0 - Modularity in the lattice of weak Congruences

A. Vethamanickam ${ }^{1}$ and A. Veeramani ${ }^{2}$
${ }^{1}$ Department of Mathematics, Kamarajar Government Arts College, Surandai - 627857.
${ }^{2}$ Department of Mathematics, H. H. The Rajah's College (Autonomous B ${ }^{+}$),Pudukkottai - 622001.

ARTICLE INFO

Article history:

Received: 19 January 2012;
Received in revised form:
17 March 2012;
Accepted: 9 April 2012;

Keywords

Lattices,
Congruences,
Weak Congruences,
0 - modular.

Abstract

In this paper, we study 0 - modularity in the lattice of weak congruences. We are going to prove that $\mathrm{C}_{\mathrm{w}}(\mathrm{L})$ is 0 - modular if and only if L is a chain.

© 2012 Elixir All rights reserved.

Introduction

The study on weak congruences in algebras have started in the seventies by H. Draskovicova[8], M. Kolibiar, F. Sik, T. D. Mai[15] and others, in the name of quasicongruences. Also, reflexive, symmetric relations called tolerances play an important role in algebra and applications. This concept occurs in automata theory[1], biology questions[21], linguistics[10] and it is used for some "inaccuracy" in abstract algebra.

Since then so many authors have made contributions to the weak congruence theory. For example, one can refer to [2], [4], [6], etc.

Several authors have attempted to characterize the structure of an algebra \mathcal{A} in terms of its lattice of weak congruences $\mathrm{C}_{\mathrm{w}}(\mathcal{A})$. For example, Gradimir Vojvodic and Branimir Seselja proved that for an algebra , $\mathrm{C}_{\mathrm{w}}(\mathcal{A})$ is modular if and only if (i) \mathcal{A} satisfied the CEP and CIP (ii) Con \mathcal{A} and $\operatorname{Sub} \mathcal{A}$ are modular[20]. In the case of a lattice L, Andreja Tepavcevic[17], etc., has proved that $\mathrm{C}_{\mathrm{w}}(\mathrm{L})$ is semimodular if and only if L is a two-element chain. These result motivated us to look for which $\mathrm{C}_{\mathrm{w}}(\mathrm{L})$ satisfy still weaker condition 0-modular.

Preliminary Notes

An algebra is a pair $(\mathcal{A}, \mathrm{F})$ where \mathcal{A} is a non-empty set and F is a set of finitary operations on \mathcal{A}. A weak congruences relation on \mathcal{A} is a symmetric and transitive relation ρ on \mathscr{A} which satisfies the substitution property namely, for each n-ary operation $f_{i} \in F$, whenever $a_{j} \rho b_{j}, j=1,2, \ldots n \ldots f_{i}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ $\rho \mathrm{f}_{\mathrm{i}}\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{n}}\right), \mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}} \in \mathcal{A}, \mathrm{j}=1,2, \ldots, \mathrm{n}$.

In other words, a weak congruence relation on \mathcal{A} is a symmetric and transitive sub algebra of \mathcal{A}^{2}. The set of all weak congruence relations on \mathcal{A} denoted by $\mathrm{C}_{\mathrm{w}}(\mathcal{A})$ becomes an algebraic lattice under the set inclusion[20].

The diagonal relation $\Delta=\{(\mathrm{x}, \mathrm{x}) \mid \mathrm{x} \in \mathrm{L}\}$ is always a codistributive element in a weak congruence lattice, i.e., for all $\rho, \theta \in \mathrm{C}_{\mathrm{w}}(\mathcal{A})$, the following holds:

$$
\Delta \wedge(\rho \vee \theta)=(\Delta \wedge \rho) \vee(\Delta \wedge \theta)
$$

The filter $[\Delta)=\Delta \uparrow=\left\{\Theta \in \mathrm{C}_{\mathrm{w}}(\mathcal{A}) \mid \Theta \geq \Delta\right\}$ is isomorphic to the lattice of congruences Con \mathcal{A}, and the ideal $(\Delta]=\Delta \downarrow=$ $\left\{\Theta \in \mathrm{C}_{\mathrm{w}}(\mathscr{A}) \mid \Theta \leq \Delta\right\}$, consisting of all the diagonal relations is isomorphic with $\operatorname{Sub} \mathcal{A}$, under the mapping $\rho \rightarrow\{\mathrm{x} \mid \mathrm{x} \rho \mathrm{x}\}[20]$. The atoms are always join-irreducible and the co-atoms are always meet-irreducible in any lattice. If L is a chain then $\operatorname{Sub}(\mathrm{L})$ is Boolean[13]. In $\mathrm{C}_{\mathrm{w}}(\mathrm{L})$, $\operatorname{Sub}(\mathrm{L})$ is atomic[13]. It is easily seen that $\operatorname{Con}(\mathrm{L})$ is Boolean in the case when L is a chain[13].
We use the following notations throughout the paper:

$$
\begin{aligned}
& C_{w}(L) \text { is the set of all weak congruences on a lattice } L \text {. } \\
& \operatorname{Sub}(L) \text { is the set of all sublattices of } L \text {. } \\
& \operatorname{Con}(L) \text { is the set of all congruences on } L \text {. }
\end{aligned}
$$

Definition 2.1. A poset (P, \leq) is called a chain if any two elements in P are comparable. That is, for any two elements a, $\mathrm{b} \in \mathrm{P}$ either $\mathrm{a} \leq \mathrm{b}$ or $\mathrm{b} \leq \mathrm{a}$, hold good. We denote an n-element chain by L_{n}.
Definition 2.2. An equivalence relation Θ (that is, a reflexive, symmetric, and transitive binary relation) on a lattice L is called a congruence relation on L iff $\left(a_{0}, b_{0}\right) \in \Theta$ and $\left(a_{1}, b_{1}\right) \in \Theta$ imply that $\left(a_{0} \wedge a_{1}, b_{0} \wedge b_{1}\right) \in \mathcal{O}$ and $\left(a_{0} \vee a_{1}, b_{0} \vee b_{1}\right) \in \mathcal{O}$ (Substitution Property).
Definition 2.3. [20] A binary relation \mathcal{O} on a lattice L is called a weak congruence relation, if it is a symmetric and transitive binary relation satisfying the substitution property, that is $a_{0}, \quad b_{0} \quad, \quad a_{1}, \quad b_{1} \in L, \quad\left(a_{0}, \quad b_{0}\right) \in \mathcal{O}$ and $\quad\left(a_{1}, \quad b_{1}\right) \in \mathcal{O}$

[^0]imply that $\left(\mathrm{a}_{0} \wedge \mathrm{a}_{1}, \mathrm{~b}_{0} \wedge \mathrm{~b}_{1}\right) \in \mathcal{O}$ and $\left(\mathrm{a}_{0} \vee \mathrm{a}_{1}, \mathrm{~b}_{0} \vee \mathrm{~b}_{1}\right) \in \mathcal{O}$.
Definition 2.4. [5] A lattice L is said to be $0-$ modular if whenever $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \wedge \mathrm{z}=0$ then $\mathrm{x}=(\mathrm{x} \vee \mathrm{y}) \wedge \mathrm{z}$.

We produce below the lattice structures of weak congruences of chains up to four elements.
1.The lattice of weak congruences $\mathrm{Cw}(\mathrm{L} 2)$ of a two-element chain L2 is givenin
Fig. 1[17].

$\mathrm{C}_{\mathrm{w}}\left(\mathrm{L}_{2}\right)$
Fig. 1
2.The lattice of weak congruences $\mathrm{C}_{\mathrm{w}}\left(\mathrm{L}_{3}\right)$ of a three-element chain L_{3} is given in Fig. 2[17].

$\mathrm{C}_{\mathrm{w}}\left(\mathrm{L}_{3}\right)$
Fig. 2
3.The lattice of weak congruences $\mathrm{C}_{\mathrm{w}}\left(\mathrm{L}_{4}\right)$ of a four-element chain L_{4} is given in Fig. 3 .

4.The lattice of weak congruences $\mathrm{C}_{\mathrm{w}}\left(\mathrm{B}_{2}\right)$ of a rank 2 Boolean lattice B_{2} is given in Fig. 4.

Fig. 4
Theorem 2.5. $C_{w}(L)$ is 0 - modular if and only if L is a chain.
Proof: Let $L \cong L_{n}$ be an n-element chain of the form $0<x_{1}<x_{2}<\ldots .<x_{n-2}<1$.
Let $\Theta_{1}, \Theta_{2} \in C_{w}\left(L_{n}\right)$ and $\Theta_{1} \leq \Theta_{2}$. Let $\Theta_{3} \in C_{w}\left(L_{n}\right)$ such that $\Theta_{2} \cap \Theta_{3}=\emptyset$.
To prove that: $\left(\Theta_{1} \vee \Theta_{3}\right) \wedge \Theta_{2}=\Theta_{1}$.
Since a weak congruence relation on any algebra \mathcal{A} is a union of squares of some subalgebras of \mathcal{A} including one element subalgebras, we can assume that Θ_{1} and Θ_{2} are of the form $\Theta_{1}=$ $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}^{2} \cup\left\{\left(a_{k+1}, a_{k+1}\right) \ldots\left(a_{k+s}, a_{k+s}\right)\right\}$ and $\Theta_{2}=\left\{a_{1}\right.$, $\left.a_{2}, \ldots, a_{k}, a_{1}, a_{l+1}, \ldots, a_{1+m}\right\}^{2} \cup\left\{\left(a_{k+1}, a_{k+1}\right) \ldots\left(a_{k+s}, a_{k+s}\right),\left\{\left(a_{k+s+1}\right.\right.\right.$, $\left.\left.a_{k+s+1}\right), \ldots,\left(a_{k+n}, a_{k+n}\right)\right\}$.
Without loss of geberality we can assume that $\mathrm{a}_{1}<\mathrm{a}_{2}<\ldots<\mathrm{a}_{\mathrm{k}}<$ $a_{k+1}<a_{k+s}<a_{1}<\ldots<a_{1+m}$. Since $\Theta_{2} \cap \Theta_{3}=\emptyset, \Theta_{3}$ contains no element of Θ_{2}.
So, Θ_{3} is of the form $\Theta_{3}=\left\{b_{1}, b_{2}, \ldots, b_{r}\right\}^{2} \cup\left\{b_{r+1}, b_{r+1}\right), \ldots,\left(b_{r+t}\right.$, $\left.\left.\mathrm{b}_{\mathrm{r}+\mathrm{t}}\right)\right\}$, where $\mathrm{b}_{1}, \quad \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{r}}, \quad \mathrm{b}_{\mathrm{r}+1}, \ldots \mathrm{~b}_{\mathrm{r}+\mathrm{t}} \notin\left\{\mathrm{a}_{1}, \ldots \mathrm{a}_{\mathrm{k}}\right.$, $\left.a_{1}, \ldots, a_{1+m}, a_{k+1}, \ldots, a_{k+s}, a_{k+s+1}, a_{k+n}\right\}$.
Now without loss of generality let us assume that $b_{1}<b_{2}<\ldots<$ $\mathrm{b}_{\mathrm{r}+1}<\ldots<\mathrm{b}_{\mathrm{r}+\mathrm{t}}$. We have three cases.

Case(i) $a_{k}<b_{r+1}$.
Case(ii) $b_{r+t}<a_{1}$.
Case(iii) $\mathrm{a}_{\mathrm{q}}<\mathrm{b}_{\mathrm{p}}<\mathrm{a}_{\mathrm{q}+1}<\mathrm{a}_{\mathrm{k}}$, for some p and q , such that $p \in\{r+1, \ldots, r+t\}, 1 \leq q<k-1$. From case(i) we get $a_{i}<b_{j}$, for every $\mathrm{i}=1,2, \ldots, \mathrm{k}$ and $\mathrm{j}=1,2, \ldots, \mathrm{r}+1, \ldots, \mathrm{r}+\mathrm{t}$.
Then $\Theta_{1} \vee \Theta_{3}=\Theta_{1} \cup \Theta_{3}$. Clearly, $\left(\Theta_{1} \vee \Theta_{3}\right) \cap \Theta_{2}=$ $\left(\Theta_{1} \cup \Theta_{3}\right) \cap \Theta_{2}=\Theta_{1}$.
Case(ii) is similar to case(i).
Case(iii) $\mathrm{a}_{1}<\mathrm{a}_{2}<\ldots<\mathrm{a}_{\mathrm{p}}<\mathrm{b}_{\mathrm{p}}<\mathrm{a}_{\mathrm{q}+1}<\ldots<\mathrm{a}_{\mathrm{k}}<\mathrm{a}_{\mathrm{k}+1}<\ldots . \mathrm{a}_{\mathrm{k}+\mathrm{s}}<$ $a_{1} \ldots . .<a_{1+m}$.
Then $\Theta_{1} \vee \Theta_{3}=\Theta_{1} \cup \Theta_{3} \cup\left\{\left(b_{p}, a_{j}\right)\left(a_{j}, b_{p}\right) / j=1,2, \ldots ., k.\right\}$. So, $\left(\Theta_{1} \vee \Theta_{3}\right) \wedge \Theta_{2}=\Theta_{1}$. Therefore, in all the three cases we have established that the 0 - modularity condition is true in $\mathrm{C}_{\mathrm{w}}\left(\mathrm{L}_{\mathrm{n}}\right)$. So, $\mathrm{C}_{\mathrm{w}}\left(\mathrm{L}_{\mathrm{n}}\right)$ is $0-$ modular.

Conversely, $C_{w}(L)$ be $0-$ modular. Suppose that L is not a chain. Then there are at least two elements x_{1} and x_{2} in L such that x_{1} is not comparable with x_{2}.

Let $L_{1}=$ Sublattice of L generated by $\left\{x_{1}, x_{2}\right\}$. Let $\Theta_{1}=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{1}\right)\right\}, \Theta_{1}=\left\{(0,0),\left(\mathrm{x}_{1}, \mathrm{x}_{1}\right)\right\}$ and $\Theta_{3}=\left\{\left(\mathrm{x}_{2}, \mathrm{x}_{2}\right)\right\}$. Now $\Theta_{1} \vee \Theta_{3}=\Delta_{L_{1}},\left[\emptyset, \Delta_{L_{1}}\right] \cong \operatorname{Sub}\left(\mathrm{L}_{1}\right)$,
$\Delta_{L_{1}}$ is the top element in SubL_{1}.

So, $\Delta_{L_{1}} \wedge \Theta_{2}=\Theta_{2}$. That means, $C_{w}(L)$ is not $0-$ modular.
Our assumption is wrong. Therefore, $\mathrm{x}_{1} \leq \mathrm{x}_{2}$. Therefore, L is a chain.

Remark 2.6

$C_{w}\left(B_{n}\right)$ is not 0 - modular. For, $C_{w}\left(B_{2}\right)$ is not $0-$ modular and $C_{w}\left(B_{2}\right)$ is a sublattice of $C_{w}\left(B_{n}\right)$. Therefore, $C_{w}\left(B_{n}\right)$ is also not 0 - modular. Similarly, $\mathrm{C}_{\mathrm{w}}\left(\mathrm{M}_{3}\right)$ and $\mathrm{C}_{\mathrm{w}}\left(\mathrm{N}_{5}\right)$ are not $0-$ modular.

References

[1] Arabib, M. A.,Tolerance Automata, Kybernetika 3 (1967), 223-233.
[2] I.Chajda.: Characterization of relational blocks, Algebra universalis, 10 (1980), 65-69.
[3] Chajda, I., Systems of equations and tolerance relations, Czec. Math. J. 25 (100), 1975, $303-308$.
[4] I. Chajda, Seselja, B., Tepavcevic, A.: Weak Congruences Identities at 0 Novi sad J. Math. Vol.32, No.2, 2002, 77-85.
[5] Chajda, I., Radeleczki, S., 0 - conditions and Tolerance schemes, Acta Math. Univ. Comenianae, LXXII, 2, 177 - 184 (2003).
[6] Czedli, G., Walendziak, A., Subdirect representation and semimodularity of weak congruence lattices, Algebra Universalis, 44(2000) $371-373$.
[7] Draskovicova, H., The lattice of partitions in a set, Acta Fac. rer. Natur. Univ. Comenianae Math 24 (1970), $37-47$.
[8] Draskovicova, H., Congruence relations on the lattice of partitions in a set, Matem. Casop. Slov. Akad. Vied 21 (1971), 141-153.
[9] Faigle. U., Geometries on partially ordered sets, Combinatorial theory, Ser., B28 (1980), 26 - 51.
[10] Fischer, W.L., Tolerance spaces and linguistics, Logic, Language and Probability, 1973, D. Reidel Publ. Comp., 181 188.
[11] Gratzer, G.: General Lattice Theory, Birkhauser Verlag, Basel, 1998.
[12] Karen M. Gragg and Joseph P. S. Kung.: Consistent Dually semi-modular lattice,J. Combinatorial theory, Ser., A 60 (1992), 246-263.
[13] Koh,K.M.: On Sublattices of a lattice, Nanta Math;5, 1837.
[14] Kung, J. P., Matchings and radon Transforms in lattices IConsistent lattices, Order 2, 105-112 (1985).
[15] Mai, T. D., Partitions and congruences in algebras I, II, III, IV, Arch. Math. (Brno) 10 (1974), 159 - 172, 173 - 187, 231 253.
[16] I. Rival.: Combinatorial inequalities for semi-modular lattices of breadth two. Algebra Universalis 6 (1976), 303-311.
[17] Seselja, B., Tepavcevic, A.: On CEP and Semi-modularity in the lattice of weak congruences, Rev. of Res. Fac. of Sci. Univ. of Novi sad, 22, 1 (1992), $95-106$.
[18] Seselja, B., Vojvodic, G., Weak Congruences of a Lattice, Univ. u Novom sadu Zb. Rad. Prirod. - Mat. Fak. Ser. Mat. 18, 2 (1988) 205 - 209.
[19] Vethamanickam, A., Topics in Universal Algebra, Ph.D thesis, Madurai Kamaraj University, 1994.
[20] Vojvodic, G. , Seselja, B.: On the Lattice of Weak of Congruence Relations, Algebra Universalis 25 (1988) 121130.
[21] Zeeman, E. C., The Topology of the Brain and Visula Perception, The topology of 3 - manifolds, M. K. Fort, 240 256.

[^0]: Tele:
 E-mail addresses: a.veeramani@yahoo.com

