Available online at www.elixirpublishers.com (Elixir International Journal)

Discrete Mathematics

Elixir Dis. Math. 45 (2012) 7814-7816

0 – Modularity in the lattice of weak Congruences

A. Vethamanickam¹ and A. Veeramani²

¹Department of Mathematics, Kamarajar Government Arts College, Surandai - 627 857. ²Department of Mathematics, H. H. The Rajah's College (Autonomous B⁺),Pudukkottai - 622 001.

ARTICLE INFO

Article history: Received: 19 January 2012; Received in revised form: 17 March 2012; Accepted: 9 April 2012;

ABSTRACT

In this paper, we study 0 - modularity in the lattice of weak congruences. We are going to prove that $C_w(L)$ is 0 - modular if and only if L is a chain.

© 2012 Elixir All rights reserved.

Keywords

Lattices, Congruences, Weak Congruences, 0 – modular.

Introduction

The study on weak congruences in algebras have started in the seventies by H. Draskovicova[8], M. Kolibiar, F. Sik, T. D. Mai[15] and others, in the name of quasicongruences. Also, reflexive, symmetric relations called tolerances play an important role in algebra and applications. This concept occurs in automata theory[1], biology questions[21], linguistics[10] and it is used for some "inaccuracy" in abstract algebra.

Since then so many authors have made contributions to the weak congruence theory. For example, one can refer to [2], [4], [6], etc.

Several authors have attempted to characterize the structure of an algebra \mathcal{A} in terms of its lattice of weak congruences $C_w(\mathcal{A})$. For example, Gradimir Vojvodic and Branimir Seselja proved that for an algebra , $C_w(\mathcal{A})$ is modular if and only if (i) \mathcal{A} satisfied the CEP and CIP (ii) Con \mathcal{A} and Sub \mathcal{A} are modular[20]. In the case of a lattice L, Andreja Tepavcevic[17], etc., has proved that $C_w(L)$ is semimodular if and only if L is a two-element chain. These result motivated us to look for which $C_w(L)$ satisfy still weaker condition 0-modular.

Preliminary Notes

An algebra is a pair (\mathcal{A} , F) where \mathcal{A} is a non-empty set and F is a set of finitary operations on \mathcal{A} . A weak congruences relation on \mathcal{A} is a symmetric and transitive relation ρ on \mathcal{A} which satisfies the substitution property namely, for each n-ary operation $f_i \in F$, whenever $a_j \rho b_j$, $j = 1, 2, ..., n_i$. $f_i(a_1, a_2, ..., a_n)$ $\rho f_i(b_1, b_2, ..., b_n)$, a_j , $b_j \in \mathcal{A}$, j = 1, 2, ..., n.

In other words, a weak congruence relation on \mathcal{A} is a symmetric and transitive sub algebra of \mathcal{A}^2 . The set of all weak congruence relations on \mathcal{A} denoted by $C_w(\mathcal{A})$ becomes an algebraic lattice under the set inclusion[20].

The diagonal relation $\Delta = \{(x, x) \mid x \in L\}$ is always a codistributive element in a weak congruence lattice, i.e., for all $\rho, \theta \in C_w(\mathcal{A})$, the following holds:

 $\Delta \land (\rho \lor \theta) = (\Delta \land \rho) \lor (\Delta \land \theta)$ The filter $[\Delta] = \Delta \uparrow = \{ \Theta \in C_w(\mathcal{A}) \mid \Theta \ge \Delta \}$ is isomorphic to the lattice of congruences Con \mathcal{A} , and the ideal $(\Delta] = \Delta \downarrow =$ $\{ \Theta \in C_w(\mathcal{A}) \mid \Theta \le \Delta \}$, consisting of all the diagonal relations is isomorphic with Sub \mathcal{A} , under the mapping $\rho \rightarrow \{x \mid x \rho x\}$ [20]. The atoms are always join-irreducible and the co-atoms are always meet-irreducible in any lattice. If L is a chain then Sub(L) is Boolean[13]. In C_w(L), Sub(L) is atomic[13]. It is easily seen that Con(L) is Boolean in the case when L is a chain[13]. We use the following notations throughout the paper:

e use the following notations inroughout the paper: $C_{\mu}(L)$ is the set of all much segrem and a lattice

 $C_w(L)$ is the set of all weak congruences on a lattice L.

Sub(L) is the set of all sublattices of L.

Con(L) is the set of all congruences on L.

Definition 2.1. A poset (P, \leq) is called a chain if any two elements in P are comparable. That is, for any two elements a, $b \in P$ either $a \leq b$ or $b \leq a$, hold good. We denote an n-element chain by L_n .

Definition 2.2. An equivalence relation Θ (that is, a reflexive, symmetric, and transitive binary relation) on a lattice L is called a congruence relation on L iff $(a_0, b_0) \in \Theta$ and $(a_1, b_1) \in \Theta$ imply that $(a_0 \land a_1, b_0 \land b_1) \in \Theta$ and $(a_0 \lor a_1, b_0 \lor b_1) \in \Theta$ (Substitution Property).

Definition 2.3. [20] A binary relation Θ on a lattice L is called a weak congruence relation, if it is a symmetric and transitive binary relation satisfying the substitution property, that is $a_{0, b_0}, b_{0, a_{1, b_1}} \in L$, $(a_0, b_0) \in \Theta$ and $(a_1, b_1) \in \Theta$

imply that $(a_0 \land a_1, b_0 \land b_1) \in \mathcal{O}$ and $(a_0 \lor a_1, b_0 \lor b_1) \in \mathcal{O}$. **Definition 2.4.** [5] A lattice L is said to be 0 - modular if whenever $x \le y$ and $y \land z = 0$ then $x = (x \lor y) \land z$.

We produce below the lattice structures of weak congruences of chains up to four elements.

1.The lattice of weak congruences Cw(L2) of a two-element chain L2 is given in Fig. 1[17].

3. The lattice of weak congruences $C_w(L_4)$ of a four-element chain L_4 is given in Fig. 3.

4. The lattice of weak congruences $C_w(B_2)$ of a rank 2 Boolean lattice B_2 is given in Fig. 4.

Let $\Theta_1, \Theta_2 \in C_w(L_n)$ and $\Theta_1 \leq \Theta_2$. Let $\Theta_3 \in C_w(L_n)$ such that $\Theta_2 \cap \Theta_3 = \emptyset$.

To prove that: $(\Theta_1 \vee \Theta_3) \land \Theta_2 = \Theta_1$.

Since a weak congruence relation on any algebra \mathcal{A} is a union of squares of some subalgebras of \mathcal{A} including one element subalgebras, we can assume that Θ_1 and Θ_2 are of the form $\Theta_1 =$ $\{a_1, a_2,...,a_k\}^2 \cup \{(a_{k+1}, a_{k+1})...(a_{k+s_k}, a_{k+s})\}$ and $\Theta_2 = \{a_1, a_2,...,a_k, a_1, a_{1+1},...,a_{1+m}\}^2 \cup \{(a_{k+1}, a_{k+1})...(a_{k+s_k}, a_{k+s}), \{(a_{k+s+1}, a_{k+s+1}),...,(a_{k+s_k}, a_{k+s})\}$.

Without loss of geberality we can assume that $a_1 < a_2 < ... < a_k < a_{k+1} < a_{k+s} < a_1 < ... < a_{l+m}$. Since $\Theta_2 \cap \Theta_3 = \emptyset$, Θ_3 contains no element of Θ_2 .

So, Θ_3 is of the form $\Theta_3 = \{b_1, b_2, ..., b_r\}^2 \cup \{b_{r+1}, b_{r+1}\}, ..., (b_{r+t}, b_{r+t})\}$, where $b_1, b_2, ..., b_r, b_{r+1}, ..., b_{r+t} \notin \{a_1, ..., a_k, b_r\}$

 $a_{1},\ldots,a_{l+m},a_{k+1},\ldots,a_{k+s},a_{k+s+1},a_{k+n}\}.$

Now without loss of generality let us assume that $b_1 < b_2 < \ldots < b_{r+1} < \ldots < b_{r+t}.$ We have three cases.

Case(i) $a_k < b_{r+1}$.

 $Case(ii) b_{r+t} < a_1.$

 $\begin{array}{l} \text{Case(iii)} \ a_q < b_p < a_{q+1} < a_k, \ \text{for some p and q, such that} \\ p \in \{r+1, \ldots, r+t\}, \ 1 \leq q \leq k-1. \ \text{From case(i)} \ \text{we get $a_i < b_j$, for} \\ \text{every} \ i = 1, 2, \ldots, k \ \text{and} \ j = 1, 2, \ldots, r+1, \ldots, r+t. \end{array}$

Then $\Theta_1 \vee \Theta_3 = \Theta_1 \cup \Theta_3$. Clearly, $(\Theta_1 \vee \Theta_3) \cap \Theta_2 = (\Theta_1 \cup \Theta_3) \cap \Theta_2 = \Theta_1$.

Case(ii) is similar to case(i).

Case(iii) $a_1 < a_2 < < a_p < b_p < a_{q+1} < < a_k < a_{k+1} < < a_{k+s} < a_{1.... < a_{l+m}}$.

Then $\Theta_1 \vee \Theta_3 = \Theta_1 \cup \Theta_3 \cup \{(b_p, a_j)(a_j, b_p) / j = 1, 2, ..., k.\}$. So, $(\Theta_1 \vee \Theta_3) \wedge \Theta_2 = \Theta_1$. Therefore, in all the three cases we have established that the 0 – modularity condition is true in $C_w(L_n)$. So, $C_w(L_n)$ is 0 – modular.

Conversely, $C_w(L)$ be 0 – modular. Suppose that L is not a chain. Then there are at least two elements x_1 and x_2 in L such that x_1 is not comparable with x_2 .

Let L_1 = Sublattice of L generated by $\{x_1, x_2\}$. Let $\Theta_1 = \{(x_1, x_1)\}, \Theta_1 = \{(0, 0), (x_1, x_1)\}$ and $\Theta_3 = \{(x_2, x_2)\}$. Now $\Theta_1 \vee \Theta_3 = \Delta_{L_1}, [\emptyset, \Delta_{L_1}] \cong Sub(L_1), \Delta_{L_2}$ is the top element in SubL₁. So, $\Delta_{L_*} \land \Theta_2 = \Theta_2$. That means, $C_w(L)$ is not 0 - modular.

Our assumption is wrong. Therefore, $x_1 \le x_2$. Therefore, L is a chain.

Remark 2.6

 $C_w(B_n)$ is not 0 – modular. For, $C_w(B_2)$ is not 0 – modular and $C_w(B_2)$ is a sublattice of $C_w(B_n)$. Therefore, $C_w(B_n)$ is also not 0 – modular. Similarly, $C_w(M_3)$ and $C_w(N_5)$ are not 0 – modular. **References**

[1] Arabib, M. A., Tolerance Automata, Kybernetika 3 (1967), 223 – 233.

[2] I.Chajda.: Characterization of relational blocks, Algebra universalis, 10 (1980), 65 - 69.

[3] Chajda, I., Systems of equations and tolerance relations, Czec. Math. J. 25 (100), 1975, 303 – 308.

[4] I. Chajda, Seselja, B., Tepavcevic, A.: Weak Congruences Identities at 0 Novi sad J. Math. Vol.32, No.2, 2002, 77-85.

[5] Chajda, I., Radeleczki, S., 0 – conditions and Tolerance schemes, Acta Math. Univ. Comenianae, LXXII, 2, 177 – 184 (2003).

[6] Czedli, G., Walendziak, A., Subdirect representation and semimodularity of weak congruence lattices, Algebra Universalis, 44(2000) 371 – 373.

[7] Draskovicova, H., The lattice of partitions in a set, Acta Fac. rer. Natur. Univ. Comenianae Math 24 (1970), 37 – 47.

[8] Draskovicova, H., Congruence relations on the lattice of partitions in a set, Matem. Casop. Slov. Akad. Vied 21 (1971), 141 - 153.

[9] Faigle. U., Geometries on partially ordered sets, Combinatorial theory, Ser., B28 (1980), 26 - 51.

[10] Fischer, W.L., Tolerance spaces and linguistics, Logic, Language and Probability, 1973, D. Reidel Publ. Comp., 181 – 188.

[11] Gratzer, G.: General Lattice Theory, Birkhauser Verlag, Basel, 1998.

[12] Karen M. Gragg and Joseph P. S. Kung.: Consistent Dually semi-modular lattice, J. Combinatorial theory, Ser., A 60 (1992), 246 – 263.

[13] Koh,K.M.: On Sublattices of a lattice, Nanta Math;5, 18-37.

[14] Kung, J. P., Matchings and radon Transforms in lattices I-Consistent lattices, Order 2, 105- 112 (1985).

[15] Mai, T. D., Partitions and congruences in algebras I, II, III, IV, Arch. Math. (Brno) 10 (1974), 159 – 172, 173 – 187, 231 – 253.

[16] I. Rival.: Combinatorial inequalities for semi-modular lattices of breadth two. Algebra Universalis 6 (1976), 303 - 311. [17] Seselja, B., Tepavcevic, A.: On CEP and Semi-modularity in the lattice of weak congruences, Rev. of Res. Fac. of Sci. Univ. of Novi sad, 22, 1 (1992), 95 - 106.

[18] Seselja, B., Vojvodic, G., Weak Congruences of a Lattice, Univ. u Novom sadu Zb. Rad. Prirod. – Mat. Fak. Ser. Mat. 18, 2 (1988) 205 – 209.

[19] Vethamanickam, A., Topics in Universal Algebra, Ph.D thesis, Madurai Kamaraj University, 1994.

[20] Vojvodic, G., Seselja, B.: On the Lattice of Weak of Congruence Relations, Algebra Universalis 25 (1988) 121-130.

[21] Zeeman, E. C., The Topology of the Brain and Visula Perception, The topology of 3 – manifolds, M. K. Fort, 240 – 256.