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Introduction  

As supply chain management becomes increasingly 

important in global economics, knowledge of the transportation 

system is fundamental to the efficient and economical operation 

of a company‘s responsibility. Transportation models play an 

important role in logistics and supply chain management for 

reducing cost and improving service. 

Multi-index transportation problems are the extension of 

conventional transportation problems and are appropriate for 

solving transportation problems with multiple supply points, 

multiple demand points as well as problems using diverse modes 

of transportation demands or delivering different kinds of 

merchandises. Thus, the forward problem would be more 

complicated than conventional transportation problems. 

Hayley,1962; considered the multi-index transportation problem 

and presented an algorithm to solve multi-index transportation 

problem. Junginer ,1993; who proposed a set of logic problems 

to solve multi-index transportation problems, has also conducted 

a detailed investigation regarding the characteristics of multi-

index transportation model. Rautman et al,1993;  used multi-

index transportation model to solve the shipping scheduling and 

suggested that the employment of such transportation problems 

model would not only enhance the entire transportation 

efficiency but also optimize the integral system. Anu Ahuja and 

S.R. Arora ,2001; presented an algorithm for identifying the 

efficient cost – time trade off pairs in a multi-index fixed charge 

bi-criterion transportation problem. This is an exact method of 

finding solution to this problem. 

The fixed charge problem is a non-linear programming 

problem of practical interest to business and industry. The 

existence of fixed charges in its objective function has prevented 

the development of any extensive theory, for solution of the 

fixed charge problem. Since the problems with fixed charges are 

usually NP-hard (non deterministic polynomial time), the 

computational time to obtain exact solutions increases in a 

polynomial fashion and very quickly becomes extremely long as 

the dimensions of the problem increases.  

 

The fixed charge problem was originally formulated by 

G.B. Dantzig and W. Hirsch in 1954. The literature provides 

only a few exact methods for solving the fixed charge problem. 

Steinberg ,1970; provided an exact algorithm based on branch 

and bound method. But, the exact branch and bound method is 

applicable to small problems only. Since the effort to solve an 

FCP grows substantially with the size of the problem as 

explained in Walker ,1976;A good deal of effort has been 

devoted to finding approximate solutions to fixed charge 

problems. The heuristic methods try to reach the optimum 

through simplex like iterations. Copper and Drebes,1967; 

Denzler,1969; Steinberg ,1970; and Walker,1976; have 

developed heuristic adjacent – extreme – point algorithms for 

the general FCP. Salkin ,1975;presented the capacities plant 

location problem as an FCP model and discussed the heuristic 

branch and bound algorithm proposed by Efroymson and Ray 

,1966;. Adalakha and Kowalski ,2003; developed a heuristic 

algorithm for the fixed charge problem. 

Some algorithms that purport to be FCP algorithms are in 

fact algorithms for fixed charge transportation problems 

(FCTPs), which are only a subset of FCPs. The total value of the 

charges / loads varies for an FCP, making it significantly harder 

to solve than an FCTP where the total value of the charges / 

loads is fixed. In a classical transportation problem the cost of 

transportation is directly proportional to the number of units 

transported. But the transportation cost may not be linear on 

account of price – break quantity discounts etc. Thus in real 

world situation when a commodity is transported, a fixed cost is 

incurred in the objective function. It may represent the cost of 

hiring a vehicle, landing fee in an airport, setup costs for 

machines in a manufacturing environment etc. Many distribution 

problems in practice can be modeled as fixed charge 

transportation problems. For example, rail, roads and trucks 

have invariably used freight rate which consists of a fixed cost 

and variable cost. Therefore, most of the recent efforts are 

concentrated on finding solution methods for FCTPs.
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The most widely known methods for FCTP are ranking the 

extreme points method. (Murthy,1968; Sadagopan and 

Ravindran,1982;) and the branch and bound method. Hirsch and 

Dantzig,1968;  established that the feasible region of an FCTP is 

a bounded convex set and that the objective function is concave. 

An optimal solution occurs at an extreme point of the constraint 

set, and for a non-degenerate problem with all positive fixed 

costs, every extreme point of the feasible region is a local 

minimum. Gray ,1971; attempted to find an exact solution to the 

FCTP by decomposing it into a master integer program and a 

series of transportation subprograms. In contrast, Palekar et al 

,1990;  and Steinberg 1970;  provided exact algorithms based on 

branch and bound method applicable to small problems only. 

Since the available exact algorithms generally require long 

computation times and large amounts of storage, many authors 

have turned to efficient heuristic algorithms for solving FCTP. 

The  well known heuristic approaches are presented by Diaby 

,1991;  and Sun et al ,1998;Kuhn and Baumol 1962;  suggested 

that an approximate solution maybe found by forcing a highly 

degenerated solution which is accomplished by making small 

adjustments to the demand and supply quantities. 

Balinski ,1961; replaced the non-linear fixed – charge 

objective function with an approximate linear objective function 

and solved the resulting problem using the standard 

transportation algorithm. Sandrock ,1988; provided a heuristic 

simplex type algorithm for a source – induced FCTP where the 

fixed charge is associated with the supply points instead of the 

routes. Adlakha and Kowalski ,2004;  presented a simple 

algorithm for the source – induced FCTP. Adlakha et 

al,2006;presented a heuristic algorithms for  the fixed charge 

transportation problem. Veena Adlakha et al,1999; presented an 

approximation methods for regular FCTP. However, the above 

exact and approximate solution methods for solving FCTP are 

useful only for conventional (ie two dimensional) transportation 

problems. 

In this paper we develop a heuristic algorithm for the multi-

index fixed charge transportation problems. 

There are cases that the parameters in the multi-index fixed 

charge transportation problem can‘t be presented in a precise 

manner. For example, the unit shipping cost and fixed cost may 

vary in a time frame. The supplies and demands may be 

uncertain due to uncontrollable factors. Fuzzy numbers 

introduced by Zadeh, 1965; may represent this data. So, fuzzy 

decision making method is needed here. 

Zimmerman,1978; showed that solutions obtained by fuzzy 

linear programming are always efficient subsequently. 

Zimmerman‘s fuzzy linear programming has developed into 

several fuzzy optimization methods for solving the 

transportation problems. Oheigeartaigh ,1982; proposed an 

algorithm for solving transportation problems where the 

capacities and requirements are fuzzy sets with linear or 

triangular membership functions. Chanas et al, 1993; presented a 

fuzzy linear programming model for solving transportation 

problems with crisp cost coefficients and fuzzy supply and 

demand values. Chanas et al ,1984; formulated the fuzzy 

transportation problems in three different situations and 

proposed method for solving the formulated fuzzy transportation 

problems. Chanas ad Kuchta ,1996; proposed the concept of the 

optimal solution for the transportation problem with fuzzy 

coefficients expressed as fuzzy numbers, and developed an 

algorithm for obtaining the optimal solution. Chanas and Kuchta 

,1998; proposed a new method for solving fuzzy integer 

transportation problem by representing the availability and 

demand parameters as L-R type fuzzy numbers. Liu and Kao 

,2004; described a method for solving fuzzy transportation 

problems based on extension principle. Chiang ,2005;  proposed 

a method to find the optimal solution of transportation problems 

with fuzzy demand and fuzzy product. Lie et al ,2008;  proposed 

a new method based on goal programming for solving fuzzy 

transportation problems with fuzzy costs. Chen et al ,2008; 

proposed the methods for solving transportation problems on a 

fuzzy network. Lin ,2009; used genetic algorithm for solving 

transportation problems with fuzzy coefficients. Stephen 

Dineger and Palanivel ,2009; investigated fuzzy transportation 

problem, with the aid of trapezoidal fuzzy numbers and 

proposed fuzzy modified distribution method to find the optimal 

solution interms of fuzzy numbers. Amitkumer et al ,2011;  

proposed fuzzy linear programming approach for solving fuzzy 

transportation problems with transshipment. Ojhe et al, 2010; 

investigated solid transportation problem for an item with fixed 

charge via genetic algorithm. Lixing Yang et al, 2007; discussed 

the solution algorithm for solving bi-criteria fixed charge solid 

transportation problem under stochastic environment. In the 

above transportation models the optimal solutions are crisp 

value. 

In this paper we develop a heuristic algorithm for the multi-

index fixed charge transportation problem. This algorithm is an 

extension work of Veena Adlakha et al, 2010; for fixed charge 

problems. The obtained results by using this algorithm are 

compared with the existing exact method of solving multi-index 

fixed charge transportation problem (Anu Ahuja and S.R. Arora 

,2001;). Further the proposed algorithm is extended to multi-

index fixed charge fuzzy transportation problem on which all the 

parameters are considered as trapezoidal fuzzy numbers. 

This paper is organized as follows,. In section 2, the 

formulation of MIFCTP is given and the heuristic algorithm to 

solve MIFCTP is proposed. In section 3, the preliminaries of 

fuzzy set theory are reviewed. In section 4, the formulation of 

MIFCFTP is given and the heuristic algorithm to solve 

MIFCFTP is proposed. The numerical example is  also given in 

this section to illustrate the proposed method. In section 6, 

conclusion is given. 

Multi-Index Fixed Charge Transportation Problem (MIFCTP)  

The general model of the problem considered is as follows : 

P : Minimize 
p pm n m

ijk ijk ik

i = 1 j = 1 k = 1 i = 1 k = 1

C x  + F
  
 
  
   

subject to  
m

ijk jk

i = 1

x  =  A
 

n

ijk ki

j = 1

x  =  B
                                                                                                            

 

p

ijk ij

k = 1

x  =  E
                                                           

and xijk  0 ; i = 1, 2, . . . , m ; j = 1, 2, . . . , n ; k = 1, 2, . . . p.                                                                                                       

2.1

          

where 
pn m n

jk ki ki ij

j = 1 i = 1 k = 1 j = 1

A  =  B , B  =  E ,   
 

 

pm

ij jk

i = 1 k = 1

E  =  A . 
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p pn m m n

jk ki ij

j = 1 k = 1 k = 1 i = 1 i = 1 j = 1

A  =  B  = E .  
 

Here  i = 1, 2, . . . , m are the origins. 

 j = 1, 2, . . . , m are the destinations. 

k = 1, 2, . . . , p are the various types of commodities. 

xijk = the amount of k
th

 type of commodity transported from the 

i
th

 origin to the j
th

 destination cijk= the variable cost per unit 

amount of k
th

 type of commodity from the i
th

 origin to the j
th

 

destination which is independent of the amount of commodity 

transported, so long as xijk > 0.  

Fik = the fixed cost associated with origin i and commodity k. 

Fik = 
n

ijk ijk

j = 1

F S ,  i = 1, 2, . . . , m, k = 1, 2, . . . , p.
 

where  Sijk  = 1 if xijk > 0. 

  = 0 if xijk = 0. 

Ajk = the total quantity of k
th

 type of commodity to be sent to the 

j
th

 destination. 

Bki = the total quantity of k
th

 type of commodity available at the 

i
th 

origin. 

Eij = the total quantity to be sent from i
th

 origin to the j
th

 

destination. 

Finding upper and lower bounds of the decision variables  

Now extending the procedure of veena  Adlakha,2010; to 

MIFCTP 

For each i = 1, 2, . . . , m, j = 1, 2, . . . , n, k = 1, 2, . . . , p. 

Consider the following Max LPijk. 

Maximize Z = xijk 

Show that 
m

ijk jk

i = 1

x  = A
 

  

n

ijk ki

j = 1

x  = B
 

  

p

ijk ij

k = 1

x  = E
   

. . . (2.2)

 
and xijk  0, i = 1, 2, . . . , m, j = 1, 2, . . . , n, k = 1, 2, . . . , p. 

where 
n m

jk ki

j = 1 i = 1

A  = B , 
 

p n

ki ij

k = 1 j = 1

B  = E , 
 

pm

ij jk

i = 1 k = 1

E  = A . 
 

p pn m m n

jk ki ij

j = 1 k = 1 k = 1 i = 1 i = 1 j = 1

A  =  B  =  E .   
  

Let xijk
max

 denote the optimal solution of problem Max LPijk. 

Now consider the following Min LPijk. 

Minimize z = xijk 

 Subject to (2.1)    . . . (2.3)

 Let xijk
min

 denote the optimal solution of problem Min LPijk. 

Approximation method to find the solution of MIFCTP 

Now consider the relaxed version of problem p. 

Minimize z = 
p pm n m n

ijk ijk ijk ijk

i = 1 j = 1 k = 1 i = 1 j = 1 k = 1

C x  +  F δ
 
 
 
 

 

Show that 
m

ijk jk

i = 1

x  = A
 

  

n

ijk ki

j = 1

x  = B
 

  

p

ijk ij

k = 1

x  = E
 

where  
p pn m n m

ijk ki ki ij ij jk

j = 1 i = 1 k = 1 j = 1 i = 1 k = 1

A  = B , B  = E , E  = A .     
 

 

p pn m m n

jk ki ij

j = 1 k = 1 k = 1 i = 1 i = 1 j = 1

A  = B  = E .  
 

0  ijk  1, ijk integer.    . . . (2.4) 

0  xijk  mijk ijk i = 1, 2, . . . , m, j = 1, 2, . . . , n, k = 1, 2, . . . , 

p.                                                                                    . . . (2.5) 

Set mijk  = xijk
max

 for all i = 1, 2, . . . , m, j = 1, 2, . . . , n, k = 1, 2, 

. . . , p. 

As demonstrated in Balinski,1961, {xijk, ijk} is a solution of 

the above problem with the integer constraint ignored only if xijk 

= mijk ijk  

Now consider the following problem P where 

Cijk = Cijk + fijk / mijk.  

P : Minimize z = 

pm n

ijk ijk

i = 1 j = 1 k = 1

C x  

Show that 
m

ijk jk

i = 1

x  = A
 

  

n

ijk ki

j = 1

x  = B
 

  

p

ijk ij

k = 1

x  = E
 

where  
p pn m n m

ijk ki ki ij ij jk

j = 1 i = 1 k = 1 j = 1 i = 1 k = 1

A  = B , B  = E , E  = A .     

                                                       

. . . (2.6)

 

 

p pn m m n

jk ki ij

j = 1 k = 1 k = 1 i = 1 i = 1 j = 1

A  = B  = E .  
 

0  xijk  mijk, i = 1, 2, . . . , m, j = 1, 2, . . . , n, k = 1, 2, . . . , p. 

Theorem 2.2.1: 

The optimal value of P, Z(P) provides a lower bound to the 

optimal value Z
*
(P) of the corresponding MIFCTP, Problem P. 

Remark 1 : The optimal solution ijk{x }  of problem P can be 

used to create an upper bound to the optimal value Z
*
(P). Note 

that the solution ijk{x }  is easily modified into a feasible 

solution of ijk ijk{x , δ }   of P as follows : 

 ijkδ  = 0 if ijkx = 0 

 ijkδ  = 1 if ijkx > 0 

Solution ijk ijk{x , y }   being a feasible solution provides an 

upperbound on Z
*
(P). Consequently the optimal solution ijk{x }  

can be used to provide a lower and upper bound for the optimal 

value of problem P as follows : 
p pm n m n

*

ijk ijk ijk ijk ijk ijk

i = 1 j = 1 k = 1 i = 1 j = 1 k = 1

C x   Z (P)  C x  + f δ    . . . (2.7) 

Remark 2 : If the lower bound is equal to the upper bound in 

Equation 2.7, then ijk ijk{x , δ }  is the optimal solution of 

problem P with optimal value of Z
*
(P). 

Reformulation of MIFCTP by extracting fixed cost  

―Extracting Constant Values‖ from any mathematical 

problem eases the optimization process and brings the solution 

closer to the optimal at a minimum expense. It is also done as 
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part of the Gradient Method. Some methods like Hungarian 

Method are totally based on ‗extraction‖. 

Now the problem P can be rewritten as follows : 

P
*
 : Minimize Z =  

pm n
*

ijk ijk ijk ijk

i = 1 j = 1 k = 1

K  + C x  f δ   

 Subject to  
m

ijk jk

i = 1

x  = A
 

   

n

ijk ki

j = 1

x  = B
 

   

p

ijk ij

k = 1

x  = E
 

where  
p pn m n m

ijk ki ki ij ij jk

j = 1 i = 1 k = 1 j = 1 i = 1 k = 1

A  = B , B  = E , E  = A .     

 

p pn m m n

jk ki ij

j = 1 k = 1 k = 1 i = 1 i = 1 j = 1

A  = B  = E .  
 

where  = min fijk (the smallest fixed charge coefficient) 
*

ijkf  = fijk = .     . . . (2.8) 

The variable K is a consolidation coefficient equal to the 

number of non-zero basic variables. In the case of MITP, the 

number of basic variables should be equal to mnp – (m – 1) (n – 

1) (p – 1).  This extraction simplifies the problem by eliminating 

atleast one ijkδ  variable from problem P. Since the FCTP is NP-

hard, eliminating even one variable in a large size problem can 

bring significant savings in the computational time. 

The MIFCTP Heuristic Method 

In this section we outline steps for solving the MIFCTP 

Problem P with cost coefficients Cijk and fixed costs fijk. 

The Algorithm 

Step 1 : Formulate and solve the problems Max LPijk and Min 

LPijk to determine lower and upper bounds 
min

ijkx  and 
max

ijkx , for 

all i = 1, 2, . . . , m, j = 1, 2, . . . , n,           k = 1, 2, . . . , p. 

Step 2 : Identify  = the smallest fixed charge coefficient. 

Step 3 : Subract  from all the fixed charges. Extract Fixed cost 

K. Corresponding to the number of non-zero basic variables. 

Step 4 : Formulate the problem P with Cijk = Cijk + fijk / mijk. 

Step 5 : Solve the problem P using  LINDO Software and 

record solution { ijkx }. 

Step 6 : Determine ijkδ  values as outlined in Remark 1.  

Step 7 : Stop. Record the solution for problem P as 

 '

ijk ijkx ,   . 

Numerical Example 

 To explain the MIFCTP heuristic method the following 

example is presented. 

 Consider a 3 x 3 x 3 multi-index fixed charge transportation 

problem (Anu Ahuja, Arora. S.R., 2001 ) 

 The variable cost Cijk is given in Table 1 at the top left 

corner. 

The fixed costs are 

F111  = 10    F121  = 30  F131   = 20 

F112  = 20    F122  = 20   F132  = 20 

F113 = 30     F123 =  20   F133 = 10 

F211  = 10    F221 =  20  F231  = 20 

F212 = 10     F222  = 10    F232  = 30 

F213 = 40     F223 = 10    F233  = 10 

F311 = 10     F321 = 40    F331 = 20 

F312 = 20     F322 = 10    F332 = 30 

F313 = 20     F323 = 10    F333 =10 

The above MIFCTP can be formulated as a linear 

programming problem  and using the steps of the algorithm 

described in 3.3.1. we get the  optimal solution to the problem P 

using LINDO is as follows : 

x113 = 10 x122 = 6 x131 = 6 x132 = 3 

x211 = 5 x212 = 14 x213 = 2 x221 = 8 

x223 = 1 x233 = 14 x311 = 10 x312 = 3 

x313 = 8 x322 = 5 x323 = 8 x331 = 5 

x332 = 5 x333 = 2 

with Z(P)  =  1126.02 

Preliminaries of Fuzzy Set Theory 

In this section some basic definitions and arithmetic 

operations are reviewed. ( Stephen Dinagar, S., Palanivel, 

K.,2009) 

Basic Definitions  

In this section, some basic definitions are reviewed. 

Definition 3.1 : Trapezoidal Fuzzy Number 

The fuzzy number a% = [a1, a2, a3, a4] is a trapezoidal fuzzy 

number, denoted by [a1, a2, a3, a4] its membership function 
aμ% 

is given in the figure below : 

 

0

1

a1 a2 a3 a4  
Fig.1 : Membership function of a trapezoidal fuzzy number 

Definition : 3.2 

Two trapezoidal fuzzy numbers 
1A%  = (a1, b1, c1, d1) and 

2A%  = (a2, b2, c2, d2) are said to be equal ie. 1A%  = 
2A%  if and 

only if a1 = a2, b1 = b2, c1 = c2, d1 = d2. 

Definition : 3.3 

A Ranking function is a function  : F(R)  R where F(R) 

is a set of fuzzy numbers defined on set of real numbers, which 

maps each fuzzy number into the real line. Let A% = (a, b, c, d) 

be a trapezoidal fuzzy number, then  : ( A%) = a + b + c + d
.

4
  

Arithmetic Operations on fuzzy numbers: 

In this section addition, subtraction, multiplication and 

division operations of trapezoidal fuzzy numbers are reviewed. 

 Let 
1A% = (a1, b1, c1, d1) and 

2A%  = (a2, b2, c2, d2) be two 

trapezoidal fuzzy numbers, then  

(i) Addition : 
1A% + 

2A% :  (a1 + a2, b1 + b2, c1 + c2, d1 + d2)

  

A%
μ (x) 

X 
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(ii)  Subtraction : 
1A% - 

2A% :  (a1 - d2, b1 - c2, c1 - b2, d1 - a2)  

(iii) Multiplication : 
1A% . 

2A%  :   1
2 2 2 2

a
a b c d ,

4


  


 

 1
2 2 2 2

b
a b c d ,

4
    

 1
2 2 2 2

c
a b c d ,

4
    

 1
2 2 2 2

d
a b c d

4


   



 if  1A%  > 0. =   1
2 2 2 2

d
a b c d ,

4


  


 

 1
2 2 2 2

c
a b c d ,

4
    

 1
2 2 2 2

b
a b c d ,

4
    

 1
2 2 2 2

a
a b c d

4


   


 if  1A%  < 0. 

(iv)Division : 
1A% / 

2A%  :  1 1 1 1

2 2 2 2

a b c d
, , , 

d c b a

 
 
 

 

Multi-index fixed charge fuzzy transportation problem 

The general model of the problem is considered as follows : 

 (FP) Minimize 
pm n m n

i = 1 j = 1 k = 1 i = 1 j = 1

 + ijk ijk ikC X F
 
 
 
 

: : :

 

 Subject to  
m

ijk jk

i = 1

x  = A
: :

 

   

n

ijk ki

j = 1

x  = B %%

 

   

p

ijk ij

k = 1

x  = E %%

 

and  ijkx%

 

 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n, k = 1, 2, . . . , 

p. 

where  
p pn m n m

ijk ki ki ij ij jk

j = 1 i = 1 k = 1 j = 1 i = 1 k = 1

A  = B , B  = E , E  = A .     % %% % % %

 

p pn m m n

jk ki ij

j = 1 k = 1 k = 1 i = 1 i = 1 j = 1

A  = B  = E .  % % %  . . .   (4.1) 

Here  i = 1, 2, . . . , m are the origins. 

j = 1, 2, . . . , n are the destinations. 

k = 1, 2, . . . , p are the various types of commodities. 

ijkx%  - the fuzzy amount of k
th

 type of commodity transported 

from the i
th

 origin to the j
th

 destination. 

ijkc%  - the fuzzy variable cost per unit amount of k
th

 type 

commodity from the i
th

 origin to the j
th

 destination. 

ijkF%  = 
n

ijk ijk

j = 1

F δ ,%

 

i = 1, 2, . . . , m, j = 1, 2, . . . , n, k = 1, 2, . . . , 

p. 

where ijkδ   = 1 if  ijkx%

 

> 0   

  = 0 if  ijkx%

 

= 0 

jkA%  - the total fuzzy quantity of k
th

 type of commodity to be 

sent to the j
th

 destination. 

kiB%  - the total fuzzy quantity of k
th

 type of commodity available 

at the i
th

 origin. 

ijE%  - the total fuzzy quantity to be sent from i
th

 origin to the j
th

 

destination. 

Finding upper and lower bounds of the fuzzy decision 

variables  

 Solving the following two FLPP using the methodology 

proposed in Amit Kumar et.al, 2011, will yield the upper and 

lower bounds of the fuzzy decision variables.  

For each i = 1, 2, . . . , m, j = 1, 2, . . . , n, k = 1, 2, . . . , p. 

Consider the following Max FLPijk 

Maximize z%

 

= ijkx%  

Subject to  
m

ijk jk

i = 1

x  = A
: :

 

  

n

ijk ki

j = 1

x  = B %%

 

  

p

ijk ij

k = 1

x  = E %%

 

and  ijkx%

 

 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n, k = 1, 2, . . . , 

p. 

where  
p pn m n m

ijk ki ki ij ij jk

j = 1 i = 1 k = 1 j = 1 i = 1 k = 1

A  = B , B  = E , E  = A .     % %% % % %

 

 

p pn m m n

jk ki ij

j = 1 k = 1 k = 1 i = 1 i = 1 j = 1

A  = B  = E .  % % %   . . ….(4.2) 

Let 
max

ijkx%
 
denote the fuzzy optimal solution of the problem Max 

FLPijk.  

Now consider the following Min FLPijk 

Minimize z%

 

= ijkx%  

Subject to (4.1)

                      

. . . (4.3) 

Let 
min

ijkx%
 
denote the fuzzy optimal solution of the problem Min 

FLPijk.  

Approximation method to find the solution of (MIFCFIP) 

Now consider the relaxed version of the problem FP 

Minimise z%

 

= 
p pm n m n

ijk ijk ijk ijk

i = 1 j = 1 k = 1 i = 1 j = 1 k = 1

c x  + F δ
 
 
 
  %% %  

 Subject to  
m

ijk jk

i = 1

x  = A %%

 

   

n

ijk ki

j = 1

x  = B %%

 

   

p

ijk ij

k = 1

x  = E %%

 

where  
p pn m n m

ijk ki ki ij ij jk

j = 1 i = 1 k = 1 j = 1 i = 1 k = 1

A  = B , B  = E , E  = A .     % %% % % %

 

p pn m m n

jk ki ij

j = 1 k = 1 k = 1 i = 1 i = 1 j = 1

A  = B  = E .  % % %  . . . (4.4) 

 0  ijk  1, ijk integer. 
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0  ( ijkx% )   ijk ijkm δ% , i = 1, 2, . . . , m, j = 1, 2, . . . , n, k = 

1, 2, . . . , p.                                                                    . . . (4.5) 

Set 
max

ijk ijkm  =  x% %
 
for all i = 1, 2, . . . , m, j = 1, 2, . . . , n, k = 1, 

2, . . . , p. 

 ijk ijkx ,  y% %
 
is a solution of the above problem with the integer 

constraint ignored only if ijkx%
 
=  

ijk ijkm δ% . 

Now consider the problem FP where  

ijk ijk ijk ijkC   =  C  + F m% % % %
 

FP : Minimise z%

 

= 
pm n

ijk ijk

i = 1 j = 1 k = 1

c x% %  

 Subject to  
m

ijk jk

i = 1

x  = A %%

 

   

n

ijk ki

j = 1

x  = B %%

 

   

p

ijk ij

k = 1

x  = E %%

 
where  

p pn m n m

ijk ki ki ij ij jk

j = 1 i = 1 k = 1 j = 1 i = 1 k = 1

A  = B , B  = E , E  = A .     % %% % % %

p pn m m n

jk ki ij

j = 1 k = 1 k = 1 i = 1 i = 1 j = 1

A  = B  = E  % % %   . . . (4.6) 

0  ( ijkx% )   ijkm% , i = 1, 2, . . . , m, j = 1, 2, . . . , n, k = 1, 

2, . . . , p. 

Theorem 4.2.1 : 

The fuzzy optimal value of FP,  Z FP% provides a lower 

bound to the optimal value  *Z FP%  of the corresponding 

MIFCFTP, Problem FP. 

Remark 3 : 

 The fuzzy optimal solution { ijkx% } of problem FP can be 

used to create an upperbound to the optimal value  *Z FP% . 

Note that the solution { ijkx% } is easily modified into a fuzzy 

feasible solution of  ' '

ijk ijkx ,  %
 
FP as follows : 

 ijk 
 
= 0 if ( ijkx% ) = 0. 

 ijk 
 
= 1 if ( ijkx% ) > 0. 

Solution  ' '

ijk ijkx ,  %  being a fuzzy feasible solution, provides 

an upperbound on  *Z FP% . 

Consequently the optimal solution { ijkx% } can be used to 

provide a lower and upperbound for the fuzzy optimal value of 

problem FP as follows : 
pm n

ijk ijk

i = 1 j = 1 k = 1

c x% %   *Z FP%
 
 

pm n

ijk ijk

i = 1 j = 1 k = 1

c x% %  + ijk ijkF .%  

                                                              . . . (4.7) 

Remark 4 : If the lower bound is equal to the upperbound in 

equation (4.7), then  ' '

ijk ijkx ,  %  is the fuzzy optimal solution 

of problem p, with fuzzy optimal value of  *Z FP% . 

Reformation of MIFCFTP by extracting fixed costs 

Now the problem FP can be rewritten as follows : 

FP* : Minimize Z% =  
pm n

*

ijk ijk ijk ijk

i = 1 j = 1 k = 1

K  + C x  f   %%% %  

 Subject to  
m

ijk jk

i = 1

x  = A %%

 

   

n

ijk ki

j = 1

x  = B %%

 

   

p

ijk ij

k = 1

x  = E %%

 

where  
p pn m n m

ijk ki ki ij ij jk

j = 1 i = 1 k = 1 j = 1 i = 1 k = 1

A  = B , B  = E , E  = A .     % %% % % %

 

p pn m m n

jk ki ij

j = 1 k = 1 k = 1 i = 1 i = 1 j = 1

A  = B  = E .  % % %

 

where % = min  ijkf%  (the smallest fuzzy fixed charge 

coefficient) 

*

ijk ijkf  = f  - .% % %      

The variable K is a consolidation coefficient equal to the 

number of non-zero basic variables. In the case of MIFTP, the 

number of basic variables should be equal to mnp – (m – 1)(n – 

1)(p – 1). 

The MIFCFTP Heuristic Method 

In this section, we outline steps for solving the MIFCFTP, 

problem FP, with fuzzy cost coefficient 
ijkC%  and fuzzy fixed 

costs ijkf .%  

The Algorithm 

Step 1 : Formulate and the problems Max FLPijk and Min FLPijk 

to determine lower and upper bounds 
min

ijkx%  and 
max

ijkx%  for ijkx% , 

i = 1, 2, . . . , m ; j = 1, 2, . . . , n ;                 k = 1, 2, . . . , p. 

Step 2 : Identify % = the smallest fuzzy fixed charge 

coefficient. 

Step 3 : Subtract % from all the fixed charges. Extract fixed 

cost K%. Corresponding to the number of non-zero basic 

variables. 

Step 4 : Formulate the problem FP with 

ijk ijk ijk ijkC  = C f m . %% % %  

Step 5 : Solve the problem FP using  LINDO software and 

record solution   ijkx .%  

Step 6 : Determine 
'

ijk  values as outlines in Remark 3.  

Step 7 : Step Record the solution for problem FP as 

 '

ijk ijkx ,% . 
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Numerical Example 

Consider a 3 x 3 x 3 fixed charge multi-inter fuzzy 

transportation problem FP. The fuzzy variable cost 
ijkC%  are 

given at the top left corner in Table Ii. 

The fuzzy fixed costs are  

111f%  = (8 9 11 12)    
121f%  = (28 29 31 32) 

131f%  = (18 19 21 22) 

112f%  = (18 19 21 22)
122f%  = (18 19 21 22) 

132f%  = (18 19 21 22) 

113f%  = (28 29 31 32) 
123f%  = (18 19 21 22)

133f%  = (8 9 11 12) 

211f%  = (8 9 11 12)     
221f%  = (18 19 21 22)

231f%  = (18 19 21 22) 

212f%  = (8 9 11 12)     
222f%  = (8 9 11 12)  

232f%  = (28 29 31 32) 

213f%  = (38 39 41 42)  
223f%  = (8 9 11 12) 

233f%  = (8 9 11 12) 

311f%  = (8 9 11 12)      
321f%  = (38 39 41 42)

331f%  = (18 19 21 22) 

312f%  = (18 19 21 22)  
322f%  = (8 9 11 12)  

332f%  = (28 29 31 32) 

313f%  = (18 19 21 22)   
323f%  = (8 9 11 12)    

333f%  = (8 9 11 12)  

The above MIFCFTP can be formulated as a fuzzy  linear 

programming problem. Using the methodology proposed in 

Amit Kumar et.al, 2011 to solve the fuzzy linear programming 

problem and the steps of the algorithm described in 5.3.1, we get 

the  optimal solution to the problem FP using LINDO is as 

follows : 

113x%  = (8 9 11 12)  122x%  = (4 5 7 8) 

131x%  = (4 5 7 8)   132x%  = (3 3 3 3 ) 

211x%  = (5 5 5 5)    212x%  = (12 13 15 16) 

213x%  = (2 2 2 2)   221x%  = (6 7 9 10) 

223x%  = (1 1 1 1)   233x%  = (12 13 15 16) 

311x%  = (8 9 11 12 312x%  = (3 3 3 3) 

313x%  = (8 8 8 8)    322x%  = (5 5 5 5) 

323x%  = (6 7 9 10)   331x%  = (5 5 5 5) 

332x%  = (3 4 6 7)   333x%  = (2 2 2 2 ) 

with Z(FP )%  = (831.24, 976.74, 1280.33, 1441.78) 

Conclusion 

In this paper, a heuristic algorithm for multi-index fixed 

charge transportation problem is proposed. The optimal value 

obtained using the proposed algorithm is 1126.02, where as the 

already existing exact method  proposed by Anu Ahuja, Arora. 

S.R. ,2001, is 1185 which is more than the optimal value   of the 

proposed method. More over,in the real world applications, the 

parameters in the transportation problem may not be known 

precisely due to uncontrollable factors. Therefore this algorithm 

is extended to solve MIFCFTP. Since the optimal value is 

expressed as fuzzy numbers rather than crisp value, more 

information is provided for decision making. The efficiency of 

this algorithm is proved by comparing the result obtained by 

using this algorithm with the already existing exact method of 

solving MIFCTP. 
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Table 1 
 j = 1 j = 2 j = 3 Bki 

i = 1 

8   5   7   6   

 7   6   3   9  

E11 = 10 6 E12 = 6 10 E13 = 9 11  10 

i = 2 

11   9   13   13   

 8   15   7   14  

E21 = 21 13 E22 = 9 12 E23 = 14 8  17 

i = 3 

5   8   10   15   

 6   9   6   13  

E31 = 21 7 E32 = 13 7 E33 = 12 11  18 

Ajk 

15   8   11   34   

 17   11   8   36  

 20  9  16  45 

 

Table 2 
 j = 1 j = 2 j = 3 Bki 

i = 

1 

(6 7 9 10)   
(3 4 6 

7) 
  (5 6 8 9)   (4 5 7 8)   

 (5 6 8 9)   (4 5 7 8)   
(1 2 4 

5) 
  

(7 8 10 

11) 
 

11E%  = (8 9 11 12) (4 5 7 8) E12 = (4 5 7 8) 
(8 9 11 

12) 
E13 = (7 8 10 11) 

(9 10 12 
13) 

 
(8 9 11 

12) 

i = 
2 

(9 10 12 
13) 

  
(7 8 10 

11) 
  

(11 12 14 
15) 

  
(11 12 14 

15) 
  

 (6 7 9 10)   
(13 14 16 

17) 
  

(5 6 8 
9) 

  
(12 13 15 

16) 
 

E21 = (19 20 22 23) 
(11 12 14 

15) 
E22 = (7 8 10 11) 

(10 11 13 

14) 
E23 = (12 13 15 16) (6 7 9 10)  

(15 16 18 

19) 

i = 

3 

(3 4 6 7)   
(6 7 9 

10) 
  

(8 9 11 

12) 
  

(13 14 16 

17) 
  

 (4 5 7 8)   
(7 8 10 

11) 
  

(4 5 7 

8) 
  

(11 12 14 

15) 
 

E31 = (19 20 22 23) (5 6 8 9() E32 = (11 12 14 15) (5 6 8 9) E33 = (10 11 13 14) 
(10 11 13 

14) 
 

(16 17 19 

20) 

Ajk 

(13 14 16 
17) 

  
(6 7 9 
10) 

  
(9 10 12 

13) 
  

(28 31 37 
40) 

  

 
(15 16 18 

19) 
  

(9 10 12 
13) 

  
(6 7 9 

10) 
  

(30 33 39 
42) 

 

 
(18 19 21 

22) 
 

(7 8 10 

11) 
 

(14 15 17 

18) 
 

(39 42 48 

51) 

 


