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1. Introduction and Preliminaries

Closedness are basic concept for the study and investigation in general topological spaces. This concept has been
generalized and studied by many authors from different points of views. In particular, Njastad [6] and Velicko [7]
introduced ¢ -open sets and & -closed sets respectively. R.Devi et al.[1] introduced ¢ -generalized closed (briefly g -
closed) sets. More recently R.Devi, V.Kokilavani and P.Basker. [2] has introduced and studied the notion of & -closed
sets which is implied by that of 5 -closed sets. In [5], the & -closure and the & -kernel are defined in terms of this
weakly ultra-5 -separation and also investigate some of the properties of the x5 -kernel and the & -closure. In this
paper we introduce Soher -adR, Spaces, R° o and R oz spaces are also defined.

Throughout this present paper, spaces X and Y always mean topological spaces. Let X be a topological space and A, a
subset of X. The closure of A and the interior of A are denoted by {4} and in#{4}, respectively. A subset A is said to be
regular open (resp. regular closed) if 4 = int{cl(4)) (resp. A = cl{int{4)), The g -interior [7] of a subset A of X is the
union of all regular open sets of X contained in A and is denoted by Intz{A}. The subset A is called g -open [7] if
A =1Intz(A) ie. asetis g -open if it is the union of regular open sets. The complement of a § -open set is called 5 -
closed. Alternatively, a set A c (X, 7) is called 5 -closed [7] if A =clz(4),
where cls(A) = E eUet=int{cl(A))NA + fp]' The family of all § -open (resp. & -closed) sets in ¥ is denoted by

S0(X) (resp. 5C(X)). Asubset 4 of ¥ iscalled & -open [6] if 4 = int (C;( int(A4) :.] and the complement of a  -open
are called & -closed. The intersection of all & -closed sets containing A is called the g -closure of A and is denoted by

acl{A), Dually, ¢ -interior of A is defined to be the union of all & -open sets contained in A and is denoted by gint (43.
We recall the following definition used in sequel.

Definition 1.1. A subset 4 of a space ¥ is said to be

(@) An g -generalized closed [1] (zg -closed) setif zcl(4) € U7 whenever 4 € U7 and J is ¢ -open in (X, 7).

(b) A g -closed set [2] if clz{AYS U whenever 4 = [/ and IJ is @g -open in (X, 7).

(c) The intersection of all & -open subsets of {X,T} containing 4 is called the g -kernel of 4 (briefly, ad~¥57(4))
de,ad~ {4y = n{G € af0(X, 714 € G}.

(d) Letx € X . Then g -kernel of x is denoted by ad*55"({x}) = N{G € adOX,T):x € G}.

(e) A point x € 4 is said to be g -Interior point of 4 if 4 isa @& -nbhd of x . The set of all 3 -Interior point of
A iscalled the g -Interior of 4 and is denoted by @&y, (A). [4]
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(f) we define the & -closure of 4 as follows ) _ . [4]
tdq(4) = m ZGfF:Fisad —closedin X, Ack}
2. Sober-gq&R, spaces

Definition 2.1. A topological space (X, 7} is said to be Sober -adR, if .
ﬂ Coabn () =g

xEX

Theorem 2.2. A topological space (X, T} is Sober -adR, ifandonlyif ad~¥s"({x}) # X foreveryx xe X

Proof. Suppose that the space (X,7)} be Sober -ad®R,. Assume that there is a point y in x such that
ad ¥ {fy}y=X .Theny g 0 which g issome proper z& -open subset of X . This implies that .
VE ﬂ Calde (D)

L. L xEX
But this is a contradiction.

Now assume that a:5~%57({x}) # X for every x e X . If there exists a point y in ¥ such that , then

= ﬂ Cadq ()

xEX
every 5 -open set containing y» must contain every point of x . This implies that the space ¥ is the unique g5 -open

set containing y . Hence a8*¥="{{x}) = X which is a contradiction. Therefore (X, 7} is Sober -zsR, -

Theorem 2.3. If the topological space ¥ is Sober -adR, and ¥ is any topological space, then the product ¥ x ¥ is
Sober ~adRy -

Proof. By showing that
ﬂ Calo by =9

(e IEXXY
we are done.We have: ) P e s
ﬂ adq (L, vh e ﬂ Tlade{x}) x adq({vi)]

(e X=¥ (v EX=¥

_ﬂ Tade (X)) x ﬂ Cada P cox¥ =9

xEX yEY

.. o 1
3. Application of R o5 and R = spaces.

Definition 3.1. A topological space (X, 7} issaid to be a R® ~ if every & -open set contains the g -closure of each of
its singletons.

Definition 3.2.

(a) A topological space (X,7) issaidtobe R* ~ if for x,y inx with ade{(fx}) # ado ({1, there exist disjoint ¢a -
open sets 7 and |7 such that &&-; {{x}) is a subset of 7 and &d-; ({3} is a subset of V.

(b) A topological space (X, T} is z& -symmetric if for x andy inx ; x € @l ({3 implies y e wd -, (KD

Lemma 3.3. Let (X, T} be atopological space and x € X . Then v e ad*Fer{{x}) ifand only if x e ad,(H]).

Proof. Suppose that y g ad~¥e7({x}}. Then there exists a ¢ -open set |7 containing x such that € V' . Therefore we
have x g ad,({y}. The converse is similarly shown.

Theorem 3.4. If (X,7) isR*~, then (X,7) isR®~.
Proof. Let 7 be @& -openand x e U . If y & U7 , then since x g ad . ({), @8 (] # ad (D). Hence, there exists a

ad -open V. such that a8, (03} € V. and V;., which implies y g a8, ({x}). Thus adc;{({x}) € U . Therefore (X, 7}
isR? -~ .
(o di]
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Theorem 3.5. A topological space (X,7} is R*~ if and only if for x,y e X ; ad~¥*"({x}} # ad~¥*"({3}), there exist
disjoint ¢z -opensets 7 and 7 such that adc;(&xP e U and ad(HH eV .

Proof. It follows from Theorem 2.10[5].

Theorem 3.6. A topological space (X,7) isa R~ ifand only forany x andy inx , adg (&) # ade (0 implies
aé‘f;({X}} N gaf:{{)"}} = ‘p .

Proof. Necessary. Assume (X,7} R® ~ and x,y e X such that adc,({x}) # ad,({y}). Then, there exist z e ad, ({x})
such that z ¢ ad -, (L1 (or z € wd, (fy}) such that z ¢ a8, ({x})). There exists VV e 50(X,r) such that y g 17 and
el : hence x €7 . Therefore, we have x € ado (0. Thus x e X2ad T ,Cl (v} ) € ad0(X, 1) , Which implies
ZadZ | Cl({x)) c XZadZ Cl (1)) and adq ({x}) Nado ({3 = ¢ . The proof for otherwise is similar.

Sufficiency. Let ¥ € s0(X, 7} andlet€ V' . We will show that aé;{fx}} € V _Really, let€ V" ,ie., y e x\7 . Then
x#vy and x g ad,(fy}). This shows that adq ({x}) # ad (Y. By assumption, adqy (fx3) N ado (0D = ¢ . Hence
v & a6 ([x}). Therefore ad (e V.

Theorem 3.7. A topological space (X,7} is a R®~space if and only if for any points x and y in x,
ad~Ee () # ad~Fer () implies ad~Ee (G N ad“FHh = ¢ .

Proof. Suppose that (X,7} is a R®~space. Thus by Theorem 2.10[5], for any points x and y in x if
ad~Ee () # ad~Fer () then ado ({3} # adq (1), Now we prove that ad~¥&"({x}) N ad %" ({y}) = ¢ . Assume
that z e e85 (LN N ad*F"(y}). BY z e ad ¥ ({x}) and Lemma 3.3, it follows that x e ad ,({z})}. Since
x € adpq({x}), by Theorem 3.6 a8 {{x}) = ad ({2]). Similarly, we have adc; (I} = adc (21 = adq (k). Thisis a
contradiction. Therefore, we have ad~*s" ({x}) N ad~**" ({HHh = @ .

Conversely , let (X,7} be a topological space such that for any points x and y in X , a8~557({(x}) # ad~57(HH
implies  ad***"(xHhnad* " HN = ¢ . If  ado () # ado (DY, then by  Theorem  2.10[5],
ad~F () # ad~“FT({{y)). Therefore ad* 7 (Gx))n ad~*"({y}) = ¢ which implies adn({x}Nado b =¢ .
Because z e ad.([x}} implies that x e gd~¥="({z}) and therefore a&~F="({x}) N ad~¥"({{z}) £ ¢ . By hypothesis,
therefore we have ad~Eer (k) = wd~Ee (2. Then z € al G N ad O implies that
ad~Fe () = ad “EeT({z}) = ad~FeT(fy}). This is a contradiction. Therefore, adq({x}) N ad () =¢ and by
Theorem 3.6 (X, 7} isaR® ~ space.

Theorem 3.8. For a topological space {X, 7}, the following properties are equivalent:
(@) X,7) isaR®~ space;

(b) Forany nonempty set 4 and ¢ e @80(X,7) suchthat 4 n G = ¢ , there
exists F e qdC(X,7) suchthatAnF+ g ;andFc G ;

c) An 5 : 5C(X,T) ;

() yGEﬂGG{,X,T}G:U{FEI‘.ID Tcg}

(d) Any F € adC(X, 1), F n{G . ad0(X,T) e };
(e) Forany x e X ; adq (Ixh) € ad~¥o({x})

Proof: {a}= (b} Let 4 be a nonempty set of ¥ and ¢ e adO(X,7) suchthat AnG = ¢ . Thereexists x e AnG .

Since x € ¢ € ad0(X, 1), ¥ G . SetF = wd (x}) then F e w6C(X, 7)., Fc G andAnF = ¢ .

(BY=(c) : Let ¢ € ad0(X, 1), then U {F adC(X, 1) } Let x be any point of ¢ . There exists F € adC(X, 1)
E ———————

oo c
such that xeF and F e . Therefore, we have adC (X, 1) and  hence
xeFc U{F E———C }
adC(X, ) .
&G = ] Fe T cC

(c} = (d} This is obvious.
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{d) = () Let x be any pointof X and y g xg~¥="({x}). There exists e @50(X, 1) suchthat x e v and € V' ; hence
adc (HNNV = ¢ . By (d) (N{G € ad0(X,7)/2adT,CL (¥} ) € G NV = @ and there exists ¢ e ad0(X,7) such that
xeG and adoDPed . Therefore, ad(PNG=¢ and yead,({x}). Consequently, we obtain
abc () € ad e ({1 ]).

(ed=(a) Let 7 e ad0(X, 1) and x e ¢ . Let VE ad~Eer (I then x e g{ﬂt—:{{}r}] and vel . This implies that
ad~¥e"({x}) € G . Therefore, we obtain x e ad,{{x}) € ad~¥="({x}} ¢ G . This shows that (X, 7} isaR® ~ space.

Corollary 3.9. For a topological space (X, 1}, the following properties are equivalent:
(@) X,7)isaR"  space

(b) adc;(x}) = ad™ =" (fx}) forall x e X .

Proof. (@) = () Suppose that (X,7) is a R® ~ space. By Theorem 3.8, ad;(fx}) € ad™~¥*"({x}) for each x e X . Let
v € ad ¥ ({x}) then x e ad,(fy}) and by Theorem 3.6 ads{{x}) = ad (). Therefore, v e wd,({x}) and hence

a8~ 7 ({x}) € ad, (x}). This shows that adq, ({x}) = ad~*="({x}).
(b} = (a) This is obvious by Theorem 3.8.

Theorem 3.10. For a topological space (X, 7}, the following properties are equivalent:
(@) (X,7)isaR" space.

(0) xeads, O ifandonly if y e -, (D).

Proof. (a} = (b} Assume x is R®~. Let x € () and D be any & -open set such that y e D . Now by
hypothesis, x e b . Therefore, every g -open set which contains i contains x . Hence y e ad -, ({x}).

(b= (a) Lety beaws -opensetand x e U . If y ¢ I/ , then x e ad,(fy}) and hence y g @8-, ({x}}. This implies that
wbe (X € U . Hence (X, T} isR® ~ .

By Theorem 3.10 and Definition 3.2(b), we have:

Remark 3.11. For a topological space (X, 7}, the following properties are equivalent:
(a) (X,7)isaR" ~ space.
(b) X, 7} isa g -symmetric.
Theorem 3.12. For a topological space (X, 7}, the following properties are equivalent:
(a) (X, 7} isaR" ~ space.
(b) If F is x5 -closed, then F = gg~Ker(F)
(c) If F isaag -closedand x € F , then ad~¥e"{{xHc F .
(d) If x € X , then ad~¥="({x}) © ad (D).

Proof. {a} = (b} This obviously follows from Theorem 3.8.

(By=>() In general, 4c B implies ad*Eer(4)c ad~Eer(B). Therefore, it follows from (b} that
ad " ET (D c as KT (Fy=F .

{c} = (d) Since x € ad,({x}) and &dc;({x}) is ag -closed, by (€} ad~¥="({x}) € ad ({x}).

{d) = {a) We show the implication by using Theorem 3.10. Let x € ad,(fy}}. Then by Lemma 3.3 y € ad~¥er({x}).
Since x e ad,((x}) and @b (fx}) is g -closed, by (d} we obtain y e @d~¥*{{x}} c ad,({x}}. Therefore
x € adq (B} implies y e ad, ({x}). The converse is obvious and (X, 7) is R® ~ .

Lemma 3.13. Let {X, 7} be a topological space and let x and y» be any two points in ¥ such that every netin ¥ ad -
converging to v & -converges to x . Then x e ad -, (.

Proof. Suppose that x,, =¥ for each n € N . Then {x.}nen is a net in @8 ({y}). By the fact that fxpluer @d -
converges to v , then fxn}uen ad -converges to x and this means that x e ad ., (fy}).

Theorem 3.14. For a topological space {X, 7}, the following properties are equivalent:
(@) X,7)isaR® ~ space.
(b) Ifx,y e X theny e ad-,({x}) ifand only if every netin ¥ g -convergingtoy g -converging to x .
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Proof. {a}= (b} Let yeX such that ye wd,,({x}). Let {xaleen be a net in ¥ such that fxaleen ad -
converges to y . Since y e ad, ({x}), by Theorem 3.6 we have adc;({x}) = ad (D). Therefore x € ad,(fy}). This
means that {xz}zen ad -converges to x . Conversely, let x,y e X such that every netin ¥ g -convergingto y g4 -
converges to x . Then x e @, ({y}). by Lemma 3.13. By Theorem 3.6, we have ady{{x}) = adc({y}}. Therefore
vead (D

(b) = {(a} Assume that x and y are any two points of x such that ado(G}Nado (D # ¢ . Let
z € ab (LN N ads, (fy)). So there exists a net fxzlaen in @d (k) such that {xzlaen @a -converges to z . Since
z € adq (i) then {xadaen @f -converges to . It follows that y e ad.,({x}}. By the same token we obtain
x € adq,({y}). Therefore ade, ({x}) = adc, (D) and by Theorem 3.6 (X, 7} isa R® ~ .
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