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Introduction  

In the present era of globalization, manufacturers are facing 

the challenges of higher productivity, quality and overall 

economy in the field of manufacturing by machining. To meet 

the these challenges in a global environment, there is an 

increasing demand for high material removal rate (MRR) and 

also longer life and stability of the cutting tools, but high 

production machining with high cutting speed, feed which 

generates large amount of heat and temperature at the chip-tool 

interface and ultimately reduces dimensional accuracy, tool life, 

surface integrity of the machined component. This temperature 

needs to be controlled at an optimum level to achieve better 

surface finish and ensure overall machining economy. The 

conventional type of cutting fluid systems  have been found to 

become less effective with the increase in cutting velocity and 

feed when the cutting fluid cannot properly enter into the chip-

tool interface to cool and lubricate the interface due to bulk 

plastic contact of the chip with the tool rake surface. It requires 

serious concern on the use of cutting fluid, particularly oil-based 

type cause for pollution of the working environment, water 

pollution, soil contamination and possible damage of the 

machine tool slide ways by corrosion [Kelly JF and Cotterell 

MG (2002)]. 

The  modern  industries  are  therefore  looking  for  

possible  means  of  dry (near  dry), clean,  neat  and pollution  

free  machining . Minimum Quantity Lubrication  (MQL)  refers  

to  the  use  of  cutting fluids of only a minute amount-typically 

of a flow rate of 50-500 ml/hourwhich is about three to four 

orders of magnitude lower than the amount commonly used in 

flood cooling, for example, up to 10 liters of fluid  can  be  

dispensed per minute. The concept of MQL, sometimes referred 

to as „near dry lubrication‟ or „micro lubrication‟ [Kelly JF and 

Cotterell MG (2002); Nouari M et al(2003)]. Machining  under  

minimum  quantity  lubrication  (MQL)  condition  is  perceived  

to  yield  favorable machining performance over dry or flood 

cooling condition. Accurate Modeling and Prediction of Surface 

Roughness by Computer Vision in Turning Operations Using 

An Adaptive Neuro-Fuzzy Inference System[Chen WC and 

Tsao CC (1999); Zhao H (1994); Furness RJ et al. (1996)] 

Performance studies on Oblique Cutting Using Conventional 

Methods and Neural Networks in [Pirtini M, Lazoglu I (2005); 

Nouari M et al. (2005); Haan DM et al. (1997)]. Learning Speed 

of 2-Layer Neural Networks is improved by choosing initial 

values of the adaptive weights [Nouari M et al. (2003); Basile 

SA (1993); Yang JL, Chen JC (2001)]. Surface roughness and 

dimensional deviation cutting forces and vibrations in turning 

process are studied [Phadke MS (1989)].Neural network based 

adaptive control is used to optimize the milling Process [Ross PJ 

(1996); Bagci E and Aykut Ş (2006)]. 

The literature reveals that little work has been done 

regarding to the application of Artificial neural networks for 

prediction of multi-responses in drilling process.  This paper 

focused on development of a neural network model to predict 

the multi-responses and to study the influence of input 

parameters on output parameters for determining the optimum 

input parameters combination using Taguchi method.  

Experimental work and data generation 

The drilling tests have been carried on En8 steel (Table.1)of 

size 1000mmx40mmx16mm using standard uncoated and coated 

HSS tools at different levels of process parameters like cutting 

speeds (V), feed rates (f), and type of drill tool and type of 

cutting fluids (MQL with flow rate of 150 ml/hour) according to 

full factorial Experimental design (Table.3). During machining 

trials torque and force are measured by the drill tool 

dynamometer and surface roughness values of hole surface are 

measured by Talysurf for the different combinations of input 

parameters (Table.2), this data have been used for training and 

testing of Neural Network. The experimental setup of Radial 

drilling machine with MQL provision is shown in Fig.1.  
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Figure1 (a) Radial drilling machine 

 
Figure1 (b) Drill Tool dynamometer    

 
Figure 1 (c). Talysurf surface meter 

 
Figure1 (d).En8 steel specimen after drilling  

 
Figure1 (e).Drill bits 

Figure1 Experimental setup and drilled work piece 

ANN-Taguchi approach 

This approach (see Fig.2) consists of two phases. In the first 

phase an Artificial Neural Network (ANN) model has been 

developed to predict the responses or output parameters. In the 

second phase, the ANN predicted results are analyzed by 

performing Taguchi‟s S/N ratio analysis.  

 

Figure 2 ANN-Taguchi approach 

Phase-I: Development of ANN 

Steps in the development of ANN are: pre-processing of 

generated data, ANN modelling, training of ANN, simulation of 

ANN for prediction of responses 

Pre-processing of generated data 

In the present study, the input parameters for ANN are 

cutting speed, feed rate, tool type and condition of cutting fluid, 

while the output parameters are surface roughness, torque, 

cutting force, MRR and power.  Before input-output dataset are 

fed to network, pre-processing steps like formation of data 

patterns and normalization are required on the data obtained 

from experiments. The input-output dataset are normalized 

within the range of -1 to +1. Afterwards training and testing 

pattern vectors are formed, each pattern is formed with an input 

condition vector (Pi) and the corresponding target(output) vector 

(Ti), as shown in the below.  

            Pi =  [ v, f, tool type, condition of coolant] 

Ti = [Torque, cutting force, surface roughness, MRR, Power] 

Experiment data of 81 patterns was divided randomly into two 

categories: training dataset which consist of 75% of the 

generated data and test dataset which consist of 25% the 

generated data. Based on this 72 data patterns are considered for 

training of ANN and 9 data patterns are considered for testing 

ANN. 

ANN modeling 

In this work, multilayer back-propagation neural network 

has been developed for the prediction of responses in drilling of 

En8. A neural network model has been modeled using 

MATLAB with four neurons in input layer and five neurons in 

the output layer as per number of input and output parameters as 

shown in Fig.3.  

 

Figure 3. Proposed ANN model 

In order to model best network architecture, selection of 

number of hidden layers and number of neurons in each hidden 

layer, training algorithms and transfer functions for the input, 

hidden and output layers  are very important issues. The issue of 

determining the optimum number of hidden neurons is a crucial 
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and complicated is neuronal network modeling. In the case of 

one hidden layer network, several practical guidelines exist. 

These include 2n+1, 2n, n\2 where n is the number of input 

nodes. Lawrence and Fredrick suggested that the number of 

hidden neurons are (n1+n2), where n1 and n2 are the number of 

input and output nodes respectively. The most common 

approach in determining the number of hidden neurons (nodes) 

is via trial and error has been used in the present work. Using 

trial and error method, the suitable transfer functions for input, 

hidden and output layers are sigmoid, tansig, purelin 

respectively have been selected. 

Training of ANN 

The modeled neural network has been trained with training 

data set using a feed forward back propagation algorithm. The 

network performs two phases of data flow. First the input 

information is propagated from the input layer to the output 

layer and, as a result it produces an output. Then the error 

signals resulting from the difference between the networks 

predicted values and the actual values are back propagated from 

the output layer to the previous layers for them to update their 

weights accordingly. The updating of weights continues until the 

network error goal is reached. The number of neurons in the 

hidden layer is intentionally chosen to start with five neuron and 

afterwards neurons are added to the hidden layer incrementally. 

The addition of hidden neurons continues until there is no 

significant progress in network performance. The performance 

of the network is evaluated by mean squared error (MSE) 

between the experimental and the predicted values for every 

output parameter in respect of training the network as shown in 

Fig.4.  

 

Figure 4. Performance graph 

The feedback value from that processing is called the 

“average error” or “performance”. The momentum constant and 

learning rate used in this model is 0.5 and 0.1 respectively. The 

maximum number of training epochs that was set is 10,000 and 

the training error goal was 0.0001. After the training, the actual 

weight values are stored in a separate file. Finally a best ANN, 

4-10-5 has been designed, it consists of four neurons in input 

layer, ten neurons in hidden layer and five neurons in the output 

layer. 

Simulation of ANN and prediction of responses 

The network has been simulated (tested) with the input test 

data sets that have not been used in training of the network (raw 

untrained data) but are in the same range as those used for 

training. This enables to test the network with regard to its 

capability of interpolation regarding unseen data.  

The output parameter values obtained from the simulation 

of neural network for the corresponding input are shown in 

Table 4.  

Phase-2: Taguchi’s Signal-to-Noise ratios analysis on 

predicted responses 

In the second phase, S/N ratios are calculated and are listed 

in the Table.5, by using Eq.1 and Eq.2, for responses obtained 

from neural network (Table 4) and the optimum combination of 

input parameters are determined based on the quality 

requirement such as Smaller-The-Better and Larger-The-Better. 

i) Smaller-The-Better  

In drilling process, the response characteristics such as 

cutting force, torque, surface roughness and power should be 

low for better quality, hence smaller S/N ratios are considered 

for these parameters.  

Signal-To-Noise ratio for the Smaller-The-Better 

S/N = -10 *log (mean square of the response) 

                              (1)  

ii) Larger-The-Better   

In drilling process, the response characteristic like material 

removal rate should be high for better quality. Hence larger S/N 

ratios are considered for this kind of parameters.  

Signal-To-Noise ratio for  Larger-the-better  

S/N = -10*log (mean square of the inverse of the response) 

         









  210

11
log10/

yn
NS

                              (2) 

Analysis of Variance (ANOVA) on predicted results 

ANOVA has been performed using MINITAB software to 

determine the influence of input parameter on the output 

parameters and ANOVA results are shown in the Table 6. 

Results and concluding remarks 

In the present paper, the developed ANN model has been 

trained and tested with experimental data of drilling process. 

ANN tested results are compared again with experimental 

results (see Fig5). The validity of this approach for parameter 

optimization is well established. The concluding remarks as 

follows. 

 

Figure 5(a) Torque Vs Experimental runs 

 

Figure 5(b) Cutting force Vs Experimental runs 
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Figure 5(c) Surface roughness Vs Experimental runs 

 

Figure 5(d).Material removal rate Vs Experimental runs 

 

Figure5(e).Power Vs Experimental runs 

Figure5.Graphs between experimental and network result 

values 

From ANN  

The developed ANN model has been trained and tested with 

experimental data of drilling process. ANN tested results are 

closely matched with experimental results (refer Fig.5) 

 

Figure 6(a) S/N ratio for torque 

 

Figure 6(b) S/N ratio for force 

 

Figure 6(c).S/N ratio for surface roughness 

 

Figure 6(d) S/N ratio for material removal rate 

 

Figure 6(e) S/N ratio for power 

Figure 6 Main effects plot for S/N ratio 

From S/N ratio Analysis 

The best input parameter combination for getting a best 

individual response is identified by Taguchi‟s S/N ratio analysis 

(Table 7 & Fig.6) 

 For lower torque, the optimum parameters are v 250rpm,fe 

0.2mm/rev ,tool type TiN , vegetable oil environment 

 For lower cutting force, the optimum parameters are v 350 

rpm,fe 0.3mm/rev, tool type TiAlN, cutting fluid environment. 

 For lower surface roughness, the optimum parameters are v 

350rpm,fe 0.15mm/rev,tool type TiN ,dry environment 

 For higher material removal rate, the optimum parameters are 

v 350rpm,fe 0.3mm/rev,tool type HSS,dry environment.  

 For lower power requirements optimum parameters are v 

350rpm,fe 0.15mm/rev,tool type TiN ,cutting fluid environment 

. 

 
Figure 7(a) Torque 

 

Figure 7(b) Cutting force 
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Figure7(c) Surface roughness 

 

Figure7 (d) Material removal rate 

 

Figure 7(e) Power 

Figure 7 Percentage contribution charts for outputs from 

ANOVA 

From ANOVA 

The contributions of input parameters on individual 

response are identified by ANOVA. The influence of input 

parameters on output parameters is shown in Table 6 and Fig.7.  

 Surface finish and torque are mostly affected by types of drill 

tools  

 Cutting force is mostly affected by cutting environment  

 Material removal rate is mostly affected by feed rate  

 Power is mostly affected by cutting speed 

This work is useful to predict the responses in wide range of 

input data and it can be further extended to other processes for 

cutting different materials. It may helps in reducing the 

experimental cost while modeling of complex machining 

process. 
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Table 1.mechanical properties 

Poisson‟s ratio 0.3 

Elastic modulus (Gpa) 202 

Hardness(HB) 243 

Density(x1000kg/m3 ) 7.845 

Tensile strength (MPa) 518.8 

Yield strength (MPa) 353.4 

Elongation (%) 30.2 

Reduction in area (%) 57.2 

Impact strength (J) 44.3 

 

Table 2 Process parameters and their levels 
levels                                              Process parameters 

 Cutting speed(rpm) Feed(mm\rev) Drill Tool type Cutting environments 

1 250 0.15 Uncoated Hss Dry 

2 300 0.2 Hss+TiN Vegetable Oil(MQL) 

3 350 0.3 Hss+TiAlN Cutting Fluid(MQL) 

 

Table.3.Full factorial design and experimental data 

Sl no 

speed 

 (rpm) 

Feed 

 (mm/rev) Tool Type Cutting environment 

Torque 

 (kgm) 

Fc  

 (kgf) 

Ra 

 (µm) 

MRR  

(mm³/min) 

Power 

 (watt) 

1 250 0.15 HSS Dry 0.7 170 6.05 2943.75 1300 

2 250 0.15 HSS Vegoil 0.5 107 6.13 2943.75 1050 

3 250 0.15 HSS Cutfluid 0.2 188 6.28 2943.75 1100 

4 250 0.15 TIN Dry 0.1 182 5.52 2943.75 1050 

5 250 0.15 TIN Vegoil 0.1 153 5.96 2943.75 800 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

73 350 0.3 HSS Dry 0.2 346 3.06 8242.5 1400 

74 350 0.3 HSS Vegoil 0.1 150 3.95 8242.5 1300 

75 350 0.3 HSS Cutfluid 0.2 298 1.37 8242.5 1350 

75 350 0.2 HSS Cutfluid 0.1 2.41 5.2 5495 1200 

77 350 0.3 TIN Vegoil 0.6 293 3.75 8242.5 1250 

78 350 0.3 TIN Cutfluid 0.7 295 6.23 8242.5 1200 

79 350 0.3 TIAlN Dry 0.8 269 5.57 8242.5 1150 

80 350 0.3 TIAlN Vegoil 0.1 236 3.93 8242.5 1200 

81 350 0.3 TIAlN Cutfluid 0.3 262 6.45 8242.5 1250 

 

Table 4 shows Testing Data set and predicted output 

S no 

speed 

 (rpm) 

Feed 

 (mm/rev) Tool Type Cutting environment 

Torque 

 (kgm) 

Force  

 (kgf) 

Ra 

 (µm) 

MRR  

(mm³/min) 

Power 

 (watt) 

1 250 0.15 HSS DRY 0.8 220.4 4.7 4820.6 1076 

2 250 0.2 TIN VEGOIL 0.2 233.8 4.7 5132.1 1029.4 

3 250 0.3 TIALN CUTFLUID 0.7 91.8 7.1 7772 1043.7 

4 300 0.15 TIN CUTFLUID 0.3 228.7 3.4 4783.4 987 

5 300 0.2 TIALN DRY 1.1 199.7 4.7 4978.3 1100.3 

6 300 0.3 HSS VEGOIL 0.6 267.6 6.8 7714.6 1147.3 

7 350 0.15 TIALN VEGOIL 0.8 248.4 5 4664.2 970.7 

8 350 0.2 HSS CUTFLUID 0.4 130.7 4.7 5975.2 941.7 

9 350 0.3 TIN DRY 0.5 87.4 3 6982.6 969.3 

 

 

Table.5 S/N ratios for test data 

S no 
Speed 

(rpm) 

Feed 

(mm/rev) 
Tool type Cutting environment 

S/N ratios 

 

Toque 

 

Force 

 
Surface roughness 

MRR 

 

Power 

 

1 250 0.15 HSS DRY 1.9382 -46.8642 -13.442 73.662 -60.6362 

2 250 0.2 TIN VEGOIL 13.979 -47.3769 -13.442 74.2059 -60.2517 

3 250 0.3 TIALN CUTFLUID 3.098 -39.2569 -17.0252 77.8107 -60.3715 

4 300 0.15 TIN CUTFLUID 10.458 -47.1853 -10.6296 73.5947 -59.8863 

5 300 0.2 TIALN DRY -0.8279 -46.0076 -13.442 73.9416 -60.8302 

6 300 0.3 HSS VEGOIL 4.437 -48.5497 -16.6502 77.7463 -61.1935 

7 350 0.15 TIALN VEGOIL 1.9382 -47.903 -13.9794 73.3755 -59.7417 

8 350 0.2 HSS CUTFLUID 7.9588 -42.3255 -13.442 75.527 -59.4783 

9 350 0.3 TIN DRY 6.0206 -38.8302 -9.5424 76.8803 -59.7292 
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Table 6.ANOVA results for the output parameters in the drilling of En8 steel 

Parameters DOF SS MS P-VALUE 

TORQUE 

V 2 4.168338 2.084169223 0.023808 

Fe 2 11.51085 5.755424463 0.065746 

Tt 2 116.8362 58.41811266 0.667324 

ce 2 33.85326 16.92662995 0.193357 

error  8.713012      4.35650616 0.049765 

FORCE 

V 2 27.61801 13.80900738 0.242069 

Fe 2 39.54027 19.77013505 0.346566 

tt 2 4.427695 2.213847701 0.038808 

ce 2 42.50551 21.25275721 0.372556 

Surface roughness 

v 2 8.057851547 4.028925773 0.173306 

fe 2 4.470439387 2.235219693 0.096149 

tt 2 24.06534051 12.03267025 0.517591 

ce 2 9.90123936 4.95061968 0.212953 

mrr 

v 2 0.046430409 0.023215204 0.001715 

fe 2 25.04473768 12.52236884 0.925101 

tt 2 0.949899469 0.474949734 0.035087 

ce 2 1.031356976 0.515678488 0.038096 

power 

v 2 1.614071227 0.807035613 0.609953 

fe 2 0.187474667 0.093737333 0.070846 

tt 2 0.374116027 0.187058013 0.141377 

ce 2 0.47055962 0.23527981 0.177823 

 

Table.7. Response table for output parameters 
Response table for Torque 

level V Fe TT CE 

1 6.338533 4.778 4.778 2.376967 

2 4.6889 7.036767 10.15253 6.784867 

3 5.305867 4.518533 1.402767 5.1646 

Response table for Force 

1 -44.4993 -47.3175 -45.9131 -43.9007 

2 -47.2475 -45.2367 -44.4641 -47.9432 

3 -43.0196 -42.2123 -44.3892 -42.9226 

Response table for Surface Roughness 

1 -14.6364 -12.6837 -14.5114 -12.1421 

2 -13.5739 -13.442 -11.2047 -14.6905 

3 -12.3213 -14.4059 -14.8155 -13.6989 

Response table for MRR 

1 75.2262 73.54407 75.6451 74.82797 

2 75.0942 74.55817 74.89363 75.10923 

3 75.26093 77.4791 75.0426 75.64413 

Response table for Power 

1 -60.4198 -60.0881 -60.436 -60.3985 

2 -60.6367 -60.1867 -59.9557 -60.3956 

3 -59.6497 -60.4314 -60.3145 -59.912 

 


