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Introduction  

Consider the following model for a random experiment S,  

 UPESN ;;  

where   NEEEE ....,,, 21  is a finite system of events 

happening with respective probabilities  nPPPP ....,,, 21 , 

0ip , and 1 ip  and credited with utilities 

 NuuuU ....,,, 21 , Niui ...,,2,1,0  . Denote the 

model by NS , where  
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       We call (1.1) a Utility Information Scheme (UIS). Belis and 

Guiasu [4] proposed a measure of information called ‘useful 

information’ for this scheme, given by    

          
   iii ppuUPH log;

,              …………(1.2) 

where H(P ; U) reduces to Shannon’s [13] entropy when the 

utility aspect of the scheme is ignored i.e., when 1iu  for 

each i. Throughout the paper,  will stand for  

N

i 1 unless 

otherwise stated and logarithms are taken to base  1DD .  

Guiasu and Picard [6] considered the problem of encoding 

the outcomes in (1.1) by means of a prefix code with codewords 

Nwww ,....,, 21  having lengths Nnnn ,....,, 21  and 

satisfying Kraft’s inequality [5] . 
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Where D is the size of the code alphabet. The useful mean 

length uL  of code was defined as  
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and the authors obtained bounds for it in terms of H(P; U). 

Longo [10], Gurdial and Pessoa [7], Khan and Autar [2] , Singh 

and Rajeev [12], Khan and Bhat [9]  have studied generalized 

coding theorems by considering different generalized measures 

of (1.2) and (1.4) under condition (1.3) of unique 

decipherability.  

 In this paper, we study some coding theorems by 

considering a new function depending on the parameters α and a 

utility function. Our motivation for studying this new function is 

that it generalizes some entropy functions already existing in the 

literature Havrda-Charvat [8] and Tsallis entropy [15]  which is 

used in physics.  

Coding Theorems  

In this section, we define ‘useful’  information measure as :  
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, …….(2.1) 

where   Nipu ii ...,,2,1,0,0,10   and 

  1ip . 

( i ).   When 1iu , (2.1) reduces to Havrda-Charvat [8] and 

C.Tsallis 

Tele:   

E-mail addresses:  drsatish74@rediffmail.com 

         © 2012 Elixir All rights reserved 

A ‘useful’ information measure and its mean codewords length  
Satish Kumar 

Department of Mathematics, G.I.M.T. (Kanipla) Kurukshetra, Haryana, India.   

ABSTRACT  

A parametric mean length is defined as the quantity 

  

1
1

( )

1
1

1

in
i

u i

i i

u
L P D

u p









 
  

 

  
   

          
   




, 

Where  ,10  ,0iu .1 IP This being the useful mean length of codewords 

weighted by utilities, iu . Lower and upper bounds for 
)(uL
 are derived in terms of ‘useful’  

information measure. 
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entropy  [15] .    i.e.     


 



ipPH 1

1

1
  …….(2.2) 

(ii).     When  1 , (2.1) reduces to a measure of ‘useful’ 

information                                     for   the incomplete 

distribution due to Bhaker and Hooda [3].                      

(iii ).    When 1iu  for each i ,  i.e. when the utility aspect is 

ignored,       and   1 , the measure (2.1) reduces to 

Shannon’s [13]  entropy .            

       i.e.     ii ppPH log .                    ………(2.3)       

Further consider  

Definition: The ‘useful’ mean length 
 uL

 with respect to 

‘useful’  information measure is defined as:  
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where  ,10  ,0iu  1 ip .    

(i).   When 1iu  for each i, and 1 , uL  becomes the 

optimal code length defined by Shannon [13].                                                

(ii).  When 1iu ,  (2.4) reduced to a new mean codeword 

length  

   i.e.    
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i DpL , ….(2.5)       

We establish a result, that in a sense, provides a characterization 

of   UPH ;
 under the condition of unique decipherability.  

Theorem 2.1. For all integers D > 1  

  UPHL u ;)(           ………..(2.6)  

under the condition (1.3). Equality holds if and only if  
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Proof. We use Holder’s [14] inequality  
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       ………..(2.8)  

for all ......,,2,1,0,0  iyx ii  N when P < 1 ( 1) 

and 111   qp , with equality if and only if there exists a 

positive number c such that  
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i cyx  .          ……..(2.9) 

Setting  
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 and 1q  in (2.8) and using (1.3) we obtain the 

result (2.6) after simplification for 
0

1

1




 as 1 .  

Theorem 2.2. For every code with lengths 

  ui LNin ,...,,2,1,  can be made to satisfy,  
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Proof. Let in  be the positive integer satisfying, the inequality  

1loglog 
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Consider the intervals 
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of length 1. In every i , there lies exactly one positive number 

in  such that  

0 log log 1i i i i

D i D

i i i i

u P u P
n

u p u p

 

 

   
           

    
…..(2.13) 

It can be shown that the sequence   Nini ...,,2,1,   thus 

defined, satisfies (1.3). From (2.13) we have  

1log 
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Multiplying both sides of (2.14) by 


1















 ii

i

i
pu

u
p , summing 

over Ni ....,,2,1  and simplifying  for  0
1

1



 as 

1  gives (2.10).  

Theorem 2.3. For every code with lengths 
 in , 

Ni ....,,2,1 , of Theorem 2.1, 
uL

 can be made to satisfy.   

      
1

; ; 1
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uL H U P H U P D D  


   


.…..(2.15) 

Proof. Suppose  
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Clearly in  and in  + 1 satisfy ‘equality’ in Holder’s inequality 

(2.8). Moreover, in  satisfies Kraft’s inequality (1.3).  

Suppose in  is the unique integer between in  and in  + 1, then 

obviously, in  satisfies (1.3). 

Since  10  , we have 



Satish Kumar/ Elixir Appl. Math. 47 (2012) 8715-8717 
 

8717 



































 






 





1
1

in

ii

i

i D
pu

u
P  

 












































1

1

in

ii

i

i D
pu

u
p  

 
 












































1

1

in

ii

i

i D
pu

u
pD

 . ……..(2.17) 

Since,  
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Hence,  (2.17) becomes 
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which gives  (2.15). 
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