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Introduction  

Consider the singular Sturm-Liouville expression 

),)((
)(

1
:)( qyyp

xr
ya                        (1) 

where the weight function r  changes its sign. We assume that 

(1) is in the limit point case at both   and   and that the 

functions rqp ,,  are real, 0r  a.e., Rx . Then the 

maximal operator A  associated to (1) is self-adjoint in the 

Krein space )R(2

rL , where the indefinite inner product is 

defined by 

(R).,,:],[ 2

R
rLgfr(x)dxg(x)f(x)gf    (2) 

 Two closed operators 1T  and 2T  in a Hilbert space H  are 

called similar if there exist a bounded operator S  with the 

bounded inverse 
1S  in H  such that )dom()dom( 21 TTS   

and 
1

12

 SSTT . 

 In general, if the operator (1) is in the limit circle case at 

both   and  , we can consider its Riesz basis property. 

Here the operator (1) considered on )R(2

rL  has continuous 

spectrum. In the case, one considers the property of similarity 

either to a normal or to a self-adjoint operator. 

Using the Krein-Langer technique of definitizable operators in 

Krein spaces, Curgus and Langer [1] have obtained the first 

result in the direction. In particular, their result yields that the J-

selfadjoint operator with xxr sgn)(   is similar to a self-

adjoint if L  is a uniformly positive operator. Next Curgus and 

Najman [2] showed that the operator 
2

2

)(sgn
dx

d
x is similar to 

a self-adjoint one. In the paper [3], similarity of 

)(sgn
2

2

c
dx

d
x   type operators to normal and self-adjoint 

operators were described. In [4-6] several necessary similarity 

conditions in terms of Weyl functions were obtained. Based on 

the concept of boundary triplet and the resolvent similarity 

criterion, references [7-8] investigate the main spectral 

properties of quasi-self-adjoint extensions of corresponding 

operator. 

 Here we are interested in more general indefinite 

differential expression of the form (1) and our main goal is to 

show that a sufficient condition for the operator A  to be similar 

to a self adjoint operator in Hilbert space. Using this result, we 

construct a example of operator and prove that this operator is 

similar to a self-adjoint one. 

Throughout the article we use the following notations: Let 

T  be a linear operator in a Hilbert space )),(,( H . In what 

follows (T)dom , (T)ker , (T)ran  are the domain, kernel, 

range of T , respectively. We denote by )(T , )(T  and 

)(Tp  the resolvent set, the spectrum and the point spectrum 

of T .
1)(:)(  ITRT  , )(T  is the resolvent of 

T . We set }0Im:C{:C   . 

Preliminaries.  

Indefinite Sturm-Liouville Operators in )R(2

rL  

Consider the differential expression 

),)((
)(

1
:)( qyyp

xr
ya   (3) 

where 
1p , q  , )R(1

locLr  are assumed to be real valued 

functions such that 0p  and 0r  for a.e., Rx . Here 

we assume that the following condition holds: 

There exist R, ba , ba  , such that the 

restrictions ),(:  brr and ),(: arr    
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satisfy 0)(  xr for a.e., ),(  bx and 0)(  xr for 

a.e., ),( ax  . 

By )R(2

rL we denote the Krein space of all equivalence of 

measurable functions f defined on R for 





dxxrxf |)(||)(| 2

 which.the indefinite and definite 

inner products on )R(2

rL  are 

dxrgfgf 



:],[  and dxrgfgf 




 ||:),( . (4) 

Evidently, the operator J   

),())((sgn))(( xfxrxJf  Rx                  (5) 

is the fundamental symmetry connecting the inner products in 

(4). By )R(2

||rL  we denote the Hilbert space )),(R,(2
rL . 

Let us assume that the Sturm-Liouville differential expression 

),)((
||

1
:)( qyyp

r
yl   (6) 

is in the limit point case at both singular endpoints   and 

 . Then it is well known that the operator )(ylLy   

defined on the usual maximal domain 

)}R(R),(,:)R({ 2

||

2

||max rlocr LlyACypyLyD   (7) 

is self-adjoint in the Hilbert space )R(2

||rL .  

In the following we set  

maxdomdom),)((
1

: DJLAqyyp
r

JLyAy  . 

The operator A  is self-adjoint in the Krein space )R(2

rL . We 

shall interpret the operator A  as a finite rank perturbation in 

resolvent sense of the direct sum of three differential operators 

A , abA  and A  defined in the sequel. We identify function 

)R(2

rLf   with   ffff ab , 

where )),((2 aLf r 
 , )),((2 baLf

abrab   and 

)),((2 
 bLf r , respectively. Similarly we denote the 

restrictions of p  and q  onto the intervals ),( a  and 

),( b  by p , p  and q , q , respectively. Moreover we 

denote the restriction of r , p and q  onto the interval ),( ba  by 

abr , abp  and abq . Besides the differential expression l  in (6) 

we set 

),)((
1

:)( 



  fqfp
r

fl

),)((
1

:)( 



  fqfp
r

fl  

and 

),)((
||

1
:)( abab

ab

abab fqfp
r

fl    

respectively, and operators associated to them. Note that l  and 

l  are in the limit point case at   and  and regular at the 

endpoints a  and b , respectively, whereas abl  is regular at both 

endpoints  a  and b . By 


maxD (


maxD and 
abDmax ) we denote the 

set in (7) if R,r and l  are replaced by r , ),( a  and 

l (resp. r , ),( b , l  and abr , ),( ba , abl . Therefore the 

operators  

),)((
1

:)(min 



  fqfp
r

fA

))((
1

:)(min 



  fqfp
r

fA  

and 

),)((
1

:)( abab

ab

abab fqfp
r

fS    

defined on 

}0))(()(:{)dom( maxmin  



 afpafDfA , 

}0))(()(:{)dom( maxmin  



 bfpbfDfA  

and 

}0))(()())(()(:{)dom( max  bfpbfafpafDfS abababababab

ab

abab  

With 

))},(()(),),((,:)),(({ 2

||

2

||max aLflaACfpfaLfD rlocr 
 


, 

))},(()(),),((,:)),(({ 2

||

2

max 
 

 bLflbACfpfbLfD rlocr

and 

))},(()(),),((,:)),(({ 2

||

2

||max baLflbaACfpfbaLfD
abab rablocabababrab

ab   

are closed symmetric operators in the anti-Hilbert 

space )),((2 aLr 


, Hilbert space )),((2 


bLr  and Krein 

space )),((2 baL
abr , respectively. The adjoint operators 



minA , 



minA  and 


abS  are the usual maximal operators defined 

on


maxD ,


maxD and abDmax
, respectively.  

Let 

)(dom)(dom)dom()dom( minmin   ASAS ab and 

let the operator S  be defined on )dom(S , 























min

min

00

00

00

A

S

A

S ab  (8) 

with respect to the decomposition 

),(),()),(()R( 2222 


bLbaLaLL rrrr ab
. Then S  

is a closed symmetric operator in the krein space )R(2

rL  with 

finite defect 4. Moreover, we have )(dom| SAS  , DSA | , 

where 

:)(dom)(dom)dom(({)dom(
minmin




 ASAfAD ab  

)}.)(())((),()(),)(())((),()( bfpbfpbfbfafpafpafaf abababababab
 

                                                                                      (9) 

Theorem 1. ([15]) Let the operator L  be nonnegative and 

JLA   be self-adjoint operator in the krein space )R(2

rL  
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with the nonempty resolvent set )(A . Then the 

spectrum of A  is real, R)( A . 

Theorem 2. If the operator L  is semibounded from below, then 

)(A . (see Theorem 4.5 in [16]) 

Theorem 3. If the operator L  is nonnegative, then the spectrum 

of A  is real, R)( A . 

Proof Since 0L , Theorem 2 implies that )(A . 

Theorem 1 completes the proof. 

2.2. Weyl-Titchmarsh m-coefficients  

Let ),( xc  and ),( xs  denote the linearly independent 

solutions of equation (6) satisfying the following initial 

conditions at a  

1),)((),(   aspac , 0),(),)((   asacp . 

Since equation (6) is limit point at  , the Weyl-Titchmarsh 

theorem (see [9]) states that there exists a unique holomorphic 

function CR\C)( m , such that the function 

),()(),(  xcmxs    belongs to )),((2 


bLr . 

Similarly, the limit point case at   yields the fact that there 

exists a unique holomorphic function CR\C)( m , 

such that ),()(),(  xcmxs    belongs to 

)),((2 aL r 
 . 

The functions m  and m  are  called the Weyl-Titchmarsh m-

coefficients for (6) on ),( b  and on ),( a , respectively. 

We put 

)(:)(    mM , (10) 

),()(),(),(  xcmxsx   , 

),()(),(),(  xcmxsx   .   (11) 

By the definition of m , the functions ),(  x  and ),(  x  

belong to )),((2 


bLr  and )),((2 aL r 
 for all R\C , 

respectively. Besides, ),()],([  xx   . The 

function )(M ( )(M ) is said to be the Weyl-Titchmarsh m-

coefficient for equation (3) on ),( b  (on ),( a ). 

Definition 1. The class (R) consists of all holomorphic 

functions CCC: - G  such that )()(  GG  , and 

0)(ImIm   G  for -CC    (see [10]). 

It is well known that 






Im

)(Im
)(|),(| 2 



 
M

dxxrx
b

, 






Im

)(Im
|)(||),(| 2 


 

M
dxxrx

a
   (12) 

for all R\C  (see [9]). These formulae imply that the 

functions M  and M  (as well as m  and m  belong to the 

class (R). Moreover (see [11]) the functions M  and M  

admit the following integral representation 

















s

sd
M

)(
)( , R\C .                        (13) 

Here RR:   are nondecreasing functions on R  with the 

following properties: 










||1

)(

s

sd
, 0)()(   ab  ,

)0()(   ss  . 

Notice that the functions   and   are uniquely determined 

by the Stieltjes inversion formulae 

2

)0()0(
)(Im

1
lim

0


 





ss

dtitM
s

b





,

2

)0()0(
)(Im

1
lim

0


 





ss

dtitM
s

a





. 

The functions functions   and   are called spectral functions 

of the operators 

}0))((:)dom({|: minmin0  





 aypAyAA           (14) 

and 

}0))((:)dom({|: minmin0  





 bypAyAA ,         (15) 

respectively. 

Boundary Triplets and Abstract Weyl Functions 

Let K  be a Krein space and let H  be a separable Hilbert 

space. Let S  be a closed symmetric operator in K  with equal 

and finite deficiency indices   )()( snsn . 

 Recall the concepts of boundary triplets and abstract Weyl 

functions (see [12, 13]). 

Definition 2. A triplet },,{ 10  H  is called a boundary 

triplet for 
S  if the following two conditions:  

(i) 

HHKK gfgfgSfgfS ),(),(),(),( 1001  
,

)(dom,  Sgf ; 

(ii) the linear  

Mapping HHSff  )(dom:},{ 10
is surjective. 

The mappings 0  and 1  naturally induce two extensions 0S  

and 1S  of S  given by  

)(dom|S: jj SS  , jKer)(dom jS , )1,0( j . 

The field of the operator S  corresponding to the 

boundary triplet   is the operator 

function
1

0 )](,[)(:)(  SNHS  defined 

by
1

0 ))(|(:)(  SN , where )(Ker:)( ISSN   
. 

The function   is well-defined and holomorphic on )( 0S . 

Definition 3. Let },,{ 10  H  be a boundary triplet for 

the operator 
S . The operator valued function 

][)(:)( 0 HSM    defined by )(:)( 1  M , )( 0S   

is called the Weyl function of S  corresponding to the boundary 

triplet  . 

Let ][, HDC  . Considering the following extension S
~

 of 

S , SS
~

 , 
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)(dom|:
~

,, DCDC SSSS  ,

}0:)dom({)(dom 01,   fDfCSfS DC .  (16) 

Notice that each proper extension S
~

 of S  has the form (16), 

i.e., if 
 SSS

~
, then there exist ][, HDC  such that 

DCSS ,

~
 . 

Theorem 4. Suppose },,{ 10  H  is a boundary triplet for 

S , )(M  is the corresponding Weyl function, and DCSS ,

~
 , 

where DCS ,  is defined by (16). Assume also 

that ][)(,, 1 HDDCCDC  
. Then )

~
()( 0 SS    if 

and only if ))((0  CMD  . 

  In particular, if C  is invertible, let ][1 HDCB  
, then 

)(dom|:
~

BB SSSS  ,

}0:)dom({)(dom 01   fBfSfSB .    (17) 

Theorem 5. Suppose },,{ 10  H  is a boundary triplet for 

S , )(M  is the corresponding Weyl function and BS  is 

defined by (17). Assume also that ][HB .Then 

)()( 0 BSS    if and only if ))((0  MB  . 

3. Boundary Triplets for Sturm-Liouville Operator. A   

1. Let minA  and minA  be the operators defined in Subsection 

2.1. Since equation (1) is in the limit point case at   and 

 , then the deficiency indices of the symmetric operator are 

(1,1) and for all f , )dom( min


  Ag  we have  

))(()()())((),(),( minmin bgpbfbgbfpgAfgfA  







        (18) 

))(()()())((),(),( minmin agpafagafpgAfgfA  







.       (19) 

Hence the triplets },,C{ 10
   and 

},,C{ 10
  , where 

))((0 bfpf 
  , )(1 bff 

  , )dom( min


  Af , 

))((0 afpf 
  , )(1 aff 

  , )dom( min


  Af , 

are the boundary triplets for 


minA  and


minA , respectively. By 

the definition of the functions ),(   and ),(    (see 

Subsection 2.2), we obtain 

C}),,({c)-(Ker)( minmin  


 cAAN  ,

R\C .       (20) 

Denote by 
 and 

  the field corresponding to the 

boundary triplets },,C{ 10
   and 

 . By (11) and 

(20), we get 

),(c)-(Ker))(|()( min
1

min0    






 AcANc

, Cc , R\C .   (21) 

Further, the self-adjoint extension )ker(| 0min


 A  of minA  

coincides with the operator 
0
A . The Weyl function )(

~
M of 

minA  corresponding to the boundary triplets 
  is defined 

by 

)(),(:)(
~ 0

1 


  AM  . 

Combining (21) with (10) and (11), one obtains 

),()(
~

   cMcM Cc , R\C . Note that, )(
~

M is 

a holomorphic continuation of )(M  to the domain )( 0
A . 

In the sequel we will write M  instead of )(
~

M . 

2 Let us consider the regular indefinite Strum-Liouville operator 

abS , abS  is a densely defined closed symmetric operator in the 

Krein space )),((2 baL
abr  and has defect two, its adjoint 


abS  is 

given by 

),)((
1

:)( abababab

ab

abab fqfp
r

fS 

ab
ab DS max)dom(  . 

For )dom(  abSf,g , we have 


















 

)())(())(()(

)())(())(()(
),(),(

bgbfpbgpbf

agafpagpaf
gSfgfS

abab

abab
abab

Hence },,C{ 10
2 ababab  is a boundary triplet for 


abS , 

where 















))((

))((
0

bfp

afp
f

abab

abab
ab

ab
, 










)(

)(
1

bf

af
f

ab

ab
ab

ab
. 

Let )),((, 2 baL
abr   be the fundamental solutions of 

hrhqhp ababab  )( , C , satisfying the initial 

conditions 

1)( a , 0))((  apab  and 0)( a ,

1))((  apab  . 

Since 

},sp{)-(Ker)(    abab SSN , R\C .     (22) 

Denote by 
ab  the field  corresponding to the boundary 

triplets 
ab . By (22), we get 

),sp())(|()( 1
0     cSNc ab
abab

. Furthermore 

1)())(())()((  xxpxpxx abab   , 

we find that the Weyl function abm (see [12]) is given by 








 




)(1

1))((

))((

1
)(

b

bp

bp
m

ab

ab

ab




 




 , R\C . 

3. The operator   minmin ASAS ab  is a closed 

densely defined symmetric operator of defect 4 in the Krein 

space ),(),()),(( 222 


bLbaLaL rrr ab
 and it is 

straightforward to check that },,C{ 10
4  , where 
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





















 





ab
ab f

f

f

f

0

0

0

0 ,























 





ab
ab f

f

f

f

1

1

1

1 ,                    (23) 

)(dom)(dom)dom((},,{
min





 

 abab SAAfff  is a 

boundary triple for the adjoint operator



 

 abSAA
min

. 

Further, we put 

 
000

00 )ker(|: abAAASS  


,                   (24) 

where 

}0))(((:)dom({|:0   byp)(a)ypSySA ababababababab

. 

Therefore, the operator 

function )](,C[)(:)( 4
0 SNS   defined by 

  21)( cccc

c

c

c

ab






















 

is the field  corresponding to the boundary 

triplet },,C{ 10
4  . Moreover, the operator Weyl 

function (see [12]) has the following form: 




































))((

)(

))((

1
00

))((

1

))((

))((
00

00)(0

000)(

:)(

bp

b

bp

bpbp

bp

M

M

M

abab

abab

ab

























,

)( 0S  . 

Theorem 6. Let A  be the operator associated with equation (3) 

and let the operator 0S  be defined by (24).Then 

}0:)({)()( 00  SSA  , where 

( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )ab abp b M b M p b M M b             
       

Proof Let us rewrite (8) as follows 

}0:)(dom{)(dom 01   fDfCSfA , where 























0000

0000

1010

0101

C , 

























1010

0101

0000

0000

D . 

By Theorem 4, )()( 0SA    if and only if 

))((0  CMD  . Since 

))((
)(

))((

)(

))((

1

))((

1
)(

))((

))((

))(det(
bp

M
bp

b

bp

bp
M

bp

bp

CMD
ab

abab

abab

ab



















































. 

We see that )()( 0SA   exactly when 0 . 

Theorem 7. Let S  be a symmetric operator defined by (8) and 

let )(M  be defined by (10). Then 

(i) },,C{ 10
4  defined by 

0

~
 ,

4
1 C)dom(S:

~
 

,
































))((

))((

)(

)(

:
~

0

bfp

afp

bf

af

f

abab

abab

, 






























)(

)(

))((

))((

:
~

1

bf

af

bfp

afp

f

ab

ab

 

forms a boundary triplet for the operator 
S . 

(ii) The corresponding Weyl function is 









































))((

)(

))((

1
00

))((

1

))((

))((
00

00)(0

000)(

:)(
~

1

1

bp

b

bp

bpbp

bp

M

M

M

abab

abab

ab
























 ,

)
~

( 0S  . 

(iii) The operator JLA   is a self-adjoint extension of S  and it 

is determined by. 

)dom(|: ASA  , )-B(A 01 Γ
~

Γ
~

ker)dom(  ,where 


























0010

0001

1000

0101

B . 

(iv) If R)( 0 abA , then  C)(A  if and only if 

0 . 

(v) The sets C)(Ap  are at most countable with possible 

limit points belonging to }{R  . Moreover, if 

R)( 0 abA , then  C)(A  if and only if 0 . 

(vi) The spectrum )(A  is symmetric with respect to the real 

line, that is )()( 00 AA pp   . 

Proof (i)-(iii) These statements are obvious. 

(iv) By Theorem 3, )(A  if and only 

if ))((0  MB  , that is 

0

))((

)(

))((

1
10

))((

1

))((

))((
01

10)(0

010)(

det:))(
~

det(

1

1





















































bp

b

bp

bpbp

bp

M

M

MB

abab

abab

ab


























, )
~

( 0S  . 
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(v) By Theorem 5, C)(A  coincides with the set of zeros 

of the determinant ))(
~

det( MB  . Due to Proof of (iv), so 

 C)(A  if and only if 0 . 

(vi) Note that 0)( 0    yields 0)()( 00   .Similar 

implication is valid for jth derivative. This completes the proof. 

Similarity conditions 

Let S  be a symmetric operator in a Krein space K  with finite 

deficiency indices ),( nn , Nn . Let T  be a quasi-self-

adjoint extension of S . Then there exists a boundary triplet 

},,{ 10 H  for 


minT  such that )-ker()dom( 01  BT  

with some ][HB , that is BST  . Let )(M  be the Weyl 

function associated with the boundary triplet },,{ 10 H .  

Theorem 8. ([14]) Let },,{ 10  H  be a boundary triplet 

for 
S , )(M  the corresponding Weyl function, ][HB  and 

E  an auxiliary Hilbert space. Then for any 

faracterization







 KJK
i

BB
BI

2
:  of IB  with ],[ HEP  

and ][1 EJJJ  
, the characteristic 

function )()( 
BA of the 

extension BA , )ker()dom( 01  BSB , admits the 

representation KJMBiKIT
1))((2)(    . 

Obviously, if 0)ker(  BB , then 

1))())((()(    MBMBT . 

Theorem 9. ([4]) Let T  be a quasi-selfadjoint extension of S  

and the spectrum )(T  is real. If T  is a self-adjoint operator 

in Krein space K  and ||)(||sup 


T
CC 

 , then T  is 

similar to a self-adjoint operator 0T . Moreover, if T  is 

completely non-selfadjoint, then 0T  has purely absolutely 

continuous spectrum. 

By Theorem 8 and simple calculation, we can obtain the 

following theorem: 

Theorem 10. Let S  be a symmetric operator defined by (8) and 

JLA  . Suppose that conditions of Theorem 7 are satisfied and 


























0010

0001

1000

0100

B . Then 

(i) J

i

i

i

i

BI 



















 

 :

000

000

000

000

 and the characteristic 

function )(A  of the operator A  admits the following 

representation: 


































MkMMkMMM

MMkMMMkM

kMkM

kMMk

IA

22

11

22

11

)(

)(

1

1

2
)(

,      (25) 

where )())((1 bbpMk ab     , 

)())((2 bbpMk ab     . 

(iii) The determinant )(det A  defined originally on )( A , 

admits holomorphic continuation to the complex plane C  and 

1)(det  A , R\C . 

 Combining Theorem 9 with formula (25) we conclude that the 

condition: 

Theorem 11. The following condition  





 

|}|sup,
||

sup,
||

sup,
1

supmax{
C

2

C

1

CC

M
kk



             (26) 

is sufficient for the operator A  to be similar to a self-adjoint 

operator with absolutely continuous spectrum. 

5. An example 

The main object of this subsection is the following operator 

)(
)sgnsgn(

1
))(( y

xx
xAy 


 , )R()(dom 2

||rLA  .           (27) 

Lemma 1. The differential equation 

)()sgnsgn()( xyxxxy   , 1x                (28) 

is in the limit point case at  . Moreover, the function 










1
arctan

121
)(m , R  

is the Weyl-Titchmarsh m-coefficient for (28). 

 By Lemma 1, we obviously obtain 










1
arctan

121
)(M , 




1
arctan

121
)( M , R\C . 

  Let ))1,1((, 2  rL   be the fundamental solutions of 

)()sgnsgn()( xyxxxy   , 11  x , satisfying the 

initial conditions 

1)1(  , 0)1(   and 0)1(  , 1)1(  , 

then 





















10,
2

,01,
2)(

)1()1(

)1()1(

x
ee

x
ee

x
xx

xx





 ,





















10,
2

,01,
2)(

)1()1(

)1()1(

x
ee

x
ee

x
xx

xx





 . 

Theorem 12. Let A  be the operator of the form (27). Then  

(i) A  has a real spectrum, R)( A ; 

(ii) A  is similar to a self-adjoint operator.
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Proof (i) By Lemma 1, differential expression (27) is in the limit 

point case at both   and  . Hence the operator A  is self-

adjoint in Krein space )R(2

rL . Evidently, the operator L  is 

nonnegative. It follows from Theorem 3 that the spectrum of A  

is real, R)( A . 

To prove (ii) we use Theorem 11. It suffices to prove that 

if 


||)(||sup
C




A , then A  is similar to a self-adjoint 

operator. 

Let  i , 0 . If  , i.e.,   is bounded. After the 

appropriate calculations, we can obtain the relation (26). 

If  , i.e.,   is unbounded. Simple calculation show 

that 

)()( 2

1


   OiM , )()( 2

1


   OiM , )( 2eO ,

)1(1 O
k




, )1(2 O
k




. 

So 0)(lim 





iM , 0
1

lim 


. The relation (26) holds. 

By Theorem 11, we get that A  is similar to a self-adjoint 

operator. 
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