = 1 < s} are pair
wise edge disjoint and there union is £ g, o5 . Since Km,n has
a Py qfactorization, it is clear that the (; s
alsoP, ;.. , — factorable, and hence Ky sn is also

P, .- factorization.
Lemma 2 implies that there are three cases to consider.
case(1) 2km = (2k + 1)n:

In this case, let

Fi = (Yo Vo Xesajenye 1 1< 4k} 1 < < 2(2k+1),

It is easy to see that it is a P=1-I.:+ 1 factor of K@k,4k+2 .
Then U1 zjz202k+1) Fj is a Pyy, 4-factorization of
Kyparss K has Py, (-factorization.

case(2) (2k+ 1)m = 2kn:

Obviously, Ky, , has aP,,, -factorization.
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case(3) (2k+ 1)m = (2k)n and
(2k+ 1)n > (2k)m:

In this case, let

(2k+Dn—2km  (2k+1)m—2kn
B dk+1
_m+n 4 _(4k+l)mn
T+ T T Hkmn)

Then, from condition (1) to (4) in theorem (2), a, b, e and r are
integers,and 0 < @ < mand 0 < b < n.
We have
(2k)a+ 2k+1)b=mand 2k)b+ 2k+1)a=n.
Hence,
(k+1)(a+b) ab

= + .

2 4k(a+b)

ab
2k(a+hb)

Let gcd((Zk]a, (2k + ljb) =d.

Further, let £ = be a positive integer.

Then, 2ka = dp and (2k+ 1)b = dq, where
ged(p,q) = 1.
Therefore,
, apq
2k((2k+ Dp+ 2kq)
These equalities imply the following equalities:
g 2k[2k+ 1)p+ 2kqlz
Pq ’
(p+@[Qk+1)°p + 4k*q]z
r= ,
2pq
2k(p+ )2k + 1)p + 2kqlz
m = '
pq
[Qk+1)’p+ 4k*ql[(2k + 1)p + 2kqlz
= 2k + 1)pg ’
pl(2k+ 1)p+ 2kqlz
a= and
Pq
_ 2kq[(2k+ 1)p + 2kqlz
B (2k + 1)pq '

ky Kk ky
Let 2k =p ' .p.? D, s where Py, Ps, ..., P, are

distinct prime numbers with kLkz, R k}, positive integers.
_ P B he
2k+1=4q,".q9," ..q,",

where 1,3, ..., {,, are distinct

Also, let
prime numbers with

h 1 hz R hm positive integers.
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Now we can establish the following lemma.

Lemma 3:
If
ged
ALDY _ pit iz g 2asr-iga  Pasg-igsy  ZE5TIE Yipa Ty
(p’4h )_pl Py "'p;'pae‘i Doz Ly F B+1 p’ '

Where l=a=pF=y,0 =i; = kjwhen
1‘=_Cj‘=_:(1) or U{ijﬁikj (when
a+1=j=p)
ged(q, (2k +1)9

A A R RS 2hs-js 2h 2h
— qiilqéz "'q,u‘u'q#j Jk+1."q‘s ez 5+i+1"' | mJ

where l=u=se=sw, 0 = j; = hj(when

=i s o<, <hwepu+1l=si<e)
Let

—_ i:1 1.2 iﬂ —_ kl_il kZ_iZ kﬂ_iﬂ —_ iﬂ'l'i iﬂ+2 1'8
S=PPy D L=l U D s -y
_ oFati-igss Kotz —igtz kg-ig _ kgt Kpiz ky
v=p1; o wDg W =Pp Py Py
r_ e Ju or _ hi—ji ho—jo hy=ju
s'=qrqy q), =g g g,
I Ju+1 _Ju+z Je
u = q,u+1 q,u+2 e
' — hy+i—Ju+r Putz—Ju+z he—je
o q,u+1 p+2 -4 !
1 o hess heso hy
W =441 9%+2 9w -
Also, let
p = suv?w?p’, q=s"u'v?w'?q.
Now three cases are possible:
Case Q): If t'=1(mod 2) and

v'w’ = 1(mod 2), then for some positive integer Z'
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r=t'Wv' (suviwip' +su'v w2 )(s't"u'p’ + st*ug")z' /2,
d = stut’"(vwt'p’ + tw'v'q’)z'.
Q): If t'=1 (mod 2)
and 'W' = 0(mod 2), then for some positive integer Z
m = 2stut’ (suv’wp' + s'u'v"*w)(t'vwp' + tv'w'q")z,
n = suvwv'w'(s't*u'p’ + st*ug")(t'svwp' + ts'v'w'q")2,
a=suvwp't' (t'vwp' +tv'w'q")z’,
b = stuv'w'q'(vwt'p’ + tv'w'q’)z’,
r=t'w'v (suv’wp’ + s'u'v" w'q")(s't "u'p + st*uq)z'/2,and
d = stut’(vwt'p’ +tw'v'q")z'.
Proof. We are now giving the proof of each case of lemma 3.
if ged(p,q)=1 gcd(p,4k?) = suv?w?,
ged(q, 2k + 1)?) = s'u'v"?w'?
p = suv?w?p’ and g = s"u'v"*w'?q’ hold,
then
ged (suv?w?p', s'u'v*w'?q") = ged(s'v't"p’ sut?q') = 1
From lemma 1, it is clear that
sod(sur*w?y +s'u'v W p'q) = ged ('t Mu'p' + stPug'p'g) = 1
Since,
(suv*w?p' +s'u'v*w'q")(s't*u'p’ + st*uq')z
- szqx

is an integer; hence, we see that

Case

and

+—; Must be an integer.

2p'g

-4
LetZy = w, then

g 2sut(t'vwp' + tv'w'q’)z;

v'w'
Depending on the values of parameters t'and v'W' the proof
of three cases of lemma 3 are as follows.

m = "—l-.S‘EHE'r(SHTFEWEPI + SIHIFIEWIEJ(EIEWI +(iaﬁprw:(fra?’1(mﬂd ZJand v'w' = I(Tnﬂd 2]

n=2suvwv'w' (s't'"*u'p' + st*uq")(t'svwp' + ts'v'w'q")z’,
a = 2suvwp't' (t'vwp' + tv'w'q’)z’,

b = 2stuv'w'q (vwt'p" + tv'w'q")z’,
r=t"v'w (suv*w?p' + s'u'v"w'q")(s't*u'p' + st*uq")z,

d = 2stut’ (vwt'p’ + tw'v'q’)z’.

@): If t" = 0(mod 2)

v'w' = 1(mod 2), then for some positive integer 2’

Case and

m = 2stut' (suv*w?p' + s'u'v'*w'?) (t vwp' + tv'w'q")z,
n=suvwy'w'(s't*u'p’ + st*uq')(t'svwp' + ts'v'w'q")z,
a = suvwp't'(t'vwp’ + tv'w'q"z’,

b = stuvr'w'q'(vwt'p’' + tv'w'q’)z’",

since gcd(2,v'w') = ged(stu, v'w') = 1 and

gcd(vwt'p’ + tv'w'g’,v'w') =1,  therefore,
ek T . Lot Zo = £1 h
Ly integer. Let Z5 ) , then
2suvw'w' (5"t u'p’ + st*uq")(t'svwp' + ts'v'w'q )z,
n= .

t.’
since gcd(2,t") = ged (suvwr'w',t") = 1 and
ged(t'svwp' +ts'v'w'q’,t") = ged(s't ™'y’ + stPug',t') =1,
therefore i—f is an integer.
Letz' = % , then the equalities in Case (1) hold.

Case (2): t' = 0(mod 2)and v'w' = 1(mod 2):
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since gcd(2,v'w") = ged(stu, v'w’) = 1 and
gcd(vwt'p' + tv'w'g’,v'w') =1

£1

£1
< an integer. Lot Za —
hence ) 5N integer. Let Z5 )’ then
~ 2suw'w' 5"ty + stPuq')(t swwp' +t5'v'w'q)z,
n= . .
Since,

ged(2,t") =2, ged(suvwr'w',t") = ged(t'svwp’ + ts"v'w'q',t) =1

also
2=

ocd(s't"*u'p" + st*uq’,t") = 1, therefore s
an integer.

r 2zg o
LetZ = t—,then the equalities in (2) hold.

Case 3): t' = 1 (mod 2) andv'w' = 0(mod 2)
Since, ng(Z,I.?FWI] = 2, and
ged(stu, v'w') = ged(vwt'p' + tv'w'q’ ,v'w') = 1,
2z
{v'w')

hence is an integer.

Let £2 = , then

1
W w')
suvwv'w'(s't""u'p + st*ug") (t' svwp’ + ts'v'w'q")z,
since, gcd(2,t") = ged (suvwr'w',t") = 1 and
acd(t'svwp’ + ts'v'w'q’ ") = ged (s't*u'p’ + st*ug',t) = 1

n

2z, .
therefore — is an integer.
t

Letz = sz then the equalities in case (3) hold.

This proves the lemma 3.

We now give the direct construction of case (1) by taking
z' = 1 inlemma 3. We will call this as lemma 4.
Lemma 4. For any

integers 5, t,u, v, w,s’,t",u’, v, w’,pandq,
let

m = 4stut' (suv’w?p + s'u'v"*w'q) (vwt'p + tv'w'q),

n = 2suvwr'w'(s't"*u'p + st?uq) (vwp t's + qts'v'w").

positive

Then K.y 5y hasa Py ;- factorization.
Proof. Let
a = 2suvwpt'(t'vwp + tv'w'q), b = 2stuv'w'q(owt 'p 4+ tv'w'q)

and 7= t'v'w' (suv®wip + s"u' v wq)(s't"u'p + st*u q),

then 7, =t (suv?w?p+s'u'v?w'?q) and
n =v'w (s't"?u'p + st?uq).
Let X and Y be two partite set of Kmﬂ such that

U S Rajput et al./ Elixir Dis. Math. 45 (2012) 7893-7897

X={x,pl<i<sn;1<j<=mgy)
and
Y={y;l<sisn;l<j=<n,}

where My = TE = 4stu(vwpt' + tv'qw’)

1

and Mg = :L_ = 2suvw(vwp t's + gts'v'w’).
z

Now for each £, X, ¥, Zand Z ',
=istpls=x=vw1<y<=suvw,

l=sz=tad0 =x"=1,
let
fl,x,y) =suv?w?(i — 1) + surw(x — 1) + vy,

LI .

gy, zx")=s"t'uv'w'(i-1)+suww(z—1) +y+ 1" and
h(i,x,y,x") = 2suow(i — 1)+ 2su(owt p+ to'w'q)(x - 1)+ 2y +x' -1,
here sturw + 1 = s't"u'v'w' and set

E; = {Xp,0) jeasulow t' prtv'w' )e-1)Vgi,yza) jrhlipya):
l1=j<=4sulvwt'p+tv'wg),1 =<x = vw,
l=y=ssurw,1=z=t0=x" =1L
ForeachI,X,V,Zand X',

l<isvwgl<sxsstul<y<wwl<z<tand0<x' <1,

Let

o,y x) = suwhw’tp+ st vw (- 1) +mw(i-1) +y 41

Y, x,z) =s't" ' v'wp+stiuli— 1) +stu(z—1) +x
and

0i,,,5") = 2owowt 'p + 2+ Dstu(i - 1)+ sulewt p + tv'w'g) -

Dr-1 and let

E tpsi = {xcli xy.x') j+asulowt’ p+n"1'."q:*"z-1:1.1"¢1:i.xz:‘. j+8lixy)
1<j<4sulowt'p+tv'w'g), 1 <x<stu,1<y<ww, 1<z <t
0=x"=1}

Let F = U 1zizt'pav’ w' g ELthen it is easy to see that the
graph F

is a Pypyq- factor of Kmﬂ.

fromX U VYoo X UY

in such a way that
J(xi,j) = Xit1,j J(J’a‘,j) = Vis,j-

Foreachl € {1,2,..., 73 Jandeach J € {1,2,..., 75},
let

F; = {Ji(I]JfE}I):I EX,yEY, XV E F}.

Define a bijection ¥
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It is easy to show that the graphs
Fii(lsi=n,1=j=mn) ae Py, factor of

Hmﬂ and there union is Hmﬂ.
Thus (FL}-:]' = -l £T1,1 EJETEJ is a P‘l—k+1_

factorization of Hmm .

This proves the lemma 4. Similarly we can prove the direct
constructions of cases (2) and (3).
Proof (Theorem 3):

Applying lemmas 2-4, we see that for the parameters k, m
and 1 satisfying conditions (1)-(4) in theorem 1, Hmﬂ has a

P, ., {-factorization. This proves the sufficiency of the

conditions given in theorem 3.
Proof (Theorem 1):
Combining theorem 2 and 3, we complete the proof of theorem

1. This proves that Ushio conjecture for P4k+ 1 -factorization of

K, istrue.
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