Satish Kumar/ Elixir Appl. Math. 47 (2012) 8715-8717

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 47 (2012) 8715-8717

A 'useful' information measure and its mean codewords length

Satish Kumar

Department of Mathematics, G.I.M.T. (Kanipla) Kurukshetra, Haryana, India.

ARTICLE INFO

ABSTRACT

A parametric mean length is defined as the quantity

Keywords

Codeword length, Kraft inequality, Holder's inequality and optimal code length, Tsallis entropy, 'Useful' Information Measure, Utilities.

Introduction

Consider the following model for a random experiment S,

 $S_{N} = [E; P; U]$

where $E = (E_1, E_2, ..., E_N)$ is a finite system of events happening with respective probabilities $P = (P_1, P_2, ..., P_n)$, $p_i \ge 0$, and $\sum p_i = 1$ and credited with utilities $U = (u_1, u_2, ..., u_N), u_i > 0, i = 1, 2, ..., N$. Denote the model by S_N , where

$$S_{N} = \begin{bmatrix} E_{1}, E_{2}, \dots, E_{N} \\ P_{1}, P_{2}, \dots, P_{N} \\ u_{1}, u_{2}, \dots, u_{N} \end{bmatrix}$$
....(1.1)

We call (1.1) a Utility Information Scheme (UIS). Belis and Guiasu [4] proposed a measure of information called 'useful information' for this scheme, given by

where H(P; U) reduces to Shannon's [13] entropy when the utility aspect of the scheme is ignored i.e., when $u_i = 1$ for each *i*. Throughout the paper, $\sum_{i=1}^{N}$ will stand for $\sum_{i=1}^{N}$ unless otherwise stated and logarithms are taken to base D(D > 1).

Guiasu and Picard [6] considered the problem of encoding the outcomes in (1.1) by means of a prefix code with codewords W_1, W_2, \dots, W_N having lengths n_1, n_2, \dots, n_N and satisfying Kraft's inequality [5].

$$L_{\alpha(u)} = \frac{1}{\alpha - 1} \left[1 - \left(\sum P_i \left(\frac{u_i}{\sum u_i - p_i} \right)^{\frac{1}{\alpha}} D^{-n_i \left(\frac{\alpha - 1}{\alpha} \right)} \right)^{\alpha} \right],$$

\$\neq 1\$, \$u_i > 0\$, \$\sum P_I = 1\$. This being the useful mean left

Where $\alpha > 0 (\neq$ ngth of codewords weighted by utilities, u_i . Lower and upper bounds for $L_{\alpha(u)}$ are derived in terms of 'useful' information measure.

© 2012 Elixir All rights reserved.

$$\sum_{i=1}^{N} D^{-n_i} \le 1.$$
(1.3)

Where D is the size of the code alphabet. The useful mean length L_u of code was defined as

and the authors obtained bounds for it in terms of H(P; U). Longo [10], Gurdial and Pessoa [7], Khan and Autar [2], Singh and Rajeev [12], Khan and Bhat [9] have studied generalized coding theorems by considering different generalized measures of (1.2) and (1.4) under condition (1.3) of unique decipherability.

In this paper, we study some coding theorems by considering a new function depending on the parameters α and a utility function. Our motivation for studying this new function is that it generalizes some entropy functions already existing in the literature Havrda-Charvat [8] and Tsallis entropy [15] which is used in physics.

Coding Theorems

In this section, we define 'useful' information measure as :

where $\alpha > 0 \ (\neq 1), u_i > 0, \ p_i \ge 0, \ i = 1, 2, ..., N$ and $\sum p_i = 1$.

(i). When $u_i = 1$, (2.1) reduces to Havrda-Charvat [8] and C.Tsallis

Tele: E-mail addresses: drsatish74@rediffmail.com

© 2012 Elixir All rights reserved

entropy [15]. i.e. $_{\alpha} H(P) = \frac{1}{\alpha - 1} \left[1 - \sum p_i^{\alpha} \right] \dots (2.2)$

(ii). When $\alpha \to 1$, (2.1) reduces to a measure of 'useful' information for the incomplete distribution due to Bhaker and Hooda [3].

(iii). When $u_i = 1$ for each i, i.e. when the utility aspect is ignored, and $\alpha \rightarrow 1$, the measure (2.1) reduces to Shannon's [13] entropy.

i.e.
$$H(P) = -\sum_{i} p_{i} \log p_{i}$$
.(2.3)

Further consider

Definition: The 'useful' mean length $L_{\alpha(u)}$ with respect to 'useful' information measure is defined as:

$$L_{\alpha(u)} = \frac{1}{\alpha - 1} \left[1 - \left(\sum P_i \left(\frac{u_i}{\sum u_i p_i} \right)^{\frac{1}{\alpha}} D^{-n_i \left(\frac{\alpha - 1}{\alpha} \right)} \right)^{\alpha} \right] , \dots (2.4)$$

where $\alpha > 0 \ (\neq 1), u_i > 0, \ \sum p_i = 1.$

(i). When $u_i = 1$ for each i, and $\alpha \to 1$, $_{\alpha} L_u$ becomes the optimal code length defined by Shannon [13].

(ii). When $u_i = 1$, (2.4) reduced to a new mean codeword length

i.e.
$$_{\alpha}L = \frac{1}{\alpha - 1} \left[1 - \left(\sum_{i=1}^{n} p_i D^{-n_i \frac{(\alpha - 1)}{\alpha}} \right)^{\alpha} \right], \dots (2.5)$$

We establish a result, that in a sense, provides a characterization of $H_{\alpha}(P; U)$ under the condition of unique decipherability. Theorem 2.1. For all integers D > 1

under the condition (1.3). Equality holds if and only if

Proof. We use Holder's [14] inequality

for all $x_i \ge 0$, $y_i \ge 0$, $i = 1, 2, \dots, N$ when $P < 1 \ (\ne 1)$ and $p^{-1} + q^{-1} = 1$, with equality if and only if there exists a

and P = Q = 1, with equality if and only if there exists a positive number c such that

Setting

$$x_{i} = p_{i}^{\frac{\alpha}{\alpha-1}} \left(\frac{u_{i}}{\sum u_{i} p_{i}} \right)^{\frac{1}{\alpha-1}} D^{-n_{i}},$$
$$y_{i} = p_{i}^{\frac{\alpha}{1-\alpha}} \left(\frac{u_{i}}{\sum u_{i} p_{i}} \right)^{\frac{1}{1-\alpha}},$$

 $p=1-\frac{1}{\alpha}$ and $q=1-\alpha$ in (2.8) and using (1.3) we obtain the result (2.6) after simplification for 1 as $\alpha > 1$.

result (2.6) after simplification for $\frac{1}{\alpha - 1} > 0$ as $\alpha > 1$.

Theorem 2.2. For every code with lengths $\{n_i\}, i = 1, 2, ..., N, {}_{\alpha}L_u$ can be made to satisfy,

Proof. Let n_i be the positive integer satisfying, the inequality

$$-\log_{D}\left(\frac{u_{i}P_{i}^{\alpha}}{\sum u_{i}p_{i}^{\alpha}}\right) \leq n_{i} < -\log_{D}\left(\frac{u_{i}P_{i}^{\alpha}}{\sum u_{i}p_{i}^{\alpha}}\right) + 1$$
 (2.11)
Consider the intervals

$$\delta_i = \left[-\log_D \left(\frac{u_i P_i^{\alpha}}{\sum u_i p_i^{\alpha}} \right), -\log_D \left(\frac{u_i P_i^{\alpha}}{\sum u_i p_i^{\alpha}} \right) + 1 \right] \qquad \dots \dots (2.12)$$

of length 1. In every O_i , there lies exactly one positive number n_i such that

$$0 < -\log_D\left(\frac{u_i P_i^{\alpha}}{\sum u_i p_i^{\alpha}}\right) \le n_i < -\log_D\left(\frac{u_i P_i^{\alpha}}{\sum u_i p_i^{\alpha}}\right) +1 \dots (2.13)$$

It can be shown that the sequence $\{n_i\}$, i = 1, 2, ..., N thus defined, satisfies (1.3). From (2.13) we have

Multiplying both sides of (2.14) by $p_i \left(\frac{u_i}{\sum u_i p_i}\right)^{\overline{\alpha}}$, summing over i = 1, 2, ..., N and simplifying for $\frac{1}{\alpha - 1} > 0$ as $\alpha > 1$ gives (2.10).

Theorem 2.3. For every code with lengths $\{n_i\}$, i = 1, 2, ..., N, of Theorem 2.1, ${}_{\alpha} L_u$ can be made to satisfy. ${}_{\alpha} L_u \geq {}_{\alpha} H (U; P) > {}_{\alpha} H (U; P)D + \frac{1}{\alpha - 1} (1 - D)....(2.15)$ Proof. Suppose

Clearly \overline{n}_i and $\overline{n}_i + 1$ satisfy 'equality' in Holder's inequality (2.8). Moreover, \overline{n}_i satisfies Kraft's inequality (1.3).

Suppose n_i is the unique integer between \overline{n}_i and $\overline{n}_i + 1$, then obviously, n_i satisfies (1.3). Since $\alpha > 0 \ (\neq 1)$, we have

$$\begin{split} &\left(\sum P_i \left(\frac{u_i}{\sum u_i p_i}\right)^{\frac{1}{\alpha}} D^{-n_i \left(\frac{\alpha-1}{\alpha}\right)}\right)^{\alpha} \\ &\leq \left(\sum p_i \left(\frac{u_i}{\sum u_i p_i}\right)^{\frac{1}{\alpha}} D^{-\overline{n_i} \frac{(\alpha-1)}{\alpha}}\right)^{\alpha} \\ &< D \left(\sum p_i \left(\frac{u_i}{\sum u_i p_i}\right)^{\frac{1}{\alpha}} D^{-\overline{n_i} \frac{(\alpha-1)}{\alpha}}\right)^{\alpha} \cdots (2.17) \\ &\text{Since,} \left(\sum p_i \left(\frac{u_i}{\sum u_i p_i}\right)^{\frac{1}{\alpha}} D^{-\overline{n_i} \frac{(\alpha-1)}{\alpha}}\right)^{\alpha} = \sum \frac{u_i p_i^{\alpha}}{\sum u_i p_i} \cdot \end{split}$$

Hence, (2.17) becomes

$$\left(\sum P_i\left(\frac{u_i}{\sum u_i - p_i}\right)^{\frac{1}{\alpha}} D^{-n_i\left(\frac{\alpha-1}{\alpha}\right)}\right)^{\alpha} \leq \sum \frac{u_i p_i^{\alpha}}{\sum u_i p_i} < D \left(\sum \frac{u_i p_i^{\alpha}}{\sum u_i p_i}\right)$$

which gives (2.15).

Reference:

[1]. ARNDT, C. (2001) : Information Measure –Information and its Description in Science and Engineering, *Springer*, Berlin. [2]. AUTAR, R. and KHAN, A.B. (1979) : On Useful Information of Order α , *Soochow J. Math.*, 5, 93-99.

[3]Bhaker,U.S.andHooda,D.S.(1993)*Mean value characterization of 'useful'* information measures, Tamkang Journal of Mathematics ,24, 383-394.

[4]. BELIS,M. and GUIASU,S. (1968) : A Qualitative-Quantitative Measure of Information in Cybernetics Systems, *IEEE Trans. Information Theory*, IT -14, 593-594.

[5]. FEINSTEIN, A. (1958) : *Foundation of Information Theory*, McGraw Hill, New York.

[6]. GUIASU,S. and PICARD,C.F. (1971) : Borne Infericutre de la Longuerur Utile de Certain Codes, *C.R. Acad. Sci, Paris*, 273A, 248-251.

[7]. GURDIAL and PESSOA, F. (1977) : On Useful Information of Order α , *J. Comb. Information and Syst. Sci.*, 2, 158-162.

[8]. HAVRDA-CHARVAT, (1967) : Qualification Method of Classification Process, the concept of structural α -entropy, Kybernetika, 3,30-35.

[9] KHAN,A.B. AND BHAT,B.A. AND PIRZADA,S.(2005) : Some Results On a Generalized Useful Information Measure, *Journal of Inequalities in Pure and Applied Mathematics*, Volume 6, issue 4, Article 117.

[10]. LONGO,G. (1976) : A Noiseless Coding Theorem for Sources Having Utilities, *SIAM J. Appl. Math.*, 30(4), 739-748.

[11]. PARKASH, OM. And SHARMA, P.K. (2004) : Noiseless Coding Theorems Corresponding to Fuzzy Entropies, *Southeast Asian Bulletin of Mathematics*, 27, 1073-1080.

[12]. SINGH ,R.P. AND RAJEEV KUMAR,TUTEJA (2003) : Application of Holder's Inequality in Information Theory, *Information Sciences*, 152, 145-154.

[13]. SHANNON, C.E. (1948) : A Mathematical Theory of Communication, *Bell System Tech-J.*, 27, 394-423, 623-656.

[14]. SHISHA,O. (1967) : *Inequalities*, Academic Press, New York.

[15]. TSALLIS, C. (1988) : Possible Generalization of Boltzmann Gibbs Statistics, *J.Stat.Phy.* 52, 479.