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Introduction  

The assumption that the medium is an ideal gas is no more 

valid when the flow takes place in the extreme condition. 

Anisinov  and  Spiner[1]have studied a problem of point 

explosion in low density  non ideal  gas by taking  the equation 

of state in a simplified from which describes the behavior of 

medium satisfactorily .Robert and Wu[5] have studied the gas 

that obeys a simplified Vander Wall’s equation of state. 

Vishwakarma  et-al[8] have investigated the one dimensional 

unsteady self similar flow behind a strong  shock ,driven out by 

a cylindrical or spherical piston in a medium which is assumed 

to be non ideal and which obey the simplified Vander Wall’s 

equation of state as consider  by Robert and Wu[6] . Pandey  K. 

and Pathak P.P.[4] have considered the growth and decay 

behavior of sonic waves in non ideal gases. 

Considerable attention has been given to the development of 

real gas flow theories which have applications in the fields of 

entry physics, combustion and radiation .As a result of 

increasing   flight speeds in space exploration and the very high 

temperature attained by gases in motion the study of thermal 

radiation effects in uses becomes increasingly more important in 

aerodynamics problems. Since  the formulation  of a problems in  

radiative   gas dynamics involves greater complexities a number 

of  investigators  have used a number of simplification  

according to their problems .The problem in radiation gas 

dynamics become manageable only with help of linearization 

and use of the differential approximation. Pai and Hsieh[2] using  

optically thin gas approximation have studied the supersonic  

flows over weak compression and expansion  corner and over 

biconvex  airfoil by means of a coordinate stretching in the 

characteristics variable. Takigami and Hasimoto[7] using a 

perturbation technique have study the shock-wave in steady two-

dimensional flow of a non-equilibrium gas along a curved wall.  

In present case we have assumed that in the flow field the 

thermal radiation is everywhere in thermodynamic equilibrium 

and is optically thin. Using method suggested by  Takigami and 

Hasimoto[7]  we see that although the equations describing the 

relaxation phenomenon of[] do not have one to one 

correspondence with the equations describing the non-ideal 

radiative equilibrium flow considered in the present case , but 

qualitative results are strikingly similar . 

Governing Equations And Boundary Conditions 

 Equations  governing  the  non ideal  two  dimensional  

motion  of non ideal gas when radiative heat transfer term is 

taken into account are given by Robert and Wu.[5] and Pai [3], 
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where  x and y are cartesian coordinates parallel  and  

perpendicular  to the oncoming uniform flow,with origin at the 

corner or the beginning of the bend, u and v are the velocity 

components along x and y axis ,p  are  pressure, density ,b is 

the internal volume of the gas molecules and Q  denotes  

radiative  heat transfer term given by
44Q k T

 
where k is 

the Plank mean absorption coefficient depending on the 

density  , is the Stefan-Boltzmann constant ,and T is the 

uniform temperature. Comma followed by an index specifies 

partial differentiation with respect to that index. Effective speed 

of sound
2a is defined by 
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When the Mach number 
1/ 2

2 2 2( ) /M u v a    is 

greater than unity, the system of equation (2.1)  to equation (2.4) 

possesses three families of real characteristics ,the outgoing and 

incoming Mach waves and streamlines. In terms of u, v and 

a the streamlines and outgoing mach waves have slopes in the   

x, y plane determined  by 
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respectively. 

Introducing the characteristic parameters  and   , which 

are functions of x and y, we have, 

            
,
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Using transformation relations, 

, , , ,
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                 (2.9)                                                                                                                                       

 

The basic equations (2.1) to equation (2.4) can be expressed in 

terms of characteristic variable  and   in following  form 

, , , , , , , , , ,( / ) [ ( / ) ] 0u v u x u x v u x x x v x v                     (2.10) 
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       where , , , ,J x y x y      is the Jacobean of the 

transformation ,which does not vanish  or does not become 

infinity any where and  using equation (2.7) & equation (2.8) we 

find that 

                   , ,
v

J x x
u

 
 

  
    .                              (2.14) 

 

So that a breakdown of the solution in terms of the 

characteristic parameter will arise if either ,x or ,x   
is zero.   

 
   If the shape of the wall is described by equation ( )y F x , 

an equation (2.7) and equation (2.8) show that  is constant 

along an outgoing Mach wave and   is constant along a stream 

line. We assume for convenience that the first Mach line and 

wall are respectively 0   and  0  ,The requirement that 

the flow should be tangential to the surface of the wall implies 

that, 

  x  , ( )y F  ,  
'( )

v
F

u
   at 0  .       (2.15) 

Thus flow region is divided into two parts, one is of the 

uniform flow and the other is of the flow disturbed by the 

presence of the curved wall. The boundary of these two regions 

is the first Mach line or shockwave. As the flow variables are 

continuous across the first Mach line, the boundary conditions 

are given by, 

00 0 0   , , , 0, , , , , at 0,p p u u v y x x          
      (2.16)

 

where subscripts 0 denotes the free stream condition which are 

assumed to be in thermodynamic equilibrium. Rankine-

Hugoniot relations in this case are given by, 

0 0( cot )u v u    ,

0 0 0 0 0( ), ( )cot ,p p u u u v u u              (2.17) 

where  is the shock angle. 

Behaviour at The First Mach Wave 

Assuming that the wall is a continuous  curved bend and we 

must presume that all of the quantities  as well as u and v are 

continuous in the  neighborhood of the first frozen Mach line 

0  , by hypothesis, 

, , , , 0p u v        at  =0  .                     (3.1) 

Thus the equation (2.11)  & equation (2.12) give  

, 0 0 , 0 0 0 , ,p u u u v       at =0                     (3.2) 

Differentiating equation (2.13) with respect to   and using the 

foregoing result, we find that at the first Mach wave  =0 
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Differentiating equation (3.2) with respect to   and from there 

when we substitute 
,p in equation equation (3.3) after certain 

manipulation we have 

, , , 0v v x       ,                                                      (3.4) 

where                     
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Equation (3.4) can be integrated with respect to   on the line of 

constant ( 0)   which gives 

, , 0 0exp{ ( )}v v x x     ,                                      (3.5) 

Which  gives  the dependence of ,v at the first Mach line on x, 

and , 0v is the value  of  ,v at =0  which arises when x is 

equal to 0x . 

To compute /v x  at the first Mach line  , we invoke equation 

(2.9) and equation (2.14) which give  

, ,/ /v x v x       .                                                     (3.6) 

It follows from equation (2.7) and equation (2.8) and the 

boundary conditions equation (3.1) at  =0, that  

, , 0 0 , 0x x                                                        (3.7) 

   / , , , , / , , 0v u ux u x p v u x p          

 / , , , , , , 0v u ux v x p x p          
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Since a depends on p, we have 

, , 0 0 0 0 ,[ / ] ( / 2 )( 1)fa a p p u a v                       (3.8) 

where 
21 ( / )a p     .Using equation (3.7) and equation 

(3.8), in equation (2.6) we find that 
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     (3.9)                                                                                                                    

Substituting 
, from equation 3.9 into 3.7 and making use of 

equation 3.5 we have  
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          (3.10) 

Integrating  equation (3.10) with respect to  on the line of 

constant  ( 0)  , we obtain that  

 , , 0 0 0 0 01 ( / )( / ) 1 exp ( )x x u v x x x             (3.11) 

where           
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Consequently if  

                    0 0 0( / ) /v x u   
, 

The characteristics will pile up at the first Mach line to from a 

shock  wave at
 cx x

 
is given by  

               
1 1 1

0 0 0 0log[1 ( / )( / ) ]cx x u v x      
 
(3.12)

 

where ,x and the Jacobean J vanish and we can write 

1

0 0 0 0( / )( / )cx x u v x           .                         (3.13) 

From   equation  (3.5), equation (3.6) and equation  (3.11)  the 

value of ( / )v x  at the first  Mach line may be given by 

  
 

0 0

0 0 0 0

( / ) exp
/

1 ( / )( / ) 1 exp ( )

v x x x
v x

u v x x x

   
  

       

            (3.14) 

Consequently, if 0( / )v x   is negative , 0( / )v x   at the 

first Mach line increases monotonically to zero as x increase. If 

0( / )v x   is positive and has a magnitude greater than 

0 0/ , /u v x   at first Mach wave will steepen up into a shock 

wave at cx x . 

 However ,if 0 0 0( / ) /v x u    then 0( / )v x    

remains constant . Finally if 0( / )v x  is positive and has a 

magnitude less  than 0 0/u  , 0( / )v x    decreases 

monotonically to zero. 

 

Shock formation

b

a

c
d

e
fg

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.5

0.5

1.0

1.5

2.0

 
Figure -2 The value of /v x  at the first Mach line 

To relate
0( / )v x  with the coefficient of second order 

derivative 
''( ) 0F x  of the shape of the wall y=F(x ) ,  we take 

0 0x  ,thus equation (3.14) can be rewritten in the following  

form, 

 

''

0

0

(0)exp( )

1 ''(0) 1 exp( )

u F xv

x F x




   
   .                  (3.15) 

In particular if 
''(0)F  ,we have simply  

0 0/ exp( )

1 exp( )

u xv

x x

 


  
  ,                                   (3.16) 

which gives the partial derivative of the y component of  

velocity with respect to x at the first Mach line of a Prandtl -

Meyer flow. 

The condition necessary for no shock to form on the first Mach 

line is given by 
''

0(0) 1/F     .                                                    (3.17) 

From  equation  (3.16 ) we see  that even if the wall shape is the 

compressible corner at x=0   

 (i.e.  
''(0) 0F  ),the shock wave is not always formed on the 

first Mach line.  

Perturbation Equations and Boundary Conditions 

Let us assume that the wall be a concave or convex with a 

small deflection angle and be described by the 

equation ( )y R x , where ( 1 = ) may be taken as the slope 

of the wall at 0x   and ( ) (1)R x o: , so that the boundary 

conditions (2.23) becomes, 

x    , ( )y R   , ( )
v

R
u

   ,     at 0  (4.1) 

As   is a small parameter, we consider a solution of the form, 
2

0 1 2( , ) ( , ) ( , ) ( , ) .......                     (4.2) 

where  ( , )   denotes any one of the dependent variables 

concerned. Substituting   equation (4.2) into equation (2.12), 

(2.13), (2.14),and  equation (3.1) to equation (3.5) and collecting 

the terms of like order in  , we obtain a set of equations  

governing the variable of order   as given below. 

Equations governing terms of zeroth order are 

0, 0 0,y x  , , 0oy   ,                                             (4.3) 

where
0

0
0 2 2 1/ 2

0 0
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f

a

u a
  


, 

0f
 being the Mach 

angle in the free stream. 

Equations governing the terms of first order are 

, ,1 0 0 1 0p u u
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0 0
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1, 0 1, 1 0,y x x
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,        (4.4)                                                                         

where,
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In similar manner, it follows from equation (2.16) and equation 

(4.1) that , 

0( ,0)x   , 0(0, )y                                            (4.5) 

1 1 1 1 1 0p u v y      at 0                             (4.6) 

1 0x  ,
1 ( )y R  ,

1 0 ( )v u R  at 0                   (4.7)                                                 

Substituting equation (4.2) into the Rankine-Hugoniot relation 

equation (2.17) we obtain a set of boundary   conditions at the 

shock wave. The shock relations of order  are given by, 

00 1 1 0 0 , 1[ cot ] 0pu v u p     , 

1 0 0 1 0p u u   , 

1 1 0cot 0v u    .                                                         (4.8) 

Equation (4.8) are a homogeneneous system in 1 1,p u
 
and 

1v  . If these are not simultaneously zero at the shock wave, the 

determinant of the coefficients of the system must vanish. It 

follows that

1/ 2
2

0
0 2

0

cot 1
u

a


 
  
 

, that is , the slope of the 

shock wave is equal to that of the Mach wave in free stream to 

zeroth –order in  .Making use of the relation 
1/ 2

2

0
0 2

0

cot 1
u
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 from equation (4.8) we obtain the 

following relations 

0 0 0
1 2 2 1/ 2

0 0( )

u a
p

u a





  .                                                (4.9) 

Likewise, collecting the term of
2 , we obtain 

2 0 1 1 1 0 0 2 2 0 0 1 1( cot ) ( cot ) cot 0u u v u v v           
 ,    (4.10)

 

2 0 0 2 0p u u 
  ,                                                     (4.11)

 

2 2 0 1 1cot cot 0v u u       .                              (4.12) 

Results &Discussion 

Behavior of the wave at the first Mach wave is discussed 

which gives the condition necessary for no shock formation and 

condition of breakdown of solution. Using perturbation 

technique  governing  equation up to second order of 

approximation  are obtained and  from there it is concluded that 

for a set of boundary conditions at the shock wave homogeneous 

parts are same for first and second order approximation. For 

expansion wave ( / )v x   decreases and damped out 

ultimately. For compression wave it will grow up and terminate 

into a shock wave  at a critical distance cx as shown by curve a. 

Thus behavior  of  wave  at  first frozen Mach wave is more or 

less similar to that for  flow of a non-equilibrium  as discussed  

by Takigami and Hiasimoto[7]. If ( / )cv x   is positive and has 

magnitude less than 0 0( / )u  , it decreases as illustrated by 

curve c and d for case 0 0 0 0/ 2 ( / ) /cu v x u      and 

0 00 ( / ) / 2cv x u      respectively. For case 

0 0( / ) /cv x u     , it remains constant and is independent of 

x as shown by curve b .If ( / )cv x   is negative and less than 

0 0( / )u   wave will decay out as illustrated by curves e,f,g  

which gives no shock formation condition a contradiction to the 

result that all compressive wave terminates into a shock-wave. 

In section four using perturbation technique we have obtained a 

set of boundary conditions at the shock which are homogeneous 

for first and second approximation but to ensure the consistency 

of second order boundary conditions appropriate relations are 

obtained. 
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