Available online at www.elixirpublishers.com (Elixir International Journal)

Discrete Mathematics

Elixir Dis. Math. 45 (2012) 7893-7897

P_{4k+1} -Factorization of complete bipartite graphs

U S Rajput and Bal Govind Shukla

Department of mathematics and astronomy, Lucknow University, Lucknow.

ARTICLE INFO

Article history: Received: 27 January 2012; Received in revised form: 25 March 2012; Accepted: 16 April 2012;

Keywords

Complete bipartite Graph, Factorization of Graph, Spanning Graph<u>.</u>

Introduction

Ushio conjecture [11] for path factorization of complete bipartite graphs is as follows:

If k is odd, and m and n be positive integers. Then $K_{m,n}$ has

 P_k -factorization if and only if:

- $(1) (k-1)m \ge kn$
- $(2)(k-1)n \ge km,$
- $(3) m + n \equiv 0 \pmod{k}.$
- (4) kmn/[(k-1)(m+n)] is an integer.

In this paper, we shall prove that Ushio conjecture is true for the path factorization of P_{4k+1} -factorization of complete bipartite graphs, that is we shall prove the theorem given below. **Theorem 1:** Let k, m, n be positive integers, there exist a P_{4k+1} -factorization of $K_{m,n}$ if and only if:

 $(1) (2k+1)m \ge 2kn,$ (2)(2k+1)n > 2km.

ABSTRACT

 P_{2n} -factorization of a complete bipartite graph for p an integer was studied by Wang [1]. Further, Beiliang [2] extended the work of Wang [1], and studied the P_{2k} -factorization of complete bipartite multigraphs. For even value of k in P_k -factorization, the spectrum problem is completely solved [1, 2, 3]. However for odd value of k i.e. P_3 , P_5 , P_7 and P_9 , the path factorization have been studied by a number of researchers [4, 5, 6, 7]. Again, P_3 -factorizations of complete bipartite multigraphs and symmetric complete bipartite multi-digraphs were studied by Wang and Beiliang[8]. Also, Beiliang and Wang have shown that Ushio conjecture true is for 4k - 1 factorization of complete bipartite graphs[9]. In the present paper we shall show that ushio conjecture is also true for 4k + 1 factorization of complete bipartite graphs. That is, we shall prove that a necessary and sufficient condition for the existence of a $(1)(2k+1)m \ge 2kn.$ $K_{m,n}$ is P_{4k+1} -factorization of $(2)(2k+1)n \ge 2km, (3) m + n \equiv 0 \pmod{4k+1},$ (4) (4k+1)mn/[4k(m+n)] is an integer. Mathematics Subject Classification- 68R10, 05C70, 05C38.

© 2012 Elixir All rights reserved.

(3) $m + n \equiv 0 \pmod{4k + 1}$, (4) (4k + 1)mn/[4k(m + n)] is an integer.

Mathematical Analysis

We first give the proof of necessity of theorem 1, which is given in theorem 2. The sufficiency of theorem 1 is proved by theorem 3.

Theorem 2: Let k, m, n be positive integers. Then for

 P_{4k+1} - factorization it is necessary that:

- $(1) (2k+1)m \ge 2kn,$
- $(2)(2k+1)n \ge 2km,$
- (3) $m + n \equiv 0 \pmod{4k + 1}$,
- (4) (4k+1)mn/[4k(m+n)] is an integer.

Proof: Let r be the number of P_{4k+1} -factor in the factorization and e be the number of copies of P_{4k+1} in any factor.

Then
$$e = \frac{m+n}{4K+1}$$
, and $r = \frac{(4K+1)mn}{4K(m+n)}$

Tele: E-mail addresses: rajputbalgovind@gmail.com

© 2012 Elixir All rights reserved

hence conditions (3) and (4) are necessary.

Let a and b be the number of copies of P_{4k+1} with its end points in Y and X in a particular P_{4k+1} -factor respectively. Then,

$$(2k)a + (2k+1)b = m$$
, and $(2k+1)a + (2k)$

Hence,

$$a = \frac{(2k+1)n - (2k)m}{4k+1}$$
, and $b = \frac{(2k+1)m - (2k)n}{4k+1}$

Conditions (1) and (2) are therefore, necessary. This proves the necessary of the theorem 1.

Now we will prove the sufficiency of theorem 1. Which is given by theorem 3.

Theorem 3: Let k, m, n be positive integers. Then for P_{4k+1} -factorization, it is sufficient that:

 $(1) (2k+1)m \ge 2kn,$ $(2)(2k+1)n \ge 2km,$

- (3) $m + n \equiv 0 \pmod{4k + 1}$,
- (4) (4k+1)mn/[4k(m+n)] is an integer.

The proof of this theorem, consist of the following lemmas. **Lemma 1:** Let a, b, p and q be positive integers. If gcd(ap, bq) = 1, then gcd(ab, ap + bq) = 1. We prove the following result which is used later in the paper. Lemma 2: If $K_{m,n}$ has a P_{4k+1} -factorization, then $K_{sm,sn}$ has a P_{4k+1} -factorization for every positive integer S. **Proof:** Let $K_{s,s}$ is a 1- factorable [10] and $\{F_1, F_2, \dots, F_s\}$ be a 1- factorization of it. For each i with $1 \le i \le s$, replace every edge of F_i by a $K_{m,n}$ to get a spanning subgraph G_i of $K_{sm,sn}$ such that the graph $G_i{}'s$ $\{1\leq i\leq s\}$ are pair wise edge disjoint and there union is $K_{sm,sn}$. Since $K_{m,n}$ has a P_{4k+1} -factorization, it is clear that the G_i is also P_{4k+1} - factorable, and hence $K_{sm,sn}$ is also P_{4k+1} factorization. Lemma 2 implies that there are three cases to consider. Case(1) 2km = (2k + 1)n

In this case, let

 $F_{j} = \{x_{i+2j}y_{i}, x_{i+2j+1}y_{i}: 1 \le i \le 4k\}, 1 \le j \le 2(2k+1).$ It is easy to see that it is a P_{4k+1} - factor of $K_{4k,4k+2}$. Then $\bigcup_{1 \le j \le 2(2k+1)} F_{j}$ is a P_{4k+1} -factorization of $K_{4k,4k+2}$. $K_{m,n}$ has P_{4k+1} -factorization. Case(2) (2k + 1)m = 2kn: Obviously, $K_{m,n}$ has a P_{4k+1} -factorization.

Case(3)
$$(2k + 1)m > (2k)m$$
 and
 $(2k + 1)n > (2k)m$:
In this case, let
 $g = \frac{(2k+1)n - 2km}{n - 4k + 1}$, $b = \frac{(2k + 1)m - 2kn}{4k + 1}$,
 $e = \frac{m + n}{4k + 1}$, and $r = \frac{(4k + 1)mn}{4k(m + n)}$.
Then, from condition (1) to (4) in theorem (2), *a*, *b*, *e* and **r** are
integers, and $0 < a < m$ and $0 < b < n$.
We have
 $(2k)a + (2k + 1)b = m$ and $(2k)b + (2k + 1)a = n$.
Hence,
 $r = \frac{(k + 1)(a + b)}{2} + \frac{ab}{4k(a + b)}$.
Further, let $Z = \frac{ab}{2k(a + b)}$ be a positive integer.
Let gcd($(2k)a, (2k + 1)b$) = d.
Then, $2ka = dp$ and $(2k + 1)b = dq$, where
 $gcd(p,q) = 1$.
Therefore,
 $Z = \frac{dpq}{2k((2k + 1)p + 2kq)Z}$.
These equalities imply the following equalities:
 $d = \frac{2k[(2k + 1)p + 2kq]Z}{pq}$,
 $m = \frac{2k(p + q)[(2k + 1)^2p + 4k^2q][(2k + 1)p + 2kq]Z}{(2k + 1)pq}$,
 $n = \frac{[(2k + 1)^2p + 4k^2q][(2k + 1)p + 2kq]Z}{(2k + 1)pq}$ and
 $b = \frac{2kq[(2k + 1)p + 2kq]Z}{pq}$.
Let $2k = p_1^{k_1} \cdot p_2^{k_2} \dots p_{\gamma}^{k_{\gamma}}$, where $p_1, p_2, \dots, p_{\gamma}$ are
distinct prime numbers with $k_1, k_2, \dots, k_{\gamma}$ positive integers.
Also, let $2k + 1 = q_1^{h_1} \cdot q_2^{h_2} \dots q_{\omega}^{h_{\omega}}$,

where $q_1, q_2, ..., q_{\omega}$ are distinct prime numbers with $h_1, h_2, ..., h_{\omega}$ positive integers.

Now we can establish the following lemma. Lemma 3:

gcd $(p,4k^2) = p_1^{i_1}.p_2^{i_2}...p_{\alpha}^{i_{\alpha}}.p_{\alpha+1}^{2k_{\alpha+1}-i_{\alpha+1}}.p_{\alpha+2}^{2k_{\alpha+2}-i_{\alpha+2}}...p_{\beta}^{2k_{\beta}-i_{\beta}}p_{\beta+1}^{2k_{\beta+1}}...p_{\gamma}^{2k_{\gamma}},$ $1 \le \alpha \le \beta \le \gamma, 0 \le i_j \le k_j$ (when Where $0 < i_i < k_i$ $1 \leq j \leq \alpha$ or (when $\alpha + 1 \leq i \leq \beta$); $gcd(q, (2k+1)^2)$ $= q_1^{j_1}.q_2^{j_2}...q_{\mu}^{j_{\mu}}.q_{{\mu+1}}^{2h_{\mu+1}-j_{\mu+1}}...q_{\varepsilon}^{2h_{\varepsilon}-j_{\varepsilon}}q_{{\varepsilon+1}}^{2h_{\varepsilon+1}}...q_{\omega}^{2h_{\omega}},$ $1 \le \mu \le \varepsilon \le \omega$, $0 \le j_i \le h_i$ (when where $1 \le i \le \mu$) or $0 < j_i < h$,(when $\mu + 1 \le i \le \varepsilon$). Let $s = p_1^{i_1} \cdot p_2^{i_2} \dots p_{\alpha}^{i_{\alpha}}, \ t = p_1^{k_1 - i_1} p_2^{k_2 - i_2} \dots p_{\alpha}^{k_{\alpha} - i_{\alpha}}, \ u = p_{\alpha+1}^{i_{\alpha+1}} \cdot p_{\alpha+2}^{i_{\alpha+2}} \dots p_{\beta}^{i_{\beta}},$ $v = p_{\alpha+1}^{k_{\alpha+1}-i_{\alpha+1}} p_{\alpha+2}^{k_{\alpha+2}-i_{\alpha+2}} \dots p_{\beta}^{k_{\beta}-i_{\beta}}, \ w = p_{\beta+1}^{k_{\beta+1}} p_{\beta+2}^{k_{\beta+2}} \dots p_{\gamma}^{k_{\gamma}},$ $s' = q_1^{j_1} q_2^{j_2} \dots q_u^{j_\mu}, \ t' = q_1^{h_1 - j_1} q_2^{h_2 - j_2} \dots q_u^{h_\mu - j_\mu},$
$$\begin{split} & u' = q_{\mu+1}^{j_{\mu+1}} q_{\mu+2}^{j_{\mu+2}} \dots q_{\varepsilon}^{j_{\varepsilon}}, \\ & v' = q_{\mu+1}^{h_{\mu+1}-j_{\mu+1}} q_{\mu+2}^{h_{\mu+2}-j_{\mu+2}} \dots q_{\varepsilon}^{h_{\varepsilon}-j_{\varepsilon}}, \end{split}$$
 $w' = q_{\varepsilon+1}^{h_{\varepsilon+1}} q_{\varepsilon+2}^{h_{\varepsilon+2}} \dots q_{\omega}^{h_{\omega}}$ Also, let $p = suv^2w^2p', q = s'u'v'^2w'^2q'.$ Now three cases are possible: $t' \equiv 1 \pmod{2}$ If Case (1): and $v'w' \equiv 1 \pmod{2}$, then for some positive integer z' $m = 4stut'(suv^2w^2p' + s'u'v'^2w'^2)(t'vwp' +$ $n = 2suvwv'w'(s't'^2u'p' + st^2uq')(t'svwp' + ts'v'w'q')z',$ a = 2suvwp't'(t'vwp' + tv'w'q')z',b = 2stuv'w'q'(vwt'p' + tv'w'q')z', $r = t'v'w'(suv^2w^2p' + s'u'v'^2w'^2q')(s't'^2u'p' + st^2uq')z',$ d = 2stut'(vwt'p' + tw'v'q')z'.If $t' \equiv 0 \pmod{2}$ Case (2): and $v'w' \equiv 1 \pmod{2}$, then for some positive integer z'

 $m = 2stut'(suv^{2}w^{2}p' + s'u'v'^{2}w'^{2})(t'vwp' + tv'w'q')z',$ $n = suvwv'w'(s't^{2}u'p' + st^{2}uq')(t'svwp' + ts'v'w'q')z',$ a = suvwp't'(t'vwp' + tv'w'q')z',b = stuv'w'q'(vwt'p' + tv'w'q')z',

 $r = t'w'v'(suv^2w^2p' + s'u'v'^2w'^2q')(s't'^2u'p' + st^2uq')z'/2,$ d = stut'(vwt'p' + tw'v'q')z'. $t' \equiv 1 \pmod{2}$ If (3): Case and $v'w' \equiv 0 \pmod{2}$, then for some positive integer z' $m = 2stut'(suv^2w^2p' + s'u'v'^2w'^2)(t'vwp' + tv'w'q')z',$ $n = suvwv'w'(s't^2u'p' + st^2uq')(t'svwp' + ts'v'w'q')z',$ a = suvwp't'(t'vwp' + tv'w'q')z',b = stuv'w'a'(vwt'p' + tv'w'a')z'. $r = t'w'v'(suv^2w^2p' + s'u'v'^2w'^2q')(s't'^2u'p' + st^2uq')z'/2$, and d = stut'(vwt'p' + tw'v'q')z'.Proof. We are now giving the proof of each case of lemma 3. $gcd(p,4k^2) = suv^2w^2$ gcd(p,q)=1If $gcd(q, (2k+1)^2) = s'u'v'^2w'^2$ and $p = suv^2w^2p'$ and $q = s'u'v'^2w'^2q'$ hold, $gcd(suv^2w^2p',s'u'v'^2w'^2q') = gcd(s'u't'^2p',sut^2q') = 1$ From lemma 1, it is clear that $gcd(suv^2w^2p' + s'u'v'^2w'^2q', p'q') = gcd(s't'^2u'p' + st^2uq', p'q') = 1.$ Since. $r = \frac{(suv^2w^2p' + s'u'v'^2w'^2q')(s't'^2u'p' + st^2uq')z}{2p'q'}$ is an integer; hence, we see that $\frac{z}{2p'a'}$ must be an integer. Let $Z_1 = \frac{z}{(2n'a')}$, then $d = \frac{2sut(t'vwp' + tv'w'q')z_1}{v'w'}$ Depending on the values of parameters t' and v'w' the proof of three cases of lemma 3 are as follows. $C_{ase'(1)} t'_{DZ} \equiv 1 \pmod{2}$ and $v'w' \equiv 1 \pmod{2}$:

 $\begin{aligned} & \operatorname{Gase}(W' q') \stackrel{=}{z} 1 \pmod{2} \text{ and } v'w' \equiv 1 \pmod{2}: \\ & \operatorname{Since} \operatorname{gcd}(2, v'w') = \operatorname{gcd}(\operatorname{stu}, v'w') = 1 \text{ and} \\ & \operatorname{gcd}(vwt'p' + tv'w'q', v'w') = 1, \\ & \operatorname{therefore}, \\ & \frac{z_1}{(v'w')} \text{ is an integer. Let } Z_2 = \frac{z_1}{(v'w')}, \text{ then} \\ & n = \frac{2 \operatorname{suvwv'w'}(s't'^2u'p' + \operatorname{st}^2uq')(t'svwp' + ts'v'w'q')Z_2}{t'}. \\ & \operatorname{Since} \operatorname{gcd}(2, t') = \operatorname{gcd}(\operatorname{suvwv'w'}, t') = 1 \text{ and} \end{aligned}$

Since gcd(2,t') = gcd(suvwv'w',t') = 1 and $gcd(t'svwp' + ts'v'w'q',t') = gcd(s't'^2u'p' + st^2uq',t') = 1$, therefore $\frac{z_2}{t'}$ is an integer. Let $z' = \frac{z_2}{t'}$, then the equalities in Case (1) hold.

Case (2): $t' \equiv 0 \pmod{2}$ and $v'w' \equiv 1 \pmod{2}$:

Since gcd(2, v'w') = gcd(stu, v'w') = 1 and gcd(vwt'p' + tv'w'q', v'w') = 1,hence $\frac{z_1}{(v'w')}$ is an integer. Let $Z_2 = \frac{z_1}{(v'w')}$, then $\frac{2suvwv'w'(s't'^2u'p'+st^2uq')(t'svwp'+ts'v'w'q')z_2}{t'}$ n = -Since, gcd(2,t') = 2, gcd(suvwv'w',t') = gcd(t'svwp' + ts'v'w'q',t') = 1 $gcd(s't'^2u'p' + st^2uq',t') = 1$, therefore $\frac{2z_2}{t'}$ is an integer. Let $Z' = \frac{2z_2}{t'}$ then the equalities in (2) hold. Case (3): $t' \equiv 1 \pmod{2}$ and $v'w' \equiv 0 \pmod{2}$ Since, gcd(2, v'w') = 2, and gcd(stu, v'w') = gcd(vwt'p' + tv'w'q', v'w') = 1,hence $\frac{2z_1}{(w'w')}$ is an integer. Let $Z_2 = \frac{2z_1}{(v'w')}$, then $n = \frac{suvwv'w'(s't'^{2}u'p' + st^{2}uq')(t'svwp' + ts'v'w'q')z_{2}}{t'}$ Since, gcd(2,t') = gcd(suvwv'w',t') = 1 and $gcd(t'svwp' + ts'v'w'q',t') = gcd(s't'^2u'p' + st^2uq',t') = 1$ therefore $\frac{z_2}{t}$ is an integer. Let $Z' = \frac{Z_2}{t'}$ then the equalities in case (3) hold. This proves the lemma 3. We now give the direct construction of case (1) by taking z' = 1 in lemma 3. We will call this as lemma 4. Lemma positive integers s, t, u, v, w, s', t', u', v', w', p and q. let $m = 4stut'(suv^2w^2p + s'u'v'^2w'^2q)(vwt'p + tv'w'q),$ $n = 2suvwv'w'(s't'^2u'p + st^2uq)(vwp t's + qts'v'w').$ Then $K_{m,n}$ has a P_{4k+1} -factorization. Proof. Let a = 2suvwpt'(t'vwp + tv'w'q), b = 2stuv'w'q(vwt'p + tv'w'q)and $r = t'v'w'(suv^2w^2p + s'u'v'^2w'^2q)(s't'^2u'p + st^2uq)$. then $r_1 = t'(suv^2w^2p + s'u'v'^2w'^2q)$ and $r_2 = v'w'(s't'^2u'p + st^2uq).$

Let X and Y be two partite set of $K_{m,n}$ such that

 $X = \{x_{i,j} : 1 \le i \le r_1; 1 \le j \le m_0\}$ and $Y = \{ y_{i,j} \colon 1 \le i \le r_2; 1 \le j \le n_0 \},\$ where $m_0 = \frac{m}{r} = 4stu(vwpt' + tv'qw')$ and $n_0 = \frac{n}{r_0} = 2suvw(vwp t's + qts'v'w').$ Now for each i, x, y, z and z', $1 \le i \le t'p, 1 \le x \le vw, 1 \le y \le suvw,$ $1 \leq z \leq t$ and $0 \leq x' \leq 1$, let $f(i, x, y) = suy^2 w^2 (i-1) + suy (x-1) + y$ g(i, y, z, x') = s't'u'v'w'(i-1) + suvw(z-1) + v + x' and h(i, x, y, x') = 2suvw(i-1) + 2su(vwt'p + tv'w'q)(x-1) + 2y + x' - 1,here stuvw + 1 = s't'u'v'w' and set $E_{i} = \{ x_{f(i,x,y), j+4su(vwt'p+tv'w'q)(z-1)} y_{g(i,y,z,x'), j+h(i,x,y,x')}:$ $1 \le i \le 4su(vwt'p + tv'w'q), 1 \le x \le vw,$ $1 \le y \le suvw, 1 \le z \le t, 0 \le x' \le 1$. For each i, x, y, z and x', $1 \le i \le v'w'q, 1 \le x \le stu, 1 \le y \le vw, 1 \le z \le t \text{ and } 0 \le x' \le 1,$ Let $\varphi(i, x, y, x') = suv^2 w^2 t' p + s' t' u' v' w' (i - 1) + vw(x - 1) + v + x'.$ $\psi(i, x, z) = s't'^{2}u'v'w'p + st^{2}u(i-1) + stu(z-1) + x$ and $\emptyset(i, x, y, x') = 2suvwt'p + 2x + 2stu(i - 1) + 2su(vwt'p + tv'w'q)(v - 1)$ 1)+x'-1and let $E_{t'p+i} = \{\chi_{\phi(i,x,y,x'),j+4su(vwt'p+tv'w'q)(z-1)}Y_{\psi(i,x,z),j+\phi(i,x,y,x')}:$ $1 \le i \le 4su(vwt'p + tv'w'q), 1 \le x \le stu, 1 \le v \le vw, 1 \le z \le t$ $0 \le x' \le 1$ Let $F = \bigcup_{1 \le i \le t' p + v' w' q} E_i$, then it is easy to see that the graph Fis a P_{4k+1} -factor of $K_{m,n}$. Define a bijection σ

from
$$X \cup Y$$
 onto $X \cup Y$
in such a way that
 $\sigma(x_{i,j}) = x_{i+1,j}, \sigma(y_{i,j}) = y_{i+1,j}.$
For each $i \in \{1, 2, ..., r_1\}$ and each $j \in \{1, 2, ..., r_2\}$,
let
 $F_{i,j} = \{\sigma^i(x)\sigma^j(y) : x \in X, y \in Y, xy \in F\}.$

It is easy to show that the graphs $F_{i,j}(1 \le i \le r_1, 1 \le j \le r_2)$ are P_{4k+1} -factor of $K_{m,n}$ and there union is $K_{m,n}$.

Thus $(F_{i,j}: 1 \le i \le r_1, 1 \le j \le r_2)$ is a P_{4k+1} -factorization of $K_{m,n}$.

This proves the lemma 4. Similarly we can prove the direct constructions of cases (2) and (3). Proof (Theorem 3):

Applying lemmas 2-4, we see that for the parameters k, mand n satisfying conditions (1)-(4) in theorem 1, $K_{m,n}$ has a

 P_{4k+1} -factorization. This proves the sufficiency of the conditions given in theorem 3.

Proof (Theorem 1):

Combining theorem 2 and 3, we complete the proof of theorem 1. This proves that Ushio conjecture for P_{4k+1} -factorization of

 $K_{m,n}$ is true.

References:

 Wang H: P_{2p} -factorization of a complete bipartite graph, discrete math.120 (1993) 307-308.

[2] Beiling Du : P_{2k} -factorization of complete bipartite multi graph. Australasian Journal of Combinatorics 21(2000), 197 - 199.

[3] Ushio K: G-designs and related designs, Discrete Math., 116(1993),299-311.

[4] Ushio K: P_3 - factorization of complete bipartite graphs. Discrete math.72 (1988) 361-366.

[5] Wang J and Du B: P_5 - factorization of complete bipartite graphs. Discrete math. 308 (2008) 1665 – 1673.

[6] Wang J: P_7 - factorization of complete bipartite graphs. Australasian Journal of Combinatorics, volume 33 (2005), 129-137.

[7] U. S. Rajput and Bal Govind Shukla: P_9 – factorization of complete bipartite graphs. Applied Mathematical Sciences, volume 5(2011), 921-928.

[8] Wang J and Du B: P_3 - factorization of complete bipartite multigraphs and symmetric complete bipartite multi-digraphs. Utilitas Math. 63 (2003) 213-228.

[9] Du B and Wang J: P_{4k-1} -factorization of complete bipartite graphs. Science in China Ser. A Mathematics 48 (2005) 539 – 547.

[10] Harary F: Graph theory. Adison Wesley. Massachusetts, 1972.

[11] Ushio K: G-designs and related designs, Discrete Math., 116 (1993) 299-311.