Some results on k - even sequential harmonious labeling of graphs

B.Gayathri ${ }^{1}$ and D.Muthuramakrishnan ${ }^{2}$
${ }^{1}$ Department of Mathematics, Periyar E.V.R. College, Tiruchirappalli - 620 023, India.
${ }^{2}$ Department of Mathematics, National College, Tiruchirappalli - 620 001, India.

ARTICLE INFO

Article history:

Received: 26 April 2012;
Received in revised form:
15 June 2012;
Accepted: 20 June 2012;

Keywords

Label,

Graphs,
Harmonious.

Abstract

Graham and Sloane [7] introduced the harmonious graphs and Singh \& Varkey [11] introduced the odd sequential graphs. Gayathri and Hemalatha ([2], [1]) introduced even sequential harmonious labeling of graphs. In [3], we extend this notion to k-even sequential harmonious labeling of graphs and further studied in [4-5]. Also we have introduced k-odd sequential harmonious labeling of graphs in [6]. Here, we investigate some results on k-even sequential harmonious labeling of graphs.

© 2012 Elixir All rights reserved.

Introduction

All graphs in this paper are finite, simple and undirected. The symbols $V(G)$ and $E(G)$ denote the vertex set and the edge set of a graph G.

The cardinality of the vertex set is called the order of G. The cardinality of the edge set is called the size of G. A graph with p vertices and q edges is called a (p, q) graph.

In [2], Gayathri and Hemalatha say that a labeling is an even sequential harmonious labeling if there exists an injection f from the vertex set V to $\{0,1,2, \ldots, 2 \mathrm{q}\}$ such that the induced mapping f^{+}from the edge set E to $\{2,4,6, \ldots, 2 q\}$ defined by $f^{+}(u v)=\left\{\begin{array}{l}f(u)+f(v) \text {, if } f(u)+f(v) \text { is even } \\ f(u)+f(v)+1, \text { if } f(u)+f(v) \text { is odd }\end{array}\right.$ are distinct.

A graph G is said to be an even sequential harmonious graph if it admits an even sequential harmonious labeling.

Here, we have introduced k-even sequential harmonious labeling by extending the above definition for any integer $k \geq 1$. We say that a labeling is an even sequential harmonious labeling if there exists an injection f from the vertex set V to $\{\mathrm{k}-1, \mathrm{k}, \mathrm{k}+1, . ., \mathrm{k}+2 \mathrm{q}-1\}$ such that the induced mapping f^{+} from the edge set E to $\{2 k, 2 k+2,2 k+4, \ldots, 2 k+2 q-2\}$ defined by $f^{+}(u v)=\left\{\begin{array}{l}f(u)+f(v), \text { if } f(u)+f(v) \text { is even } \\ f(u)+f(v)+1, \text { if } f(u)+f(v) \text { is odd }\end{array}\right.$ are distinct.

A graph G is said to be an k-even sequential harmonious graph if it admits an k-even sequential harmonious labeling. In this paper, we investigate some results on k-even sequential harmonious labeling of graphs.

Throughout this paper, k denote any positive integer ≥ 1. For brevity, we use k-ESHL for k-even sequential harmonious labeling.

Main Results

Definition:

By a graph P_{n}^{2} we mean the graph obtained from P_{n} by joining each pair of vertices at distance 2 in P_{n}.

Theorem:

The graph $P_{n}^{2},(n \geq 3)$ is a k-even sequential harmonious graph for any k .

Proof:

Let the vertices of P_{n}^{2} be $\{$ vi $: 1 \leq \mathrm{i} \leq \mathrm{n}\}$ and the edges of P_{n}^{2} be $\left\{v_{i} v_{i+1}: 1 \leq i \leq n\right\}$
$U\left\{v_{i} v_{i+2}: 1 \leq i \leq n-2\right\}$ which are denoted as in Fig. 2.1.

Fig. 2. 1: P_{n}^{2} with ordinary labeling
We first, label the vertices of P_{n}^{2} as follows,
Define $f: V\left(P_{n}^{2}\right) \rightarrow\{\mathrm{k}-1, \mathrm{k}, \mathrm{k}+1, . ., \mathrm{k}+2 \mathrm{q}-1\}$ by

$$
f\left(v_{i}\right)=2(i-1)+k-1 \quad 1 \leq i \leq n
$$

Then the induced edge labels are

$$
\begin{array}{ll}
f^{+}\left(v_{i} v_{i+1}\right)=4 i-4+2 k & 1 \leq i \leq n \\
f^{+}\left(v_{i} v_{i+2}\right)=4 i+2 k-2 & 1 \leq i \leq n-2
\end{array}
$$

Clearly, the edge labels are even and distinct, $f^{+}(E)=\{2 k, 2 k+2,2 k+4, ., 2 k+2 q-2\}$.
Hence, the graph $P_{n}^{2},(n \geq 3)$ is a k-even sequential harmonious graph for any k .
2-ESHL of P_{6}^{2} is shown in Fig. 2.2.

Fig. 2. 2: 2-ESHL of P_{6}^{2}.

Theorem:

The graph $P_{n}{ }^{*} K_{2}^{C}(n \geq 2)$ is a k-even sequential harmonious graph for any k where $*$ denote the wreath product. Proof:

Let the vertices of $P_{n}{ }^{*} K_{2}{ }^{C}$ be $\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and the edges of $P_{n} * K_{2}{ }^{C}$ be

[^0]$\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i+1}: 1 \leq i \leq n-\right.$ $1\} \cup\left\{u_{i+1} v_{i}: 1 \leq i \leq n-1\right\}$ which are denoted as in Fig. 2.3.

Fig. 2. 3: $\boldsymbol{P}_{\boldsymbol{n}} * \boldsymbol{K}_{2}^{C}$ with ordinary labeling
We first, label the vertices of $P_{n}{ }^{*} K_{2}^{C}$ as follows:
Define $f: V\left(P_{n}{ }^{*} K_{2}{ }^{C}\right) \rightarrow\{\mathrm{k}-1, \mathrm{k}, \mathrm{k}+1, . ., \mathrm{k}+2 \mathrm{q}-1\}$ by
$1 \leq i \leq n$
$f\left(u_{i}\right)= \begin{cases}4(i-1)+k-1 & \text { when } i \text { is odd } \\ 4 i-8+k l \quad \text { when } i \text { is even }\end{cases}$
$f\left(v_{i}\right)= \begin{cases}4 i-2+k & \text { when } i \text { is odd. } \\ 4 i-4+k & \text { when } i \text { is even. }\end{cases}$
Then the induced edge labels are:

$$
\begin{array}{ll}
f^{+}\left(u_{i} u_{i+1}\right)=8 i-8+2 k & 1 \leq i \leq n-1 \\
f^{+}\left(v_{i} v_{i+1}\right)=8 i+2 k-2 & 1 \leq i \leq n-1
\end{array}
$$

$f\left(u_{i} v_{i+1}\right)= \begin{cases}8 i-4+2 k & ; \text { when } i \text { is odd } \\ 8 i-6+2 k & ; \text { when } i \text { is even }\end{cases}$

$$
f\left(u_{i+1} v_{i}\right)= \begin{cases}8 i-6+2 k & ; \text { when } i \text { is odd } \\ 8 i-4+2 k & ; \text { when } i \text { is even }\end{cases}
$$

Clearly, the edge labels are even and distinct, $f^{+}(E)=\{2 k, 2 k+2,2 k+4, ., 2 k+2 q-2\}$.
Hence, the graph $P_{n}{ }^{*} K_{2}{ }^{C}(n \geq 2)$ is a k-even sequential harmonious graph for any k.
4-ESHL of $P_{5}{ }^{*} K_{2}{ }^{C}$ is shown in Fig. 2. 4.

Fig. 2. 4: 4-ESHL of $P_{5} * K_{2}^{C}$

Definition:

The graph sparklers $P_{m} @ K_{l, n},(m, n \geq 2)$ obtained by joining an end vertex of a path to the center of a star.

Theorem:

The graph sparklers $P_{m} @ K_{l, n},(m, n \geq 2)$ is a k-even sequential harmonious graph for any k .

Proof:

Let the vertices of sparklers $P_{m} @ K_{l, n}$, be $\left\{u_{i}: 1 \leq i \leq m+n\right\}$ and the edges of
sparklers $P_{m} @ K_{l, n}$, be $\left\{u_{i} u_{i+1}: 1 \leq i \leq m-1\right\} \cup\left\{u_{m} u_{i+1}: m \leq i \leq\right.$ $m+n-1\}$ which are denoted as in Fig. 2. 5..

Fig. 2. 5: $P_{m} @ K_{1, n}$ with ordinary labeling
We first, label the vertices as follows:
Define $f: V\left(P_{m} @ K_{l, n}\right) \rightarrow\{\mathrm{k}-1, \mathrm{k}, \mathrm{k}+1, . ., \mathrm{k}+2 \mathrm{q}-1\}$ by

$$
f\left(u_{i}\right)=k+i-2 \quad l \leq i \leq m
$$

$$
f\left(u_{i}\right)=2 i+k-m-2 \quad m+1 \leq i \leq m+n
$$

Then the induced edge labels are:

$$
\begin{array}{ll}
f^{+}\left(u_{i} u_{i+1}\right)=2 i+2 k-2 & 1 \leq i \leq m-1 \\
f^{+}\left(u_{m} u_{i+1}\right)=2 i+2 k-2 & m \leq i \leq m+n-1 .
\end{array}
$$

Clearly, the edge labels are even and distinct, $f^{+}(E)=\{2 k, 2 k+2,2 k+4, ., 2 k+2 q-2\}$.
Hence, the graph sparklers $P_{m} @ K_{l, n},(m, n \geq 2)$ is a k-even sequential harmonious graph.
5-ESHL of $P_{6} @ K_{l, 5}$ is shown in Fig. 2. 6.

Fig. 2. 6: 5-ESHL OF $\boldsymbol{P}_{6} @ K_{1,5}$

Definition:

A twig $T W\left(P_{n}\right),(n \geq 3)$ is a graph obtained from a path by attaching exactly two pendant edges to each internal vertex of the path.

Theorem:

The graph twig $T W\left(P_{n}\right),(n \geq 3)$ is a k-even sequential harmonious graph for any k.

Proof:

Let the vertices of $\operatorname{TW}\left(P_{n}\right)$ be $\left\{u_{i}, v_{j}, w_{j}: 1 \leq i \leq n \& 1 \leq j \leq\right.$ $n-2\}$ and the edges of $\operatorname{TW}\left(P_{n}\right)$ be $\left\{\left(u_{i} u_{i+1}\right),\left(v_{i} u_{i+1}\right),\left(w_{i} u_{i+1}\right)\right.$: $1 \leq i \leq n-2\}$ which are denoted as in Fig. 2.7.

Fig. 2. 7: TW $\left(P_{n}\right)$ with ordinary labeling
We first, label the vertices as follows:
Define $f: V\left(T W\left(P_{n}\right)\right) \rightarrow\{\mathrm{k}-1, \mathrm{k}, \mathrm{k}+1, . ., \mathrm{k}+2 \mathrm{q}-1\} \mathrm{by}$

$$
\begin{array}{ll}
f\left(u_{i}\right)=k+i-2 & 1 \leq i \leq n \\
f\left(v_{j}\right)=2 n-2+k+3(j-1) & 1 \leq j \leq n-2 \\
f\left(w_{j}\right)=2 n+k+3(j-1) & 1 \leq j \leq n-2
\end{array}
$$

Then the induced edge labels are

$$
\begin{array}{ll}
f^{+}\left(u_{i} u_{i+1}\right)=2 i+2 k-2 & \\
f^{+}\left(v_{i} u_{i+1}\right)=2 n+4(i-1)+2 k-2 & \\
f^{+}\left(w_{i} u_{i+1}\right)=2(n i \leq n-1 \\
& =2(n+1)+4(i-1)+2 k-2
\end{array}
$$

Clearly, the edge labels are even and distinct, $f^{+}(E)=\{2 k, 2 k+2,2 k+4, ., 2 k+2 q-2\}$
Hence, the graph twig $T W\left(P_{n}\right),(n \geq 3)$ is a k-even sequential harmonious graph for any k.
3-ESHL of $T W\left(P_{5}\right)$ is shown in Fig. 2.8.

Fig. 2. 8: 3-ESHL of $\boldsymbol{T W}\left(P_{5}\right)$

Theorem:

The graph C_{3} e $n K_{1},(n \geq 2)$ is a k-even sequential harmonious graph for any k.

Proof:

Let the vertices of C_{3} e $n K_{1}$ be $\left\{u_{i}, v_{i j} ; 1 \leq i \leq 3 \quad \& \quad 1 \leq j \leq n\right.$ $\}$ and $\left\{e_{i} ; 1 \leq i \leq 3 \& 1 \leq j \leq n\right\} \cup\left\{\left(u_{i} v_{i j}\right) ; 1 \leq i \leq 3 \& 1 \leq j \leq n\right.$ $\}$ be the edges of C_{3} e $n K_{1}$ which are denoted as in Fig. 2.9.

Fig. 2. 9: C_{3} e $n K_{1}$ with ordinary labeling
We first, label the vertices of C_{3} e $n K_{1}$ as follows:
Define $f: V\left(C_{3}\right.$ e $\left.n K_{1}\right) \rightarrow\{\mathrm{k}-1, \mathrm{k}, \mathrm{k}+1, . ., \mathrm{k}+2 \mathrm{q}-1\}$ by

$$
\begin{aligned}
& f\left(u_{1}\right)=k-1 ; \quad f\left(u_{2}\right)=k+1 ; \quad f\left(u_{3}\right)=k+2 ; \\
& f\left(v_{i j}\right)=k+2(j-1)+(2 n-1)(i-1)+6 \quad 1 \leq i \leq 3 \quad \& 1 \leq j \leq n
\end{aligned}
$$

Then the induced edge labels are:

$$
\begin{array}{ll}
f^{+}\left(e_{i}\right)=2 i+2 k-2 & 1 \leq i \leq 3 \\
f^{+}\left(u_{i} v_{i j}\right)=2 k+2(j-1)+2 n(i-1)+6 & 1 \leq i \leq 3 \quad \& \quad 1 \leq j \leq n
\end{array}
$$

Clearly, the edge labels are even and distinct, $f^{+}(E)=\{2 k, 2 k+2,2 k+4, ., 2 k+2 q-2\}$.
Hence, the graph C_{3} e $n K_{1},(n \geq 2)$ is a k-even sequential harmonious graph.
4-ESHL of C_{3} e $4 K_{1}$ is shown in Fig. 2. 10.

Fig. 2. 10: 4-ESHL of C_{3} e $4 K_{1}$.

Theorem:

The graph $T_{n, m, t},(n, m, t \geq 2)$ is a k-even sequential harmonious graph.

Proof:

Let the vertices of $T_{n, m, t}$ be $\left\{u_{i}, v_{j,} w_{k} ; 1 \leq i \leq t, l \leq j \leq n \quad \&\right.$ $l \leq l \leq m$ \} and
$\left\{\left(u_{i} u_{i+1}\right),\left(u_{l} v_{j}\right),\left(u_{t} w_{k}\right) ; 1 \leq i \leq t-1, l \leq j \leq n \quad \& \quad 1 \leq l \leq m\right\}$ be the edges of $T_{n, m, t}$ which are denoted as in Fig. 2. 11.

Fig. 2. 11: $T_{n, m, t}$ with ordinary labeling
We first, label the vertices of $T_{n, m, t}$ as follows:
Define $f: V\left(T_{n, m, t}\right) \rightarrow\{\mathrm{k}-1, \mathrm{k}, \mathrm{k}+1, . ., \mathrm{k}+2 \mathrm{q}-1\} \mathrm{by}$

$$
\begin{array}{ll}
f\left(u_{i}\right)=k+i-2 & 1 \leq i \leq t \\
f\left(v_{j}\right)=2 t+2 j+k-4 & 1 \leq j \leq n
\end{array}
$$

For $1 \leq l \leq m$,

$$
f\left(w_{l}\right)= \begin{cases}2 n+t+2(l-1)+k-1 & \text { when } t \text { is even } \\ 2 n+t+2 l+k-3 & \text { when } t \text { is odd }\end{cases}
$$

Then the induced edge labels are:

$$
\begin{array}{cl}
f^{+}\left(u_{i} u_{i+l}\right)=2 i+2 k-2 & 1 \leq i \leq t-1 \\
f^{+}\left(u_{i} v_{j}\right)=2(t+j-1)+2 k-2 & 1 \leq j \leq n \\
f^{+}\left(u_{t} w_{l}\right)=2(t+n+l-1)+2 k-2 & 1 \leq l \leq m
\end{array}
$$

Clearly, the edge labels are even and distinct, $f^{+}(E)=\{2 k, 2 k+2,2 k+4, ., 2 k+2 q-2\}$.
Hence, the graph $T_{n, m, t},(n, m, t \geq 2)$ is a k-even sequential harmonious graph for any k.
6-ESHL of $T_{3,5,6}$ is shown in Fig. 2. 12.

Fig. 2. 12: 6-ESHL of $T_{3,5,6}$

Theorem:

The graph $\mathrm{CH}_{n},(n \geq 3)$ is a k-even sequential harmonious graph for any k where CH_{n} is a closed helm without central vertex.

Proof:

Let the vertices of $C H_{n}$ be $\left\{u_{i j} ; 1 \leq i \leq n \& 1 \leq j \leq n\right\}$ and the edges of CH_{n} be
$\left\{\left(u_{i j} u_{i+l j}\right) \quad ; 1 \leq i \leq n \quad \& 1 \leq j \leq n\right\} \cup\left\{e_{j}^{i}=\left(u_{i j}, u_{i j+1}\right) ; 1 \leq i \leq\right.$ $n \& 1 \leq j \leq n-1\} \cup$
$\left\{e_{n}{ }^{i}=\left(u_{i n}, u_{i 1}\right) ; 1 \leq i \leq n\right\}$ which are denoted as in Fig. 2. 13.

Fig. 2. 13: $\boldsymbol{C H}_{n}$ with ordinary labeling
First we label the vertices of CH_{n} as follows:
Define $f: V\left(C H_{n}\right) \rightarrow\{\mathrm{k}-1, \mathrm{k}, \mathrm{k}+1, . ., \mathrm{k}+2 \mathrm{q}-1\}$ by
Case (i): When i is odd.
The vertices labels are as follows,

$$
\begin{array}{ll}
f\left(u_{i j}\right)=2(j-1)+2 n(i-1)+k-1 & 1 \leq j \leq(n+1) / 2, \\
\qquad & \text { if } n \text { is odd } \\
\& 1 \leq j \leq(n+2) / 2, \text { if } n \text { is even. } \\
f\left(u_{i(n+3) / 2}\right)=f\left(u_{i(n+1) / 2}\right)+k & n \text { is odd. } \\
f\left(u_{i(n+4) / 2}\right)=f\left(u_{i(n+2) / 2}\right)+k-2 & n \text { is even. } \\
f\left(u_{i j}\right)=f\left(u_{i j-1}\right)+k-3 ; & (n+3) / 2<j \leq n, \text { if } n \text { is odd } \\
& \&(n+4) / 2<j \leq n, \text { if } n \text { is even. }
\end{array}
$$

Then the induced edge labels are

$$
f^{+}\left(e_{j}^{i}\right)= \begin{cases}4 j-4+4 n(i-1)+2 k & 1 \leq j \leq(n+1) / 2, \text { if } n \text { is odd } \\ & 1 \leq j \leq n / 2, \text { if } n \text { is even } \\ f^{+}\left(e_{(n+1) / 2}^{i}\right)+2 k-4 & j=(n+3) / 2, \text { if } n \text { is odd } \\ f^{+}\left(e_{1 / 2}^{i}\right)+2 k & j=(n+2) / 2, \text { if } n \text { is even } \\ f^{+}\left(e_{j-1}^{i}\right)+2 k-6 & (n+3) / 2<j \leq n, \text { if } n \text { is odd } \\ & (n+2) / 2<j<n, \text { if } n \text { is even }\end{cases}
$$

Case (ii) : When i is even .
The vertex labels are as follows:
$f\left(u_{i j}\right)=2(n+1)+2(j-1)+2 n(i-2)+k-1 \quad 1 \leq j \leq(n-1) / 2$, if n is odd. $1 \leq j \leq n / 2$, if n is even.

$$
\begin{array}{lc}
f\left(u_{i(n+1) / 2}\right)=f\left(u_{i(n-1 / 2}\right)+\mathrm{k} & n \text { is odd. } \\
f\left(u_{i(n+2) / 2}\right)=f\left(u_{i n / 2}\right)+k-2 & n \text { is even. } \\
f\left(u_{i j}\right)=f\left(u_{i j-1}\right)+k-3 & (n+3) / 2<j \leq n-1, \text { if } n \text { is odd. } \\
& (n+2) / 2<j \leq n-1, \text { if } n \text { is even. }
\end{array}
$$

$$
f\left(u_{i n}\right)=f\left(u_{i n-1}\right)+k-4 .
$$

Then the induced edge labels are:

$$
f^{+}\left(e_{j}^{i}\right)= \begin{cases}4 n+4 j+3+4 n(i-2)+2 k & 1 \leq j \leq(n-1) / 2, \text { if } n \text { is odd } \\ & 1 \leq j \leq(n-1) / 2, \text { if } n \text { is even } \\ f^{+}\left(e_{(n-1) / 2}^{i}\right)+2 k-4 ; & j=(n+1) / 2, \text { if } n \text { is odd } \\ f^{+}\left(e_{n / 2}^{i}\right)+2 k ; & j=(n+2) / 2, \text { if } n \text { is even } \\ f^{+}\left(e_{j-1}^{i}\right)+2 k-6 & (n+1) / 2<j \leq n-1, \text { if } n \text { is odd } \\ & (n+2) / 2<j \leq n-1, \text { if } n \text { is even } \\ f^{+}\left(e_{n}^{i}\right)+2 k-4 & \end{cases}
$$

Clearly, the edge labels are even and distinct,
$f^{+}(E)=\{2 k, 2 k+2,2 k+4, ., 2 k+2 q-2\}$ Hence, the graph $C H_{n}$,
$(n \geq 3)$ is a k - even sequential harmonious graph.
2-ESHL of CH_{4} is shown in Fig. 2. 14.

Fig. 2. 14: 2-ESHL of CH_{4}

References

[1]. J. A. Gallian, A dynamic survey of graph labeling - The Electronic Journal of Combinatorics 15 (2008), \#DS6.
[2] B. Gayathri and V. Hemalatha, Even sequential harmonious labeling of some Graphs - Presented in National Conference held at Govt. College for Women, Pudukkottai$28 \& 29^{\text {th }}$ March-2008.
[3] B. Gayathri and D. Muthuramakrishnan, k-even sequential harmonious labeling of some tree related graphs communicated.
[4] B. Gayathri and D. Muthuramakrishnan, k-even sequential harmonious labeling of some cycle related graphs communicated.
[5] B. Gayathri and D. Muthuramakrishnan k-even sequential harmonious labeling of some graphs - communicated.
[6] B. Gayathri and D. Muthuramakrishnan k-odd sequential harmonious labeling of some graphs - communicated.
[7]. R.L.Graham and N.J.A.Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Math., 1 (1980) 382404.
[8]. M. Seond, A. E. I. Abdel Maqsoud, and J. sheehan, Harmonious graphs, Util. Math., 47 (1995)225-233.
[9]. M. A. Seoud and M. Z. Yossef, Families of harmonious and nonharmonious graphs, J.Egyptian Math.Soc., 7(1999)117125.
[10]. S. C. Shee, On harmonious and related graphs, Ars Combin., 23(1987) A,237-247.
[11]. G. S. Singh and T. K. M.Varkey, On odd sequential and bisequential graphs, preprint.
[12]. R. G. Sun, harmonious and sequential labelings of the book graphs B_{m}, Gaoxiao yingyong shuxue xuebao ser. A, 9(1994)335-337.
[13]. J. Yuan and W. Zhu, Some results on harmonious labelings of graphs, J. Zhengzhou Univ. Nat. Sci. Ed., 30 (1998)7-12.
[14]. S. Zhou and J. Yuan , On construction of sequential graphs, Mathematica Applicata, 6 (supplementry)(1993) 104108.

[^0]: Tele:
 E-mail addresses: maduraigayathri@gmail.com,
 muthunct@gmail.com

