Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 46 (2012) 8128-8134

Similarity of a Singular Sturm-Liouville Operator with Indefinite Weight

Qiuxia Yang¹ and Wanyi Wang²

¹Department of Computer Science and Technology, Dezhou University, Dezhou 253023, P.R.China. ²Mathematics Science College, Inner Mongolia University, Huhhot 010021, P.R.China.

ABSTRACT

ARTICLE INFO

Article history: Received: 27 February 2012; Received in revised form: 15 April 2012; Accepted: 28 April 2012;

Accepted. 20

Keywords Sturm-Liouville operator, Indefinite weight, Similarity,

Weyl function.

Introduction

Consider the singular Sturm-Liouville expression

$$a(y) \coloneqq \frac{1}{r(x)} ((-py')' + qy), \tag{1}$$

where the weight function r changes its sign. We assume that (1) is in the limit point case at both $-\infty$ and $+\infty$ and that the functions p,q,r are real, $r \neq 0$ a.e., $x \in \mathbb{R}$. Then the maximal operator A associated to (1) is self-adjoint in the Krein space $L_r^2(\mathbb{R})$, where the indefinite inner product is defined by

 $[f,g] \coloneqq \int_{\mathbb{R}} f(x)\overline{g(x)}r(x)dx, f,g \in L^2_r(\mathbb{R}).$

Two closed operators T_1 and T_2 in a Hilbert space H are called similar if there exist a bounded operator S with the bounded inverse S^{-1} in H such that $Sdom(T_1) = dom(T_2)$ and $T_2 = ST_1S^{-1}$.

In general, if the operator (1) is in the limit circle case at both $-\infty$ and $+\infty$, we can consider its Riesz basis property. Here the operator (1) considered on $L_r^2(\mathbf{R})$ has continuous spectrum. In the case, one considers the property of similarity either to a normal or to a self-adjoint operator.

Using the Krein-Langer technique of definitizable operators in Krein spaces, Curgus and Langer [1] have obtained the first result in the direction. In particular, their result yields that the J-selfadjoint operator with r(x) = sgn x is similar to a self-adjoint if *L* is a uniformly positive operator. Next Curgus and Najman [2] showed that the operator $(\text{sgn } x) \frac{d^2}{dx^2}$ is similar to a self-adjoint one. In the paper [3], similarity of $\text{sgn } x(-\frac{d^2}{dx^2} + c\delta)$ type operators to normal and self-adjoint

We consider a singular Sturm-Liouville differential expression with an indefinite weigh and present a sufficient condition for similarity of indefinite Sturm-Liouville operators to self-adjoint operators. Using this result, we construct a example of operator and prove that it is similar to a self-adjoint one.

© 2012 Elixir All rights reserved.

operators were described. In [4-6] several necessary similarity conditions in terms of Weyl functions were obtained. Based on the concept of boundary triplet and the resolvent similarity criterion, references [7-8] investigate the main spectral properties of quasi-self-adjoint extensions of corresponding operator.

Here we are interested in more general indefinite differential expression of the form (1) and our main goal is to show that a sufficient condition for the operator A to be similar to a self adjoint operator in Hilbert space. Using this result, we construct a example of operator and prove that this operator is similar to a self-adjoint one.

Throughout the article(2) we use the following notations: Let T be a linear operator in a Hilbert space $(H, (\bullet, \bullet))$. In what follows dom(T), ker(T), ran(T) are the domain, kernel, range of T, respectively. We denote by $\rho(T), \sigma(T)$ and $\sigma_p(T)$ the resolvent set, the spectrum and the point spectrum of $T \cdot R_T(\lambda) := (T - \lambda I)^{-1}, \ \lambda \in \rho(T)$ is the resolvent of T. We set $C_{\pm} := \{\lambda \in \mathbb{C} : \pm \mathrm{Im}\lambda > 0\}$. Preliminaries.

Indefinite Sturm-Liouville Operators in $L_r^2(\mathbf{R})$ Consider the differential expression

$$a(y) \coloneqq \frac{1}{r(x)}((-py')' + qy)$$

where p^{-1}, q , $r \in L^{1}_{loc}(\mathbb{R})$ are assumed to be real valued functions such that p > 0 and $r \neq 0$ for a.e., $x \in \mathbb{R}$. Here we assume that the following condition holds:

There exist $a, b \in \mathbb{R}$, a < b, such that the restrictions $r_+ := r | (b, +\infty)$ and $r_- := r | (-\infty, a)$

© 2012 Elixir All rights reserved

satisfy $r_+(x) > 0$ for a.e., $x \in (b, +\infty)$ and $r_-(x) < 0$ for a.e., $x \in (-\infty, a)$.

By $L_r^2(\mathbf{R})$ we denote the Krein space of all equivalence of measurable functions f defined on \mathbf{R} for $\int_{-\infty}^{+\infty} |f(x)|^2 |r(x)| dx < +\infty$ which the indefinite and definite inner products on $L_r^2(\mathbf{R})$ are

$$[f,g] \coloneqq \int_{-\infty}^{+\infty} f \overline{g} r dx$$
 and $(f,g) \coloneqq \int_{-\infty}^{+\infty} f \overline{g} | r | dx$.
Evidently, the operator J

 $(Jf)(x) = (\operatorname{sgn} r(x))f(x), x \in \mathbb{R}$

is the fundamental symmetry connecting the inner products in (4). By $L^2_{|r|}(\mathbf{R})$ we denote the Hilbert space $L^2_r(\mathbf{R}, (\bullet, \bullet))$.

(5)

Let us assume that the Sturm-Liouville differential expression

$$l(y) \coloneqq \frac{1}{|r|}((-py')' + qy),$$

is in the limit point case at both singular endpoints $-\infty$ and $+\infty$. Then it is well known that the operator Ly = l(y) defined on the usual maximal domain

$$D_{\max} = \{ y \in L^{2}_{|r|}(\mathbb{R}) : y, py' \in AC_{loc}(\mathbb{R}), ly \in L^{2}_{|r|}(\mathbb{R}) \}$$

is self-adjoint in the Hilbert space $L^2_{|r|}(\mathbf{R})$.

In the following we set

$$Ay := JLy = \frac{1}{r}((-py')' + qy), \operatorname{dom} A = \operatorname{dom} JL = D_{\max}.$$

The operator A is self-adjoint in the Krein space $L_r^2(\mathbf{R})$. We shall interpret the operator A as a finite rank perturbation in resolvent sense of the direct sum of three differential operators A_- , A_{ab} and A_+ defined in the sequel. We identify function $f \in L_r^2(\mathbf{R})$ with $f = f_- + f_{ab} + f_+$,

where
$$f_{-} \in L^{2}_{r_{-}}((-\infty, a))$$
, $f_{ab} \in L^{2}_{r_{ab}}((a, b))$ and

 $f_+ \in L^2_{r_+}((b,+\infty))$, respectively. Similarly we denote the restrictions of p and q onto the intervals $(-\infty, a)$ and $(b,+\infty)$ by p_- , p_+ and q_-, q_+ , respectively. Moreover we denote the restriction of r, p and q onto the interval (a,b) by r_{ab} , p_{ab} and q_{ab} . Besides the differential expression l in (6) we set

$$l_{-}(f_{-}) \coloneqq \frac{1}{r_{-}}((p_{-}f_{-}')' - q_{-}f_{-}),$$

$$l_{+}(f_{+}) \coloneqq \frac{1}{r_{+}}(-(p_{+}f_{+}')' + q_{+}f_{+}),$$
and

and

$$l_{ab}(f_{ab}) \coloneqq \frac{1}{|r_{ab}|} (-(p_{-}f_{-}')' + q_{ab}f_{ab})$$

respectively, and operators associated to them. Note that l_{-} and l_{+} are in the limit point case at $-\infty$ and $+\infty$ and regular at the

endpoints a and b, respectively, whereas l_{ab} is regular at both endpoints a and b. By $D_{\max}^{-}(D_{\max}^{+} \text{ and } D_{\max}^{ab})$ we denote the set in (7) if r, R and l are replaced by r_{-} , $(-\infty, a)$ and $l_{-}(\text{resp. } r_{+}, (b, +\infty), l_{+} \text{ and } r_{ab}, (a, b), l_{ab}$. Therefore the operators

$$A_{\min}(f_{-}) \coloneqq \frac{1}{r_{-}} (-(p_{-}f_{-}')' + q_{-}f_{-}),$$

$$A_{\min}(f_{+}) \coloneqq \frac{1}{r_{+}} (-(p_{+}f_{+}')' + q_{+}f_{+})$$

and

$$S_{ab}(f_{ab}) \coloneqq \frac{1}{r_{ab}} (-(p_{-}f_{-}')' + q_{ab}f_{ab}),$$

defined on

 $dom(A_{\min}) = \{ f_{-} \in D_{\max}^{-}; f_{-}(a) = (p_{-}f_{-}')(a) = 0 \},\$ $dom(A_{\min}) = \{ f_{+} \in D_{\max}^{+} : f_{+}(b) = (p_{+}f_{+}')(b) = 0 \}$ and

$$dom(S_{ab}) = \{f_{ab} \in D_{max}^{ab} : f_{ab}(a) = (p_{ab}f'_{ab})(a) = f_{ab}(b) = (p_{ab}f'_{ab})(b) = 0\}$$
With
$$D_{max}^{-} = \{f_{-} \in L^{2}_{|r_{-}|}((-\infty, a)) : f_{-}, p_{-}f'_{-} \in AC_{loc}((-\infty, a)), l(f_{-}) \in L^{2}_{|r_{-}|}((-\infty, a))\},$$

$$D_{max}^{+} = \{f_{+} \in L^{2}_{r_{+}}((b, +\infty)) : f_{+}, p_{+}f'_{+} \in AC_{loc}((b, +\infty)), l(f_{+}) \in L^{2}_{|r_{+}|}((b, +\infty))\}$$
and

$$\begin{split} D^{ab}_{\max} = & \{f_{ab} \in L^2_{|r_{ab}|}((a,b)) : f_{ab}, p_{ab}f'_{ab} \in AC_{loc}((a,b)), l(f_{ab}) \in L^2_{|r_{ab}|}((a,b))\} \\ \text{are closed symmetric operators in the anti-Hilbert space } L^2_{r_{-}}((-\infty, a)), \text{ Hilbert space } L^2_{r_{+}}((b, +\infty)) \text{ and Krein space } L^2_{r_{ab}}((a,b)), \text{ respectively. The adjoint operators } A^*_{\min-}, \\ A^*_{\min+} \text{ and } S^*_{ab} \text{ are the usual maximal operators defined on } D^-_{\max}, D^+_{\max} \text{ and } D^{ab}_{\max}, \text{ respectively.} \end{split}$$

 $\operatorname{dom}(S) = \operatorname{dom}(A_{\min}) \oplus \operatorname{dom}(S_{ab}) \oplus \operatorname{dom}(A_{\min}) \text{ and}$ let the operator S be defined on dom(S),

$$S = \begin{pmatrix} A_{\min} & 0 & 0 \\ 0 & S_{ab} & 0 \\ 0 & 0 & A_{\min} \end{pmatrix}$$

with respect to the decomposition

 $L_r^2(\mathbf{R}) = L_{r_-}^2((-\infty, a)) \oplus L_{r_{ab}}^2(a, b) \oplus L_{r_+}^2(b, +\infty).$ Then *S* is a closed symmetric operator in the krein space $L_r^2(\mathbf{R})$ with finite defect 4. Moreover, we have $S = A|_{\operatorname{dom}(S)}, A = S^*|_D$, where

$$D = \operatorname{dom}(A) = \{ f \in (\operatorname{dom}(A^*_{\min}) \oplus \operatorname{dom}(S^*_{ab}) \oplus \operatorname{dom}(A^*_{\min}) : f_{-}(a) = f_{ab}(a), (p_{-}f'_{-})(a) = (p_{ab}f'_{ab})(a), f_{+}(b) = f_{ab}(b), (p_{+}f'_{+})(b) = (p_{ab}f'_{ab})(b) \}$$
(9)

Theorem 1. ([15]) Let the operator L be nonnegative and A = JL be self-adjoint operator in the krein space $L_r^2(\mathbf{R})$

with the nonempty resolvent set $\rho(A) \neq \emptyset$. Then the spectrum of A is real, $\sigma(A) \subset \mathbb{R}$.

Theorem 2. If the operator L is semibounded from below, then $\rho(A) \neq \emptyset$. (see Theorem 4.5 in [16])

Theorem 3. If the operator L is nonnegative, then the spectrum of A is real, $\sigma(A) \subset \mathbb{R}$.

Proof Since $L \neq 0$, Theorem 2 implies that $\rho(A) \neq \emptyset$. Theorem 1 completes the proof.

2.2. Weyl-Titchmarsh m-coefficients

Let $c(x, \lambda)$ and $s(x, \lambda)$ denote the linearly independent solutions of equation (6) satisfying the following initial conditions at a

$$c(a,\lambda) = (ps')(a,\lambda) = 1, (pc')(a,\lambda) = s(a,\lambda) = 0.$$

Since equation (6) is limit point at $+\infty$, the Weyl-Titchmarsh theorem (see [9]) states that there exists a unique holomorphic function $m_+(\cdot) \in \mathbb{C} \setminus \mathbb{R} \to \mathbb{C}$, such that the function $s_+(x,\lambda) - m_+(\lambda)c_+(x,\lambda)$ belongs to $L^2_{r_+}((b,+\infty))$. Similarly, the limit point case at $-\infty$ yields the fact that there exists a unique holomorphic function $m_-(\cdot) \in \mathbb{C} \setminus \mathbb{R} \to \mathbb{C}$, such that $s_-(x,\lambda) - m_-(\lambda)c_-(x,\lambda)$ belongs to $L^2_{-r_-}((-\infty,a))$.

The functions m_+ and m_- are called the Weyl-Titchmarsh mcoefficients for (6) on $(b,+\infty)$ and on $(-\infty, a)$, respectively. We put

 $M_{\pm}(\lambda) := \pm m_{\pm}(\pm \lambda), \quad (10)$ $\psi_{+}(x,\lambda) = s_{+}(x,\lambda) - m_{+}(\lambda)c_{+}(x,\lambda),$ $\psi_{-}(x,\lambda) = s_{-}(x,\lambda) - m_{-}(\lambda)c_{-}(x,\lambda). \quad (11)$

By the definition of m_{\pm} , the functions $\psi_{+}(x,\lambda)$ and $\psi_{-}(x,\lambda)$ belong to $L^{2}_{r_{+}}((b,+\infty))$ and $L^{2}_{-r_{-}}((-\infty,a))$ for all $\lambda \in \mathbb{C} \setminus \mathbb{R}$, respectively. Besides, $\tau[\psi_{\pm}(x,\lambda)] = \lambda \psi_{\pm}(x,\lambda)$. The function $M_{+}(\cdot)(M_{-}(\cdot))$ is said to be the Weyl-Titchmarsh mcoefficient for equation (3) on $(b,+\infty)$ (on $(-\infty,a)$).

Definition 1. The class (R) consists of all holomorphic functions $G: \mathbb{C}_+ \cup \mathbb{C}_- \to \mathbb{C}$ such that $G(\overline{\lambda}) = \overline{G(\lambda)}$, and $\operatorname{Im} \lambda \cdot \operatorname{Im} G(\lambda) \ge 0$ for $\lambda \in \mathbb{C}_+ \cup \mathbb{C}_-$ (see [10]). It is well known that

$$\int_{b}^{+\infty} |\psi_{+}(x,\lambda)|^{2} r(x) dx = \frac{\operatorname{Im} M_{+}(\lambda)}{\operatorname{Im} \lambda},$$
$$\int_{-\infty}^{a} |\psi_{-}(x,\lambda)|^{2} |r(x)| dx = \frac{\operatorname{Im} M_{-}(\lambda)}{\operatorname{Im} \lambda} \quad (12)$$

for all $\lambda \in \mathbb{C} \setminus \mathbb{R}$ (see [9]). These formulae imply that the functions M_+ and M_- (as well as m_+ and m_- belong to the class (R). Moreover (see [11]) the functions M_+ and M_- admit the following integral representation

$$M_{\pm}(\lambda) = \int_{-\infty}^{+\infty} \frac{d\tau_{\pm}(s)}{s - \lambda}, \lambda \in \mathbb{C} \setminus \mathbb{R}.$$
 (13)

Here $\tau_{\pm}: \mathbb{R} \to \mathbb{R}$ are nondecreasing functions on \mathbb{R} with the following properties:

$$\int_{-\infty}^{+\infty} \frac{d\tau_{\pm}(s)}{1+|s|} < +\infty, \tau_{+}(b) = \tau_{-}(a) = 0,$$

$$\tau_{\pm}(s) = \tau_{\pm}(s-0).$$

Notice that the functions τ_+ and τ_- are uniquely determined by the Stieltjes inversion formulae

$$\lim_{\varepsilon \downarrow 0} \frac{1}{\pi} \int_{b}^{s} \operatorname{Im} M_{+}(t+i\varepsilon) dt = \frac{\tau_{+}(s+0) + \tau_{+}(s-0)}{2},$$
$$\lim_{\varepsilon \downarrow 0} \frac{1}{\pi} \int_{a}^{s} \operatorname{Im} M_{-}(t+i\varepsilon) dt = \frac{\tau_{-}(s+0) + \tau_{-}(s-0)}{2}.$$

The functions functions τ_+ and τ_- are called spectral functions of the operators

$$A_{0-} := A_{\min}^* | \{ y \in \operatorname{dom}(A_{\min}^*) : (p_-y'_-)(a) = 0 \}$$
(14)
and

$$A_{0+} \coloneqq A_{\min+}^* \mid \{ y \in \operatorname{dom}(A_{\min+}^*) \colon (p_+ y_+')(b) = 0 \}, \quad (15)$$

Boundary Triplets and Abstract Weyl Functions

Let K be a Krein space and let H be a separable Hilbert space. Let S be a closed symmetric operator in K with equal and finite deficiency indices $n_+(s) = n_-(s) < \infty$.

Recall the concepts of boundary triplets and abstract Weyl functions (see [12, 13]).

Definition 2. A triplet $\Pi = \{H, \Gamma_0, \Gamma_1\}$ is called a boundary triplet for S^* if the following two conditions:

(i)

$$\begin{split} (S^*f,g)_K - (f,S^*g)_K &= (\Gamma_1 f,\Gamma_0 g)_H - (\Gamma_0 f,\Gamma_1 g)_H, \\ f,g &\in \operatorname{dom}(S^*); \end{split}$$

(ii) the linear

Mapping $\Gamma = \{\Gamma_0 f, \Gamma_1 f\}$: dom $(S^*) \to H \oplus H$ is surjective.

The mappings Γ_0 and Γ_1 naturally induce two extensions S_0 and S_1 of S given by

$$S_{i} := S^{*} | \operatorname{dom}(S_{i}), \operatorname{dom}(S_{i}) = \operatorname{Ker}\Gamma_{i}, (j = 0, 1).$$

The γ -field of the operator S corresponding to the boundary triplet Π is the operator function $\gamma(\cdot) : \rho(S_0) \rightarrow [H, N_{\lambda}(S)]^{-1}$ defined

by
$$\gamma(\lambda) \coloneqq (\Gamma_0 \mid N_{\lambda}(S))^{-1}$$
, where $N_{\lambda}(S) \coloneqq \operatorname{Ker}(S^* - \lambda I)$.
The function γ is well-defined and holomorphic on $\rho(S_0)$.

Definition 3. Let $\Pi = \{H, \Gamma_0, \Gamma_1\}$ be a boundary triplet for the operator S^* . The operator valued function $M(\cdot): \rho(S_0) \rightarrow [H]$ defined by $M(\lambda) \coloneqq \Gamma_1 \gamma(\lambda), \lambda \in \rho(S_0)$ is called the Weyl function of *S* corresponding to the boundary triplet Π .

Let $C, D \in [H]$. Considering the following extension \widetilde{S} of $S, S \subset \widetilde{S}$,

$$\widetilde{S} = S_{C,D} := S^* | \operatorname{dom}(S_{C,D}),$$

$$\operatorname{dom}(S_{C,D}) = \{ f \in \operatorname{dom}(S^*) : C\Gamma_1 f + D\Gamma_0 f = 0 \}.$$
(16)
Notice that each proper extension \widetilde{S} of S has the form (16),
i.e., if $S \subset \widetilde{S} \subset S^*$, then there exist $C, D \in [H]$ such that

$$\widetilde{S} = S_{C,D}.$$

Theorem 4. Suppose $\Pi = \{H, \Gamma_0, \Gamma_1\}$ is a boundary triplet for S^* , $M(\cdot)$ is the corresponding Weyl function, and $\tilde{S} = S_{C,D}$, where $S_{C,D}$ is defined by (16). Assume also that $C, D, (CC^* + DD^*)^{-1} \in [H]$. Then $\lambda \in \rho(S_0) \cap \rho(\tilde{S})$ if and only if $0 \in \rho(D + CM(\lambda))$.

In particular, if *C* is invertible, let $B = C^{-1}D \in [H]$, then $\widetilde{S} = S_B := S^* \mid \text{dom}(S_B)$,

$$\operatorname{dom}(S_B) = \{ f \in \operatorname{dom}(S^*) : \Gamma_1 f - B\Gamma_0 f = 0 \}.$$
(17)

Theorem 5. Suppose $\Pi = \{H, \Gamma_0, \Gamma_1\}$ is a boundary triplet for S^* , $M(\cdot)$ is the corresponding Weyl function and S_B is defined by (17). Assume also that $B \in [H]$. Then $\lambda \in \rho(S_0) \cap \rho(S_B)$ if and only if $0 \in \rho(B - M(\lambda))$.

3. Boundary Triplets for Sturm-Liouville Operator. A

1. Let $A_{\min+}$ and $A_{\min-}$ be the operators defined in Subsection 2.1. Since equation (1) is in the limit point case at $-\infty$ and $+\infty$, then the deficiency indices of the symmetric operator are

(1,1) and for all $f_{\pm}, g_{\pm} \in \text{dom}(A_{\min\pm}^*)$ we have $(A_{\min+}^*f_+, g_+) - (f_+, A_{\min+}^*g) = (p_+f_+')(b)\overline{g_+(b)} - f_+(b)(\overline{p_+g'})(b)$ (18)

$$(A_{\min}^* f_-, g_-) - (f_-, A_{\min}^* g) = (p_- f_-')(a)\overline{g_-(a)} - f_-(a)\overline{(p_- g')(a)}$$
(19)

Hence the triplets $\Pi^+ = \{C, \Gamma_0^+, \Gamma_1^+\}$

 $\Pi^{-} = \{C, \Gamma_{0}^{-}, \Gamma_{1}^{-}\}, \text{ where }$

$$\begin{split} & \Gamma_0^+ f_{+} = (p_+ f_+')(b), \Gamma_1^+ f_{+} = -f_+(b), f_+ \in \operatorname{dom}(A_{\min+}^*), \\ & \Gamma_0^- f_{-} = (p_- f_-')(a), \Gamma_1^- f_{-} = -f_-(a), f_- \in \operatorname{dom}(A_{\min-}^*), \end{split}$$

are the boundary triplets for $A_{\min+}^*$ and $A_{\min-}^*$, respectively. By the definition of the functions $\psi_+(\cdot, \lambda)$ and $\psi_-(\cdot, \lambda)$ (see Subsection 2.2), we obtain

$$N_{\lambda}(A_{\min\pm}) = \operatorname{Ker}(A_{\min\pm}^{*} - \lambda) = \{c\psi_{\pm}(\cdot, \lambda), c \in C\},\$$

$$\lambda \in C \setminus \mathbb{R}.$$
(20)

Denote by γ^+ and γ^- the γ – *field* corresponding to the boundary triplets $\Pi^+ = \{\mathbf{C}, \Gamma_0^+, \Gamma_1^+\}$ and Π^- . By (11) and (20), we get

 $\gamma^{\pm}(\lambda)c = (\Gamma_0^{\pm} | N_{\lambda}(A_{\min\pm}))^{-1}c = \operatorname{Ker}(A_{\min\pm}^* - \lambda) = c \cdot \psi_{\pm}(\cdot, \lambda)$, $c \in \mathbb{C}, \lambda \in \mathbb{C} \setminus \mathbb{R}.$ (21) Further, the self-adjoint extension $A_{\min\pm}^* | \ker(\Gamma_0^{\pm}) \text{ of } A_{\min\pm}$ coincides with the operator A_{\pm}^0 . The Weyl function $\tilde{M}_{\pm}(\cdot)$ of $A_{\min\pm}$ corresponding to the boundary triplets Π^{\pm} is defined by

 $\widetilde{M}_{\pm}(\lambda) \coloneqq \Gamma_1^{\pm} \gamma^{\pm}(\lambda), \lambda \in \rho(A_{\pm}^0).$

Combining (21) with (10) and (11), one obtains $\widetilde{M}_{\pm}(\lambda)c = cM_{\pm}(\lambda), c \in \mathbb{C}, \lambda \in \mathbb{C} \setminus \mathbb{R}$. Note that, $\widetilde{M}_{\pm}(\cdot)$ is a holomorphic continuation of $M_{\pm}(\cdot)$ to the domain $\rho(A_{\pm}^{0})$. In the sequel we will write M_{\pm} instead of $\widetilde{M}_{\pm}(\cdot)$.

2 Let us consider the regular indefinite Strum-Liouville operator S_{ab} , S_{ab} is a densely defined closed symmetric operator in the Krein space $L^2_{r_{ab}}((a,b))$ and has defect two, its adjoint S^*_{ab} is given by

$$S_{ab}(f_{ab}) \coloneqq \frac{1}{r_{ab}} (-(p_{ab}f'_{ab})' + q_{ab}f_{ab}),$$

dom $(S_{ab}^*) = D_{max}^{ab}$. For $f,g \in \text{dom}(S_{ab}^*)$, we have

$$(S_{ab}^*f,g) - (f,S_{ab}^*g) = \begin{pmatrix} f(a)\overline{(p_{ab}g')(a)} + (p_{ab}f')(a)\overline{g(a)} \\ f(b)\overline{(p_{ab}g'(b))} - (p_{ab}f')(b)\overline{g(b)} \end{pmatrix}$$

Hence $\Pi^{ab} = \{ C^2, \Gamma_0^{ab}, \Gamma_1^{ab} \}$ is a boundary triplet for S^*_{ab} , where

$$\Gamma_{0}^{ab} f_{ab} = \begin{pmatrix} -(p_{ab} f'_{ab})(a) \\ (p_{ab} f'_{ab})(b) \end{pmatrix}, \Gamma_{1}^{ab} f_{ab} = \begin{pmatrix} f_{ab}(a) \\ f_{ab}(b) \end{pmatrix}$$

Let $\varphi_{\lambda}, \psi_{\lambda} \in L^{2}_{r_{ab}}((a,b))$ be the fundamental solutions of $-(p_{ab}h')' + q_{ab}h = \lambda r_{ab}h$, $\lambda \in \mathbb{C}$, satisfying the initial conditions

$$(\varphi_{\lambda}(a) = 1, (\varphi_{ab}\varphi_{\lambda})(a) = 0 \text{ and } \varphi_{\lambda}(a) = 0,$$

 $(p_{ab}\varphi_{\lambda}')(a) = 1.$

Since

and

 $N_{\lambda}(S_{ab}) = \operatorname{Ker}(S_{ab} - \lambda) = \operatorname{sp} \{\varphi_{\lambda}, \psi_{\lambda}\}, \lambda \in \mathbb{C} \setminus \mathbb{R}.$ (22) Denote by γ^{ab} the $\gamma - field$ corresponding to the boundary triplets Π^{ab} . By (22), we get $\gamma^{ab}(\lambda)c = (\Gamma_0^{ab} | N_{\lambda}(S_{ab}))^{-1}c = \operatorname{sp}(\varphi_{\lambda}, \psi_{\lambda}).$ Furthermore $x \to \varphi_{\lambda}(x)(p_{ab}\psi_{\lambda}')(x) - (p_{ab}\varphi_{\lambda}')(x)\psi_{\lambda}(x) = 1,$

we find that the Weyl function m_{ab} (see [12]) is given by

$$m_{ab}(\lambda) = \frac{1}{(p_{ab}\varphi'_{\lambda})(b)} \begin{pmatrix} (p_{ab}\psi'_{\lambda})(b) & 1\\ 1 & \varphi_{\lambda}(b) \end{pmatrix}, \ \lambda \in \mathbb{C} \setminus \mathbb{R}.$$

3. The operator $S = A_{\min} \oplus S_{ab} \oplus A_{\min+}$ is a closed densely defined symmetric operator of defect 4 in the Krein space $L^2_{r_-}((-\infty, a)) \oplus L^2_{r_{ab}}(a, b) \oplus L^2_{r_+}(b, +\infty)$ and it is straightforward to check that $\{C^4, \Gamma_0, \Gamma_1\}$, where

$$\Gamma_{0}f = \begin{pmatrix} \Gamma_{0}^{-}f_{-} \\ \Gamma_{0}^{+}f_{+} \\ \Gamma_{0}^{ab}f_{ab} \end{pmatrix}, \Gamma_{1}f = \begin{pmatrix} \Gamma_{1}^{-}f_{-} \\ \Gamma_{1}^{+}f_{+} \\ \Gamma_{1}^{ab}f_{ab} \end{pmatrix},$$
(23)

 $\{f_-, f_+, f_{ab}\} \in (\operatorname{dom}(A^*_+) \oplus \operatorname{dom}(A^*_+) \oplus \operatorname{dom}(S^*_{ab})$ is a boundary triple for the adjoint operator $A^*_{_{\min}-} \oplus A^*_+ \oplus S^*_{ab}$.

Further, we put

$$S_0 := S^* | \ker(\Gamma_0) = A_-^0 \oplus A_+^0 \oplus A_{ab}^0, \qquad (24)$$

where

$$A_{0ab} := S_{ab}^* | \{ y \in \operatorname{dom}(S_{ab}^*) : (p_{ab} y_{ab}')(a) = (p_{ab} y_{ab}')(b) = 0 \}$$

the

Therefore,

operator

function $\gamma(\cdot): \rho(S_0) \to [C^4, N_\lambda(S)]$ defined by

$$\gamma(\lambda) \begin{pmatrix} c_+ \\ c_- \\ c_{ab} \end{pmatrix} = c_+ \psi_+ + c_- \psi_- + c_1 \varphi_\lambda + c_2 \psi_\lambda$$

 γ – *field* corresponding is the to the boundary triplet $\Pi = \{C^4, \Gamma_0, \Gamma_1\}$. Moreover, the operator Weyl function (see [12]) has the following form:

$$M(\lambda) := \begin{pmatrix} M_{-}(\lambda) & 0 & 0 & 0 \\ 0 & M_{+}(\lambda) & 0 & 0 \\ 0 & 0 & \frac{(p_{ab}\psi_{\lambda}')(b)}{(p_{ab}\varphi_{\lambda}')(b)} & \frac{1}{(p_{ab}\varphi_{\lambda}')(b)} \\ 0 & 0 & \frac{1}{(p_{ab}\varphi_{\lambda}')(b)} & \frac{\varphi_{\lambda}(b)}{(p_{ab}\varphi_{\lambda}')(b)} \end{pmatrix},$$

 $\lambda \in \rho(\mathfrak{Z}_0).$

Theorem 6. Let A be the operator associated with equation (3) and let the operator S_0 be defined by (24). Then $\sigma(A) \cap \rho(S_0) = \{\lambda \in \rho(S_0) : \Delta = 0\}, \text{ where }$

 $\Delta = (p_{ab}\psi'_{\lambda})(b)M_{+}(\lambda) - \varphi_{\lambda}(b)M_{-}(\lambda) - (p_{ab}\varphi'_{\lambda})(b)M_{-}(\lambda)M_{+}(\lambda) + \psi_{\lambda}(b)$ rewrite (8) as Proof Let us follows $\operatorname{dom}(A) = \{f \in \operatorname{dom}(S^*) : C\Gamma_1 f + D\Gamma_0 f = 0\}, \text{ where }$

$$C = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, D = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}.$$

By Theorem 4, $\lambda \in \rho(A) \cap \rho(S_0)$ if and only if $0 \in \rho(D + CM(\lambda))$. Since

$$\det(D + CM(\lambda)) = \begin{vmatrix} \frac{(p_{ab}\psi'_{\lambda})(b)}{(p_{ab}\phi'_{\lambda})(b)} - M_{-}(\lambda) & \frac{1}{(p_{ab}\phi'_{\lambda})(b)} \\ \frac{1}{(p_{ab}\phi'_{\lambda})(b)} & \frac{\phi_{\lambda}(b)}{(p_{ab}\phi'_{\lambda})(b)} + M_{+}(\lambda) \end{vmatrix} = \frac{\Delta}{(p_{ab}\phi'_{\lambda})(b)}$$

We see that $\lambda \in \rho(A) \cap \rho(S_0)$ exactly when $\Delta \neq 0$.

Theorem 7. Let S be a symmetric operator defined by (8) and let $M_+(\cdot)$ be defined by (10). Then

(i) $\Pi = \{C^4, \Gamma_0, \Gamma_1\}$ defined by

$$\begin{split} \widetilde{\Gamma}_{0}, \widetilde{\Gamma}_{1} : \operatorname{dom}(\mathbf{S}^{*}) &\to \mathbf{C}^{4}, \\ \widetilde{\Gamma}_{0}f := \begin{pmatrix} f_{-}(a) \\ -f_{+}(b) \\ -(p_{ab}f'_{ab})(a) \\ (p_{ab}f'_{ab})(b) \end{pmatrix}, \\ \widetilde{\Gamma}_{1}f := \begin{pmatrix} (p_{-}f'_{-})(a) \\ (p_{+}f'_{+})(b) \\ f_{ab}(a) \\ f_{ab}(b) \end{pmatrix} \end{split}$$

forms a boundary triplet for the operator S^* . (ii) The corresponding Weyl function is

$$\widetilde{M}(\lambda) \coloneqq \begin{pmatrix} -M_{-}^{-1}(\lambda) & 0 & 0 & 0 \\ 0 & M_{+}^{-1}(\lambda) & 0 & 0 \\ 0 & 0 & \frac{(p_{ab}\psi_{\lambda}')(b)}{(p_{ab}\varphi_{\lambda}')(b)} & \frac{1}{(p_{ab}\varphi_{\lambda}')(b)} \\ 0 & 0 & \frac{1}{(p_{ab}\varphi_{\lambda}')(b)} & \frac{\varphi_{\lambda}(b)}{(p_{ab}\varphi_{\lambda}')(b)} \end{pmatrix},$$

 $\lambda \in \rho(S_0)$.

(iii) The operator A = JL is a self-adjoint extension of S and it is determined by.

$$A := S^* \mid \operatorname{dom}(A), \operatorname{dom}(A) = \operatorname{ker}(\Gamma_1 - B\Gamma_0), \text{where}$$
$$B = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

(iv) If $\sigma(A^0_{ab}) \subset \mathbb{R}$, then $\lambda \in
ho(A) \cap \mathbb{C}_{\pm}$ if and only if $\Delta \neq 0$.

(v) The sets $\sigma_p(A) \cap C_{\pm}$ are at most countable with possible limit points belonging to $R \cup \{\infty\}$. Moreover, if $\sigma(A_{ab}^0) \subset \mathbb{R}$, then $\lambda \in \sigma(A) \cap \mathbb{C}_+$ if and only if $\Delta = 0$. (vi) The spectrum $\sigma(A)$ is symmetric with respect to the real

line, that is $\lambda_0 \in \sigma_p(A) \Leftrightarrow \lambda_0 \in \sigma_p(A)$.

Proof (i)-(iii) These statements are obvious.

(iv) By Theorem 3, $\lambda \in \rho(A)$ if and only if $0 \in \rho(B - M(\lambda))$, that is

$$\det(B - \tilde{M}(\lambda)) := \det \begin{pmatrix} M_{-}^{-1}(\lambda) & 0 & -1 & 0\\ 0 & -M_{+}^{-1}(\lambda) & 0 & 1\\ 1 & 0 & -\frac{(p_{ab}\psi'_{\lambda})(b)}{(p_{ab}\phi'_{\lambda})(b)} & -\frac{1}{(p_{ab}\phi'_{\lambda})(b)}\\ 0 & -1 & -\frac{1}{(p_{ab}\phi'_{\lambda})(b)} & -\frac{\phi_{\lambda}(b)}{(p_{ab}\phi'_{\lambda})(b)} \end{pmatrix} \neq 0$$

 $, \lambda \in \rho(\mathfrak{d}_0).$

(v) By Theorem 5, $\sigma(A) \cap C_+$ coincides with the set of zeros of the determinant $\det(B - \widetilde{M}(\lambda))$. Due to Proof of (iv), so $\lambda \in \sigma(A) \cap C_+$ if and only if $\Delta = 0$.

(vi) Note that $\Delta(\lambda_0) = 0$ yields $\Delta(\overline{\lambda_0}) = \overline{\Delta(\lambda_0)} = 0$. Similar implication is valid for jth derivative. This completes the proof. **Similarity conditions**

Let S be a symmetric operator in a Krein space K with finite deficiency indices (n,n), $n \in \mathbb{N}$. Let T be a quasi-selfadjoint extension of S. Then there exists a boundary triplet $\{H, \Gamma_0, \Gamma_1\}$ for T_{\min}^* such that dom $(T) = \ker(\Gamma_1 - B\Gamma_0)$ with some $B \in [H]$, that is $T = S_B$. Let $M(\cdot)$ be the Weyl function associated with the boundary triplet $\{H, \Gamma_0, \Gamma_1\}$.

Theorem 8. ([14]) Let $\Pi = \{H, \Gamma_0, \Gamma_1\}$ be a boundary triplet for S^* , $M(\cdot)$ the corresponding Weyl function, $B \in [H]$ and an auxiliary Hilbert space. Then for \boldsymbol{E} anv faracterization $B_I := \frac{B - B^*}{2i} = KJK^*$ of B_I with $P \in [E, H]$ $J = J^* = J^{-1} \in [E],$ the characteristic and

function $\theta(\lambda) = \theta_{A_p}(\lambda)$ of the

extension A_B , dom $(S_B) = \ker(\Gamma_1 - B\Gamma_0)$, admits the $\theta_T(\lambda) = I + 2iK^*(B^* - M(\lambda))^{-1}KJ.$ representation $\ker(B-B^*)=0.$ if Obviously, then $\theta_T(\lambda) = (B - M(\lambda))(B^* - M(\lambda))^{-1}.$

Theorem 9. ([4]) Let T be a quasi-selfadjoint extension of Sand the spectrum $\sigma(T)$ is real. If T is a self-adjoint operator $\sup_{\lambda \in C_+ \cup C_-} \| \theta_T(\lambda) \| < \infty, \text{ then } T \text{ is}$ in Krein space K and

similar to a self-adjoint operator T_0 . Moreover, if T is completely non-selfadjoint, then T_0 has purely absolutely continuous spectrum.

By Theorem 8 and simple calculation, we can obtain the following theorem:

Theorem 10. Let S be a symmetric operator defined by (8) and A = JL. Suppose that conditions of Theorem 7 are satisfied and

$$B = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$
 Then
(i) $B_I = \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & i \\ i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \end{pmatrix} \coloneqq J$ and the characteristic

function $\theta_A(\cdot)$ of the operator A admits the following representation:

$$\theta_{A}(\lambda) = I + \frac{2}{\Delta} \begin{pmatrix} k_{1}M_{-} & M_{+} & k_{1} & 1 \\ M_{-} & k_{2}M_{+} & 1 & k_{2} \\ M_{-}(\Delta + k_{1}M_{-}) & M_{+}M_{-} & k_{1}M_{-} & M_{-} \\ M_{+}M_{-} & M_{+}(\Delta + k_{2}M_{+}) & M_{+} & k_{2}M_{+} \end{pmatrix}, \quad (25)$$
where
$$k_{1} = M_{+}(p_{ab}\varphi_{\lambda}')(b) + \varphi_{\lambda}(b),$$

where

$$k_2 = M_{-}(p_{ab}\varphi'_{\lambda})(b) - \psi'_{\lambda}(b).$$

(iii) The determinant det $\theta_A(\lambda)$ defined originally on $\rho(A^*)$, admits holomorphic continuation to the complex plane C and det $\theta_{A}(\lambda) = 1, \ \lambda \in \mathbb{C} \setminus \mathbb{R}$.

Combining Theorem 9 with formula (25) we conclude that the condition:

Theorem 11. The following condition

$$\max\{\sup_{\lambda \in C_{+}} \frac{1}{\Delta}, \sup_{\lambda \in C_{+}} \frac{|k_{1}|}{\Delta}, \sup_{\lambda \in C_{+}} \frac{|k_{2}|}{\Delta}, \sup_{\lambda \in C_{+}} |M_{\pm}|\} < \infty$$
(26)

is sufficient for the operator A to be similar to a self-adjoint operator with absolutely continuous spectrum.

5. An example

The main object of this subsection is the following operator

$$(Ay)(x) = -\frac{1}{\operatorname{sgn}(x - \operatorname{sgn} x)} (-y''), \operatorname{dom}(A) = L^{2}_{|r|}(\mathbb{R}).$$
(27)

Lemma 1. The differential equation

 $-y''(x) = \lambda \operatorname{sgn}(x - \operatorname{sgn} x) y(x), x > 1$ (28)

is in the limit point case at $+\infty$. Moreover, the function

$$m(\lambda) = \frac{1}{\sqrt{-\lambda}} - \frac{2}{\pi} \frac{1}{\sqrt{-\lambda}} \arctan \frac{1}{\sqrt{-\lambda}}, \lambda \notin \mathbb{R}$$

is the Weyl-Titchmarsh m-coefficient for (28). By Lemma 1, we obviously obtain

$$M_{+}(\lambda) = \frac{1}{\sqrt{-\lambda}} - \frac{2}{\pi} \frac{1}{\sqrt{-\lambda}} \arctan \frac{1}{\sqrt{-\lambda}},$$
$$M_{-}(\lambda) = -\frac{1}{\sqrt{\lambda}} + \frac{2}{\pi} \frac{1}{\sqrt{\lambda}} \arctan \frac{1}{\sqrt{\lambda}}, \ \lambda \in \mathbb{C} \setminus \mathbb{R}.$$

Let $\varphi_1, \psi_2 \in L^2_r((-1,1))$ be the fundamental solutions of $-y''(x) = \lambda \operatorname{sgn}(x - \operatorname{sgn} x)y(x), -1 < x < 1$, satisfying the initial conditions

 $\varphi_{\lambda}(-1) = 1$, $\varphi'_{\lambda}(-1) = 0$ and $\psi_{\lambda}(-1) = 0$, $\psi'_{\lambda}(-1) = 1$, then

$$\varphi_{\lambda}(x) = \begin{cases} \frac{e^{\sqrt{-\lambda}(x+1)} + e^{-\sqrt{-\lambda}(x+1)}}{2}, -1 \le x \le 0, \\ \frac{e^{\sqrt{\lambda}(x+1)} + e^{-\sqrt{\lambda}(x+1)}}{2}, 0 \le x \le 1 \end{cases}, \\ \psi_{\lambda}(x) = \begin{cases} \frac{e^{\sqrt{-\lambda}(x+1)} - e^{-\sqrt{-\lambda}(x+1)}}{2}, -1 \le x \le 0, \\ \frac{e^{\sqrt{\lambda}(x+1)} - e^{-\sqrt{\lambda}(x+1)}}{2}, 0 \le x \le 1 \end{cases}. \end{cases}$$

Theorem 12. Let A be the operator of the form (27). Then (i) A has a real spectrum, $\sigma(A) \subset \mathbb{R}$;

(ii) A is similar self-adjoint to а operator. Proof (i) By Lemma 1, differential expression (27) is in the limit point case at both $+\infty$ and $-\infty$. Hence the operator A is selfadjoint in Krein space $L^2_r(\mathbf{R})$. Evidently, the operator L is nonnegative. It follows from Theorem 3 that the spectrum of Ais real, $\sigma(A) \subset \mathbb{R}$.

To prove (ii) we use Theorem 11. It suffices to prove that if sup $\| \theta_A(\lambda) \| < \infty$, then A is similar to a self-adjoint $\lambda \in C_+$

operator.

Let $\lambda = i\varepsilon$, $\varepsilon > 0$. If $\varepsilon < +\infty$, i.e., ε is bounded. After the appropriate calculations, we can obtain the relation (26).

If $\mathcal{E} \to +\infty$, i.e., \mathcal{E} is unbounded. Simple calculation show that

$$\begin{split} M_{+}(i\varepsilon) &= O(\varepsilon^{-\frac{1}{2}}), M_{-}(i\varepsilon) = O(\varepsilon^{-\frac{1}{2}}), \Delta = O(e^{\sqrt{2\varepsilon}}), \\ \frac{k_{1}}{\Delta} &= O(1), \frac{k_{2}}{\Delta} = O(1). \end{split}$$

So $\lim_{\varepsilon \to +\infty} M_{\pm}(i\varepsilon) = 0$, $\lim_{\varepsilon \to +\infty} \frac{1}{\Lambda} = 0$. The relation (26) holds.

By Theorem 11, we get that A is similar to a self-adjoint operator.

Acknowledgements- The work is supported by the National Nature Science Foundation of China (10961019).

References

1 B. Curgus and H. Langer, A Krein space approach to symmetric ordinary differential operators with an indefinite weight function, J. Differential Equations 79(1989), 1-61.

2 B. Curgus and B. Najman, The operator $(\operatorname{sgn} x) \frac{d^2}{dx^2}$ is

similar to self adjoint operator in $L^2(\mathbf{R})$, Proc. Amer. Math. Soc. 123 (1995),1125-1128.

3 I.M. Karabash and A.S. Kostenko, Similarity of $(\operatorname{sgn} x)(-\frac{d^2}{dx^2}+c\delta)$ type operators to normal and self-adjoint

operators, Mathematical Notes, 74 (2003), 127-131.

4 I.M. Karabash and M.M. Malamud, Indefinite Sturm-Liouville

operators $(\operatorname{sgn} x)(-\frac{d^2}{dx^2} + q(x))$ with finite-zone potentials,

Operators and Matrices 1 (2007), 301-368.

5 I.M. Karabash and M.M. Malamud, Indefinite Sturm-Liouville operators with the singular critical point zero, Proceedings of the Royal Societyof Edinburgh: Section A Mathematics, 138 (2008), 801-820.

6 I.M. Karabash, A.S. Kostenko, and M.M. Malamud, The similarity problem for J-nonnegative Sturm-Liouville operators, J. Differential Equations 246 (2009), 964–997.

7 A.S. Kostenko, A spectral analysis of some indefinite differential operators, Methods of Functional Analysis and Topology, 12(2006):157-169.

8 I.M.Karabash and A.S. Kostenko, Spectral analysis of differential operators with indefinite weights and a local point interaction, Operator Theory: Advances and Applications, 175 (2007), 169-191.

9 Zhijiang Cao, Ordinary differential operator. Shanghai Publication, 1987 (in Chinese).

10. I.S. Kac and M.G. Krein, R-functions - analytic functions mapping the upper halfplane into itself, Appendix I to the Russian edition of F.V. Atkinson, Discrete and continuous boundary problems, Mir, Moscow, 1968 (in Russion). Engl. transl.: Amer. Math. Soc. transl. Ser. 2, 103 (1974), 1-18.

11 M.A. Naimark, Linear Differential operators, Part II. Ungar, New York, 1968.

12 J. Behrndt, On the spectral theory of singular indefinite Sturm-Liouville operators, J. Math. Anal. Appl. 334 (2007), 1439-1449.

13 V.A. Derkach and M.M. Malamud, The extension theory of Hermitian operators and the moment problem, J.Math.Science, 73 (1995),141-142.

14 V.A.Derkach and M.M. Malamud, Characteristic functions of almost sovable extensions of Hermitian operators, Ukrainian Math. J., 44 (1992), 435-459.

15 L.A. Sakhnovich, Nonunitary operators with absolutely continuous spectrum on the unit circle, Izv. Acad. Sci. USSR, Ser.Math., 33 (1969) no.1, 52-64.

16 J. Behrndt and F.Philipp, Spectral analysis of singular ordinary differential operators with indefinite weights. J. Differential Equations 248 (2010), 2015-2037.

16 M.M. Malamud, Similarity of a triangular operator to a diagonal operator, J. Math. Sciences 115 (2000), 2199-2222.