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Introduction
Consider the singular Sturm-Liouville expression

a(y) = %((— oY)’ + ), &

where the weight function r changes its sign. We assume that
(1) is in the limit point case at both —oo and + oo and that the

functions p,q,r are real, r#0 ae, XeR. Then the
maximal operator A associated to (1) is self-adjoint in the

Krein space L2(R), where the indefinite inner product is
defined by

[f,91=[ f)g0r(ydx f,g e L;(R).
Two closed operators T, and T, in a Hilbert space H are

called similar if there exist a bounded operator S with the
bounded inverse S in H such that Sdom(T,) = dom(T,)
and T, =ST,S™*.

In general, if the operator (1) is in the limit circle case at
both —oo and + o0, we can consider its Riesz basis property.
Here the operator (1) considered on Lf (R) has continuous

spectrum. In the case, one considers the property of similarity
either to a normal or to a self-adjoint operator.

Using the Krein-Langer technique of definitizable operators in
Krein spaces, Curgus and Langer [1] have obtained the first
result in the direction. In particular, their result yields that the J-

selfadjoint operator with r(X) =sgn X is similar to a self-

adjoint if L is a uniformly positive operator. Next Curgus and
d 2

Najman [2] showed that the operator (Sgn X)d—2 is similar to

X

a self-adjoint one. In the
2

d
sgn X(_W +CO) type operators to normal and self-adjoint

paper [3], similarity of
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operators were described. In [4-6] several necessary similarity
conditions in terms of Weyl functions were obtained. Based on
the concept of boundary triplet and the resolvent similarity
criterion, references [7-8] investigate the main spectral
properties of quasi-self-adjoint extensions of corresponding
operator.

Here we are interested in more general indefinite
differential expression of the form (1) and our main goal is to

show that a sufficient condition for the operator A to be similar
to a self adjoint operator in Hilbert space. Using this result, we
construct a example of operator and prove that this operator is
similar to a self-adjoint one.

Throughout the articlgye use the following notations: Let

T be a linear operator in a Hilbert space (H,(e,¢)). In what
follows dom(T), ker(T), ran(T) are the domain, kernel,
range of T, respectively. We denote by o(T),o(T) and

o, (T) the resolvent set, the spectrum and the point spectrum

of T.R;(A)=(T-A)", 1ep(T) is the resolvent of
T.weset C, ={1C:+Imi>0}.
Preliminaries.
Indefinite Sturm-Liouville Operators in L?(R)
Consider the differential expression
1 n’

ay) =——~((=py) +ay),

r(x)

where pt.q ., rels

1oc (R) are assumed to be real valued

functions such that p >0 and r =0 for ae., X R. Here
we assume that the following condition holds:
There  exist a,beR,a<b, such  that  the

restrictions r, = r|(b,+o0) and I_ = r|(—o0,a)
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satisfy r_(x) > O for
a.e, X € (—oo,a).

ae., X € (b,+o0) andr_(x) < Ofor

By L?(R)we denote the Krein space of all equivalence of

measurable functions f defined on R for

[TTE)PIr(X) X <+00 which.the indefinite and definite

inner products on L*(R) are

[f.0]:=[ fordx and (f,g):=[ fg|rx.
Evidently, the operator J
() = (s r(x) f(x), xeR ()

is the fundamental symmetry connecting the inner products in
(4). By L2 (R) we denote the Hilbert space LZ(R, (s,e)) .

Ir|
Let us assume that the Sturm-Liouville differential expression

1 n'
I(y) = l—rl((— py’)" +ay),
is in the limit point case at both singular endpoints —oo and
+00. Then it is well known that the operator Ly =I(y)
defined on the usual maximal domain

Do ={y € L,(R): Y, py’ € AC\, (R), ly € L}, (R)}
is self-adjoint in the Hilbert space L (R).

In the following we set

Ay =JLy = %((— py’)’+qy),domA=domJL =D, .

The operator A is self-adjoint in the Krein space L?(R). We

shall interpret the operator A as a finite rank perturbation in
resolvent sense of the direct sum of three differential operators

A_, A, and A, defined in the sequel. We identify function
fel’(R) with
where e L% ((-,a)), f,, € Lfab ((a,b)) and

f e Li ((b,+0)), respectively. Similarly we denote the

f=f +f,+f,,

restrictions of P and ( onto the intervals (—ooc,a) and
(b,+0) by p_, p, and q_,Q, , respectively. Moreover we
denote the restriction of I, pand g onto the interval (a,b) by

Iy, P., and d,,. Besides the differential expression | in (6)
we set

L(F)i= (. 1) =),
I+(f+) = ri(_(p+ f+’)’+ q+ f+)|
and ’
1 n\/
Iab(fab) = m(_( p_ ff) + qab fab)i

respectively, and operators associated to them. Note that |_ and

| are in the limit point case at —oo and + oo and regular at the

+
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endpoints @ and b, respectively, whereas |ab is regular at both
endpoints @ and b.By D (D and D )we denote the
set in (7) ifr,Rand | are replaced by r , (—oo,a) and
|_(resp. r,, (b,+), |, and r,,,(a,b), I, . Therefore the

+

operators

A (F.)i= 2 ((p_£)+.£.),
A (1) = 2 ((p, 1)+, 1)
and '

Sn(fay) = é(—( P 1) 40y 1)
defined on

dom(Ay;, ) ={f_ € Dyyg) f () = (p_1')(@) =0},
dom(Ay,.) ={f, € Dy, = f.(0) = (p. £/)(b) = O}

and

dom(S,,) ={f, € Dﬁgx (@) = (Pay Fa)(@) = T (0) = (P F2)(0) = O}
With

D =41 €2 () L1 €A, (ol ()L (a ),
Dz, ={f. €L ((o9): T.,p, ' € AC, (et} (F,) € L, (Bt}

and

b . '
Dr:ax :{fab € L12rab\ ((av b)) ' fabl pab fab € ACIoc((a! b))ll(fab) € |'|2rab| ((a! b))}
are closed symmetric operators in the anti-Hilbert
space L2 ((—o0,@)), Hilbert space Li ((b,+)) and Krein
space Lfab ((a,b)), respectively. The adjoint operators A,
A... and S; are the usual maximal operators defined

onD,,,. D, and D , respectively.
Let
dom(S) =dom(A,,,_ ) ®dom(S,,) ®dom(A,;,.)and

let the operator S be defined on dom(S),

Ao 0 0
s=| 0 s, O
O 0 Amin+

with respect to the decomposition
L2(R) = L2 ((—,a)) @ Lfab (a,b)® Li (b,+o0). Then S

. . . . 2 .
is a closed symmetric operator in the krein space L (R) with

finite defect 4. Moreover, we have S = Al s A=S"|p,
where

D =dom(A) ={f e (dom(A" ) @dom(S,,) ®dom(A" ):

f(8) = f,5(a).(p_T2)(&) = (pay F2)(@). £, (0) = £ (0), (p. £1)(b) = (o F)O)}-
©)
Theorem 1. ([15]) Let the operator L be nonnegative and

.. . . 2
A=JL be self-adjoint operator in the krein space L;(R)
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with the nonempty resolvent set o(A) = . Then the
spectrum of A isreal, o(A) cR.

Theorem 2. If the operator L is semibounded from below, then
P(A) # . (see Theorem 4.5 in [16])

Theorem 3. If the operator L is nonnegative, then the spectrum
of Aisreal, o(A) c R.

Proof Since L0, Theorem 2 implies that p(A) = .

Theorem 1 completes the proof.
2.2. Weyl-Titchmarsh m-coefficients

Let c(x,4) and s(X,A) denote the linearly independent

solutions of equation (6) satisfying the following initial
conditions at a

c(a,A) =(ps)(a, 4) =1,(pcH(a,A)=s(a,1) =0.
Since equation (6) is limit point at + oo, the Weyl-Titchmarsh
theorem (see [9]) states that there exists a unique holomorphic

function m, ()€ C\R —>C, such that the function
2

S, (Xx,4)—m_(A)c, (x,4) L. ((b,490)).

Similarly, the limit point case at — oo yields the fact that there

exists a unique holomorphic function m_()e C\R - C,

such  that  S_(x,4)—m_(A)c_(x,A)
2

L%, ((—,a)).

The functions M, and M_ are called the Weyl-Titchmarsh m-

belongs to

belongs to

coefficients for (6) on (b,+0) and on (—oo,@), respectively.
We put

M,(A)=+tm_ (1), (10

v, (X, 4) =s,(x,4) —m, (A)c, (x, 1),

v (XA)=s_(X,4)—-m_(A)c_(x,4). (11)

By the definition of m_, the functions ,(X,4) and y_(X, 4)
belong to Li ((b,+o0)) and Lz_,i ((—oo,a@))forallA e C\R,
respectively. fy. (X, )=y, (X,4). The
function M, (-) (M _(-)) is said to be the Weyl-Titchmarsh m-
coefficient for equation (3) on (b,+0) (on (—o0,a)).
Definition 1. The class (R) consists of all holomorphic
functionsG : C, UC_. — C such that G(Z) = m , and
ImA-ImG(41) >0 forA € C, UC_ (see [10]).

It is well known that

Besides,

- 2 iy < MM (D)
J, T ) P ek ===,
fw| w_ (%) [P r(x) ] dx = W (12)

for all A€ C\R (see [9]). These formulae imply that the

functions M, and M _ (as well as m, and m_ belong to the
class (R). Moreover (see [11]) the functions M, and M _
admit the following integral representation
07, (S
M, (1) = j :) 3 cc\r. (13)
—00 S_

Here 7, : R — R are nondecreasing functions on R with the
following properties:

+ood 7, (S

j 47.0) _ 1o L(b)=7_(a)=0,
—o 1+ s

7,.(8)=7,(s-0).

Notice that the functions 7, and 7_ are uniquely determined

by the Stieltjes inversion formulae

lim = IImM (t+ig)dt = T+(S+O)+T+(S_O),

507[ 2
lim jlmM (t+ig)t = =CFO+7(5-0)
507[ 2

The functions functions 7, and 7_ are called spectral functions
of the operators

Ao = Ann [{y edom(Ay;, ) (p_Y )@ =0 (4
and

A0+ = A:]im— |{y € dom(Ar;im—) : (p+ y:r)(b) = 0}, (15)
respectively.
Boundary Triplets and Abstract Weyl Functions

Let K be a Krein space and let H be a separable Hilbert
space. Let S be a closed symmetric operator in K with equal
and finite deficiency indices N, (S) =n_(S) <.
Recall the concepts of boundary triplets and abstract Weyl
functions (see [12, 13]).

Definition 2. A triplet IT={H,I;),I}} is called a boundary
triplet for S*
0)

(S f,9)k —(f,579) = (0 F,,0)y — (T F.119)y
f,g edom(S");

(ii) the linear

Mapping " ={T, f,I; f}:dom(S") — H @ H is surjective.

The mappings I'y and I} naturally induce two extensions S,

if the following two conditions:

and S; of S given by

S;:=S"|dom(S;),dom(S;) = KerT;,(j =0,1).

The y — field of the operator S corresponding to the
boundary triplet I1 is the operator
function y(-) : p(Sq) = [H, Nl(S)]_ldefined

by (1) == (T, | N, (S)) !, where N, (S):=Ker(S*-Al).
The function y is well-defined and holomorphic on p(S,) .
Definition 3. Let IT={H,I},,I3} be a boundary triplet for
the  operator S*. The operator  valued function
M():p(Sy) > [H] defined byM(4)=T1y(1), A € p(S,)

is called the Weyl function of S corresponding to the boundary
triplet IT.

Let C,D e[H]. Considering the following extension S of
$,5cS,
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S =Scp=5"|dom(Sc ).

dom(Sc p) ={f edom(S*):CI; f + DI, f =0}. (16)
Notice that eeii:h proper extension S~ of S has the form (16),
ie, if SCS <S”, then there exist C,D e[H]such that
S=Scop.

Theorem 4. Suppose I'T={H,I,,I}} is a boundary triplet for
S*, M (") is the corresponding Weyl function, and S = Sco

where SC'D is defined by (16). Assume also
thatC,D,(CC* +DD*) ™ [H]. Then Aep(S;)Np(S) if
and only if 0 € p(D +CM (1)).

In particular, if C is invertible, let B = C D e[H], then

S =S, =5"|dom(Sg).

dom(Sg) ={f edom(S™): T, f —BI[,f =0}. (17)
Theorem 5. Suppose IT={H,T};,I}} is a boundary triplet for
S*, M(") is the corresponding Weyl function and Sg is
defined by (17). Assume also that B e[H].Then
A€ p(Sy) N p(Sg) ifand only if 0 € p(B—M(A)).
3. Boundary Triplets for Sturm-Liouville Operator. A
1. Let A, and A, be the operators defined in Subsection

2.1. Since equation (1) is in the limit point case at —oo and
+ 00, then the deficiency indices of the symmetric operator are

(1,1) and forall f.,g, edom(A,;.) we have

(Amine F.9.) = (. Anin 9) = (p, ) (0)9, (0) - . (0)(p..9")(b)
(18)

(A:]in— f, g—) _(f—’ Ar;in—g) = (
(19)

Hence
I ={C, I, ,I7 }, where

Lyt =(p. f)().I¥ f =, (0), f. dom(Any,,).
o f =(p_f')@) Iy f =—f_(a), f_ edom(A%;. ),
are the boundary triplets for A ;.. and A, _, respectively. By

p_f)@g_(a)-f_(a)(p_9)()

the triplets I ={C,1,,Iy'} and

the definition of the functions (-, A)and w_(,A) (see
Subsection 2.2), we obtain

N, (Aninz) = Ker(Agin, - 4) ={cy..(,4),c e C},
A€eC\R. (20

Denote by y"and y~ the y — field corresponding to the
boundary triplets T1" ={C,Ty ,I}'} and I1". By (11) and
(20), we get

7= (A)e = (g [N (Agins)) ¢ = Ker(Aqp, - 2) = ¢y (1 4)
,ceC,1eC\R. (21

Qiuxia Yang et al./ Elixir Appl. Math. 46 (2012) 8128-8134

Further, the self-adjoint extension Ar., | ker(Ty) of Ain.
coincides with the operator A2 . The Weyl function I\Zi() of
A ins corresponding to the boundary triplets IT* is defined
by

M. (1) =T77* (). 4 € p(AD).
Combining (21) with (10) and (11), one obtains

M, (1)c=cM, (1), ceC,2eC\R. Note that, M () is
a holomorphic continuation of M () to the domain p(A?).
In the sequel we will write M, instead of I\zi OF

2 Let us consider the regular indefinite Strum-Liouville operator
Sap. S, is adensely defined closed symmetric operator in the

: 2 . .. * .

Krein space L, ((a,b)) and has defect two, its adjoint Sy, is
given by

1 ! !’
Sab(fab) = r_(_( Pab 1:ab) + Qap fab)’
ab

dom(S},) = D&

max”

For f,g e dom(S;,).we have
f(@)(Pa9)(@) + (Pas f ')(a)@]
f ()P0 )~ (P f )(b)g (b)

Hence TT% ={C? T'® ,T}}is a boundary triplet for S,
where

~(Pab fap)(@) fp ()
abf — 1 abfa — .
to o [(pabf;b)(b)Jrl : (fab(b)j

Let @,,p, € Lib ((a,b)) be the fundamental solutions of

(S;bf'g)_(f’sgbg):(

—(pxpN) +a,h=Ar,h, 1€C, satisfying the initial
conditions
¢;(a) =1, (P )(a) = Oandy, (@) =0,

(Pap})(@) =1.
Since

N (Sap) = Ker(Sa, - 1) =spfp; v, . A €C\R.

Denote by }/ab the y — field corresponding to the boundary
triplets . By (22), we
7P (A)e =" IN;(Sa)) e =5p(; ;). Furthermore
X =@, ()(Pap¥ ;) (X) = (P2 )Xy, (X) =1,
we find that the Weyl function M, (see [12]) is given by

1 ((pab'//k)(b) 1 j 1ecC\R.
(Pap;)(b) 1 ?,(b)
3. The operator S = A, @Sy @ Ay, is a closed
densely defined symmetric operator of defect 4 in the Krein

space Lf_ ((—,a)) ® Lim(a,b)@Lf+ (b,+o0) and it is

(22)

get

Map (l) =

straightforward to check that {C4 Iy, 1}, where
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g f I f
Fof = 1—‘0+ f+ ’Flf == F1+ f+ ’ (23)
F(? ° fab 1—‘lab fab

{f_, f,, fp}e(dom(A’ )@dom(A]) ®dom(S,,) is a

boundary triple for the adjoint operator A:m, DA DS .
Further, we put

Sy =S"|ker(ly) =A@ A’ ® A, (24)
where
Ava = Sap [{y € dom(S3,) : (Pap Vi )(@) = (Pap Y ) (0) = O}
;I'herefore, the operator
function y(-) 1 p(Sy) —[C*, N, (S)] defined by

C+
y(A)| C. |=Cupy +Cy_ +Cip; + Gy,

Cab
is the y—field corresponding to the boundary

tripletH={C4,F0,F1}. Moreover, the operator Weyl
function (see [12]) has the following form:

M_(1) 0 0 0
0 M+(l) 0 0
(Pa)®) 1
M) = 0 0
@ (P?)®) (P 0)
. 1 7, (0)
(P )®)  (Puer))
A€ p(Sy).

Theorem 6. Let A be the operator associated with equation (3)
and let the operator So be defined by (24).Then

a(A) N p(Sy) ={1 € p(Sy) : A =0}, where
A=(puy ) (O)M, (A) =@, 0)M_(2) = (P2 )O)M_(A)M. (1) +y, (b)

Proof Let us rewrite 8) as follows
dom(A) ={f edom(S*):CI;f + DI, f =0}, where
1 010 0 00 O
- 0 1 01 B 0 00 O
o000 1010
0 00O 010 -1
By Theorem 4, A€ p(A)np(Sy) if and only if
0e€ p(D+CM(A)). Since
(paby/%)(b) M) 1/
det(D +CM (ﬁ)) — (pab(pi)(b) (pab¢/l)(b) — A
1 9, (0) +M,(2) (Pa;)(b)
(Par)(0) (Pa0i)0) 7

We see that 4 € p(A) N p(Sy) exactly when A = 0.

Theorem 7. Let S be a symmetric operator defined by (8) and
let M, (-) be defined by (10). Then

(i) T1 ={C*, T, T} } defined by

~ ~ f_(a)
| I dom(S*) - C4,~ —f,(b)
R ORI
(Pap fan) (D)
(p_f")(a)
Fpo| o100
fab (a)
fab (b)

forms a boundary triplet for the operator S *
(ii) The corresponding Weyl function is

-Mt) o 0 0
0 M (4) 0 0
M (l) — 0 0 (pab!//ri)(b) l, 7
(Pas®3)(b)  (Pap;)(b)
(Pas®3)(0)  (Pap; )(b)

A€ p(Sy).
(iii) The operator A = JL is a self-adjoint extension of S and it
is determined by.

A:=S" | dom(A),dom(A) = ker(I',-BT", ) ,where

1 01 O
0 00 -1
B= .
-1 00 O
0 10 O
0

(iv) If o(Ap) <R, then 1€ p(A)NC, if and only if
A#0.

(v) The sets o, (A) M C,. are at most countable with possible
belonging to R wW{oo}. Moreover, if
O'(Agb) c R, then Aec(A)NC, ifandonlyif A=0.
(vi) The spectrum o (A) is symmetric with respect to the real
line, thatis Ay € oy (A) < /1_0 eo,(A).

Proof (i)-(iii) These statements are obvious.
(iv) By Theorem 3, Aep(A) if and only

if0 e p(B—M (1)), thatis

limit  points

M) 0 -1 0
0 -M'(2) 0 1
det(B-M(A):=det| 1 R L [
(Pa?7)0)  (Pae’ )(b)
0 4 1 ~_g,(b)
(Pa?7)0)  (Pa ) (b)

:/IEP(go)-
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(v) By Theorem 5, o(A) N C, coincides with the set of zeros
of the determinant det(B — M(Z)) Due to Proof of (iv), so
Aeoa(A)NC, ifandonlyif A=0.

(vi) Note that A(4y) =0 yields A(4,) = A(4q) = 0 .Similar
implication is valid for jth derivative. This completes the proof.
Similarity conditions

Let S be a symmetric operator in a Krein space K with finite
deficiency indices (n,n), ne N. Let T be a quasi-self-

adjoint extension of S. Then there exists a boundary triplet
{H,T,, I } for T, such thatdom(T) = ker(T; - BI},)
with some B €[H], thatis T =Sg. Let M(-) be the Weyl
function associated with the boundary triplet {H, Ty, T}

Theorem 8. ([14]) Let TT={H,T,,I;} be a boundary triplet

for S*, M (-) the corresponding Weyl function, B € [H] and

E an auxiliary Hilbert space. Then for any
_B* .

faracterization B, .= ———=KJK" of B, withPe[E H]

and J=3"=J"€[E], the characteristic

function 6(4) = 0, (1) of the

extension Ag ,dom(Sg) = ker(I’; — BI,), admits the
0 (A)=1+2iK*(B* =M (1)) *KJ .
ker(B—B*) =0, then
6 () =(B-M())(B" ~M ()™

Theorem 9. ([4]) Let T be a quasi-selfadjoint extension of S
and the spectrum o (T) is real. If T is a self-adjoint operator

sup || € (A)]| <oo, then T is
AeC.uC_

representation

Obviously, if

in Krein space K and

if T is
completely non-selfadjoint, then T, has purely absolutely

continuous spectrum.
By Theorem 8 and simple calculation, we can obtain the
following theorem:

Theorem 10. Let S be a symmetric operator defined by (8) and
A= JL. Suppose that conditions of Theorem 7 are satisfied and

similar to a self-adjoint operator To- Moreover,

0 01 0
0 00 -1
B= 100 . Then
0 10
0 0 -1 O
(i) B, = 0 0 0 =J and the characteristic
i 0 0 O
0Oi 0 O

function @, (-) of the operator A admits the following
representation:

Qiuxia Yang et al./ Elixir Appl. Math. 46 (2012) 8128-8134

kM. M, k1
2 M_ koM, 1 k, |, (25)

A[M_(A+kM)  MM_ kM. M.
MM M, (A+kM,) M, kM,
ki =M (Pap;)(b)+ ¢, (b)),
ky = M_(pap )(b) -y (b).
(iii) The determinant detd, (1) defined originally on p(A"),
admits holomorphic continuation to the complex plane C and

detd, (1) =1, 1eC\R.

Combining Theorem 9 with formula (25) we conclude that the

condition:

Theorem 11 The following condition

max{ sup — sup| kil sup| k. | ,Sup | M, [}<oo (26)
seC, A sec, A e, ieC,

is sufficient for the operator A to be similar to a self-adjoint

operator with absolutely continuous spectrum.

5. An example

The main object of this subsection is the following operator

(AY)(X) = ~——————(-Y") . dom(A) = Lj,(R).. @7
sgn(x —sgn X)

Lemma 1. The differential equation

0,(A)=1+

where

—y"(X) = Asgn(x—sgn X)y(x) , x >1 (28)
is in the limit point case at + 00, Moreover the function
m(4) = arctan AgR,

\/_ \/_ \/_

is the Weyl-Titchmarsh m-coefficient for (28).
By Lemma 1, we obviously obtain

1

M, (1) = \/_ \/_arctan \/_
M_(A)= \/1_ 72[\/_arctan\/_ A1eC\R.

Let ¢,,, € ’((-11)) be the fundamental solutions of
—y"(X) =Asgn(x—sgn X)y(x), —1l<x <1, satisfying the
initial conditions
0, (D=1, ¢}, (- =0and y,(-) =0, y} (-1 =1,
then

e\/j(xﬂ) +e—\/j(x+1)

5 —1<x<0,
P (x) = e\/7(><+1) + e—ﬂ(x+l) '
0<x<1
2
EQ(HI) _ e—ﬁ(xﬂ)
> —1<x<0,
l/lﬂ (X) - eﬁ(xﬂ) _ ef\/Z(xu)
> 0<x<1

Theorem 12. Let A be the operator of the form (27). Then
(i) A has areal spectrum, o(A) c R;

(i) A is similar to a self-adjoint operator.
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Proof (i) By Lemma 1, differential expression (27) is in the limit
point case at both + oo and — co. Hence the operator A is self-

adjoint in Krein space L?(R). Evidently, the operator L is

nonnegative. It follows from Theorem 3 that the spectrum of A
isreal, o(A) cR.
To prove (ii) we use Theorem 11. It suffices to prove that

ifsup || @,(A) |l< oo, then A is similar to a self-adjoint
AeC,

operator.

Let A=ig, €>0.If £ <+00,ie., ¢ isbounded. After the

appropriate calculations, we can obtain the relation (26).

If & —>+00, i.e, & is unbounded. Simple calculation show

that
1 1
M, (i) =0(e 2) M _(ig) =O(e ?),A=0(e"%),
K, k
“L=0(1),-2=0().
A @ A @
So lim M, (ig) =0, lim %: 0. The relation (26) holds.
By Theorem 11, we get that A is similar to a self-adjoint
operator.
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