
Shaveta Gupta et al./ Elixir Comp. Sci. & Engg. 45 (2012) 7797-7800

7797

Introduction

The Software Development Life Cycle (SDLC) is the entire

process of formal, logical steps taken to develop a software

product. Within the broader context of Application Lifecycle

Management (ALM), the SDLC is basically the part of process

in which coding/programming is applied to the problem being

solved by the existing or planned application.

The phases of SDLC can vary somewhat but generally include

the following:

 conceptualization;

 requirements and cost/benefits analysis;

 detailed specification of the software requirements;

 software design;

 programming;

 testing;

 user and technical training; and

 Maintenance.

There are many methodologies or models that can be used

to guide the software development lifecycle either as a core

model to the SDLC or as a complementary method. Software

Development Life Cycle also known as SDLC is the process of

analysis, estimation, design, development, integration, testing

and implementation of software system. Proper management of

Software Development Life Cycle is critical to success of any

software development project. Software Development Life

Cycle can also be thought as a concept of providing complete

support to a product, all the way through its phases of evolution.

A software life cycle model depicts the significant phases or

activities of a software project from conception until the product

is retired. It specifies the relationships between project phases,

including transition criteria, feedback mechanisms, milestones,

baselines, reviews, and deliverables. Typically, a life cycle

model addresses the following phases of a software project:

requirements phase, design phase, implementation, integration,

testing, operations and maintenance. Much of the motivation

behind utilizing a life cycle model is to provide structure to

avoid the problems of the "undisciplined hacker".

Software Development Life Cycle Models

Software Development Life Cycle Model is an abstract

representation of a development process. SDLC models can be

categorized as:

 Traditional Software Models (Waterfall, V-Model, CMM,

RUP Model)

 Recent Software Models (Prototyping software life cycle

model, Incremental Model ,Spiral Model, Rapid Application

Development Model, Joint Application Development

Model(JAD), Dynamic Systems Development Method (DSDM),

Object-Oriented Model, Agile Model etc.)

 Traditional Software Models

Traditional software development methodologies include

Waterfall model, V-Model, Capability Maturity Model and

Rational Unified Process (RUP).

 Waterfall Model

This is most popular traditional model, disciplined and

sequential approach to software development. In this model,

each phase must be completed in its entirety before the next

phase can begin. At the end of each phase, a review takes place

to determine if the project is on the right path and whether or not

to continue or discard the project. Waterfall discourages

revisiting and revising any prior phase once it's complete. This

"inflexibility" in a pure Waterfall model has been a source of

criticism by supporters of other more "flexible" models.

Waterfall Life Cycle Model

 V-Shaped Model

The V-model can be thought of as an extension of the

waterfall, mapping test phases to the phases of the development

cycle .Instead of moving down in a linear way, the process steps

E-mail addresses: goel.shaveta03@gmail.com ,

sanjana.taya@gmail.com

 © 2012 Elixir All rights reserved

Descriptive approach to software development life cycle models
Shaveta Gupta and Sanjana Taya

Department of Computer Science and Applications, Seth Jai Parkash Mukand Lal Institute of Engineering & Technology, Radaur,

Distt. Yamunanagar (135001), Haryana, India.

ABSTRACT

The concept of system lifecycle models came into existence that emphasized on the need to

follow some structured approach towards building new or improved system. Many models

were suggested like waterfall, prototype, rapid application development, V-shaped, top &

Bottom model etc. In this paper, we approach towards the traditional as well as recent

software development life cycle models.

 © 2012 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 24 January 2012;

Received in revised form:

17 March 2012;

Accepted: 6 April 2012;

Keywords

Software Development Life Cycle,

Phases and Software Development,

Life Cycle Models,

Traditional Models,

Recent Models.

Elixir Comp. Sci. & Engg. 45 (2012) 7797-7800

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

http://www.mks.com/solutions/discipline/application-lifecycle-management
http://www.mks.com/solutions/discipline/application-lifecycle-management
http://www.mks.com/solutions/discipline/rm/requirements-management
http://www.mks.com/solutions/discipline/tm/test-management

Shaveta Gupta et al./ Elixir Comp. Sci. & Engg. 45 (2012) 7797-7800

7798

are bent upwards after the coding phase, to form the typical V

shape. The V-Model demonstrates the relationships between

each phase of the development life cycle and its associated

phase of testing.

V-Shaped Life Cycle Model

 Capability Maturity Model-

A maturity model can be viewed as a set of structured levels

that describe how well the behaviors, practices and processes of

an organization can reliably and sustainable produce required

outcomes. A maturity model can be used as a benchmark for

comparison and as an aid to understanding - for example, for

comparative assessment of different organizations where there is

something in common that can be used as a basis for

comparison. In the case of the CMM, for example, the basis for

comparison would be the organizations' software development

processes. There are five levels defined along the continuum of

the CMM and, according to the SEI: "Predictability,

effectiveness, and control of an organization's software

processes are believed to improve as the organization moves up

these five levels

 Rational Unified Process Model-

RUP is an adaptable process framework allowing

organizations to select elements of processes that are most

relevant for their project. Rational Unified Process is an iterative

adaptive software process. Iteration consists of nine disciplines.

Out of these nine disciplines, six are engineering disciplines like

Business Modeling, Requirements, Design and Analysis,

Implementation, Test, Deployment and remaining there are

supporting disciplines which consist of Configuration and

Change Management, Environment and Project Management.

These iterations have to be followed with guidelines and

templates at each stage. This way RUP provides a set of

standards to be adhered to for all the stages of the System

Development Life Cycle (SDLC). The RUP consists of a life

cycle with four distinct phases as shown below in two

dimensional diagram of RUP.

Recent Software Development Models-

 Prototyping Software Life Cycle Model

Instead of freezing the requirements before a design or

coding can proceed, a throwaway prototype is built to understand

the requirements. Development of the prototype obviously undergoes design,

coding and testing but each of these phases is not done very

formally or thoroughly.

There are two main versions of prototyping model:

Version I: Prototyping is used as a requirements technique.

Version II: Prototype is used as the specifications or a major

part thereof.

If the first version of the prototype does not meet the client’s

needs, then it must be rapidly converted into a second version.

 Incremental Model
The incremental model is an intuitive approach to the

waterfall model. Multiple development cycles take place here,

making the life cycle a “multi-waterfall” cycle. Cycles are

divided up into easily managed iterations. A working version of

software is produced during the first iteration, subsequent

iterations build on the initial software produced during the first

iteration.

Incremental Life Cycle Model

 Spiral Model
The activities in this model can be organized like a spiral,

with more emphases placed on risk analysis. Four phases

involved here are shown below and software project repeatedly

passes through these phases in iterations. The baseline spiral,

starting in the planning phase, requirements is gathered and risk

is assessed. Each subsequent spiral builds on the baseline spiral.

A prototype is produced at the end of the

risk analysis phase. Software is produced in the engineering

phase, along with testing at the end of the phase. The

evaluation phase allows the customer to evaluate the output of

the project to date before the project continues to the next spiral.

In the spiral model, the angular component represents progress,

and the radius of the spiral represents cost.

Spiral Life Cycle Model

Shaveta Gupta et al./ Elixir Comp. Sci. & Engg. 45 (2012) 7797-7800

7799

 Rapid Application Development Model-

Rapid application development is a software development

methodology, which involves iterative development and the

construction of prototypes. It is a merger of various structured

techniques, especially the data driven Information Engineering

with prototyping techniques to accelerate software systems. The

development process starts with the development of preliminary

data models and business process model using structured

techniques. In the next stage, requirements are verified using

prototyping, eventually to refine the data and process models.

These stages are repeated iteratively; further development results

in “a combined business requirements and technical design

statement to be used for constructing new systems”.

 Dynamic System Development Method (DSDM)-

The Dynamic System Development Method (DSDM) is

dynamic as it is a Rapid Application Development method that

uses incremental prototyping. This method is particularly useful

for the systems to be developed in short time span and where the

requirements cannot be frozen at the start of the application

building. Whatever requirements are known at a time, design for

them is prepared and design is developed and incorporated into

system. In Dynamic System Development Method (DSDM),

analysis, design and development phase can overlap. Like at one

time some people will be working on some new requirements

while some will be developing something for the system. In

Dynamic System Development Method (DSDM), requirements

evolve with time. Dynamic System Development Method

(DSDM) has a five-phase life cycle.

 Joint application development (JAD)-

Joint Application Development, or JAD, is a process

originally developed for designing a computer-based system. It

brings together business area people (end users) and IT

(Information Technology) professionals in a highly focused

workshop. The advantages of JAD include a dramatic shortening

of the time it takes to complete a project. It also improves the

quality of the final product by focusing on the up-front portion

of the development lifecycle, thus reducing the likelihood of

errors that are expensive to correct later on.

JAD is a requirements-definition and software system

design methodology in which stakeholders, subject matter

experts (SME), end-users, software architects and developers

attend intense off-site meetings to work out a system's details.

JAD focuses on the business problem rather than technical

details. It is most applicable to the development of business

systems. It produces its savings by shortening the elapsed time

required to gather a system's requirements and by gathering

requirements better, thus reducing the number of costly,

downstream requirements changes. Its success depends on

effective leadership of the JAD sessions; on participation by key

end-users, executives, and developers; and on achieving group

synergy during JAD sessions. JAD works best when combined

with an incremental-development lifecycle model such as

Rational Unified Process.

 Agile Model-

Agile software development is a group of software

development methodologies based on iterative and incremental

development, where requirements and solutions evolve through

collaboration between self-organizing, cross- functional teams.

The Agile methods are focused on different aspects of the

software development life-cycle. Some focus on the practices

(extreme programming, pragmatic programming, agile

modeling), while others focus on managing the software projects

(Scrum). Yet, there are approaches providing full coverage over

the development life cycle (DSDM, RUP), while most of them

are suitable from the requirements specification phase on (e.g.

FDD). In the Agile method the customer and developers are in

close communication, where as in the traditional method, the

"customer" is initially represented by the requirement and design

documents.

Conclusion

The “one size fits all” approach to applying SDLC

methodologies is no longer appropriate (Lindvall & Rus, 2000).

Each SDLC methodology is only effective under specific

conditions. Traditional SDLC methodologies are often regarded

as the proper and disciplined approach to the analysis and design

of software applications (Rothi & Yen, 1989) like waterfall,

staged and phased development, transformational, spiral, and

iterative models. The new methods like Agile, Dynamic System

Development Method, Rational Unified Process were developed

to efficiently manage software projects subjected to short

timelines and excessive uncertainty and change. These

methodologies include their simpler processes and easier

acceptance by developers who are only familiar with code and

fix techniques. They are most appropriate when there are

uncertain and volatile requirements, responsible and motivated

developers, and customers who wish to become involved.

Shaveta Gupta et al./ Elixir Comp. Sci. & Engg. 45 (2012) 7797-7800

7800

Lightweight methodologies re-examine the traditional

assumptions that have historically been made about the

commitment of resources to requirements analysis and process

improvement (Yourdon, 2000). Traditional SDLCs operate on

the fundamental assumption that it is worth investing resources

to identify a flaw in a process because the process will be used

over and over again. On the other hand, lightweight SDLCs

recognize that when everything is changing and there is no

assurance that processes will be reused that it makes little sense

to expend the effort.

Bibliography

Lindvall, M., & Rus, I. (2000, July/August). Process diversity in

software development. IEEE Software, 17(4), 14-18.

Rothi, J., & Yen, D. (1989). System Analysis and Design in End

User Developed Applications. Journal of Information Systems

Education. Retrieved April 7, 2001, from the World Wide Web:

http://www.gise.org/JISE/Vol1-5/SYSTEMAN.htm.

 Yourdon, E. (2000, October). The Emergence of "Light"

Development Methodologies. Software Productivity Center.

Retrieved March 11, 2001, from the World Wide Web:

http://www.spc.ca/resources/essentials/oct1800.htm#3.

http://www.gise.org/JISE/Vol1-5/SYSTEMAN.htm

