Quantum chemical calculations of pyridine-2,6-dicarbonyl dichloride

V Balachandran ${ }^{1, *}$ and M Sundararajan ${ }^{2}$
${ }^{1}$ Department of Physics, A A Government Arts College, Musiri 621211.
${ }^{2}$ Department of Physics, Loyola College, Chennai 600034.

ARTICLE INFO

Article history:
Received: 27 May 2012;
Received in revised form:
28 June 2012;
Accepted: 27 July 2012;

Keywords

Vibrational spectra,
Ab-initio,
DFT calculations,
PDD,
Vibrational assignment.

Introduction

N-Heterocyclic, especially, pyridine ring system occurs in the structures of a wide variety of natural products, pharmaceuticals and agrochemical compounds. It plays a central role in the structure and properties of nucleic acids. Its biological importance is substantiated by the fact that pyridine ring plays a very important role in the fundamental metabolism in two ways: (i) as an oxidizing system by effective hydride abstraction in nicotinamide adenine dinucleotide and (ii) in dehydrogenase enzymes, and in transmination reactions, an important aspect of amino acid metabolism[1-3], as vitamin B6.

Nitrogen in the pyridine ring has a lone pair of electrons which is not delocalized with the aromatic π-electron system and is easily available for protonation. The basicity becomes more pronounced if electron-donating groups are present on the ring at adjacent positions of N because of the increased electron density on the nitrogen atom[4-6].

Intensive studies on pyridine and substituted pyridines have been made in the past keeping in view their industrial importance both as a fundamental building block and as a solvent and reagent in organic syntheses[7]. The spectroscopic studies of N -heterocyclic molecules including substituted pyridines have become quite interesting as they are the constitutents[8-10] of DNA and RNA.

Literature survey reveals that to the best of our knowledge, the results based on quantum chemical calculations, FT-IR and FT-Raman spectral studies on pyridine-2,6-dicarbonyl dichloride (PDD) have no reports.

Hence in the present work, we reported detailed interpretations of the infrared and Raman spectra based on the experimental and theoretical results, which are acceptable and supportable to each other. Attempts have been made to find out an optimum method using a reasonable basis set to get a close agreement between the computed and the experimental data.

Methodology

Experimental and theoretical methods

The compound PDD was provided by Lancaster Chemical Company, UK, with a stated purity of 98% and it was used as such without further purification. The spectral measurements were carried out at Central Electro Chemical Research Institute (CECRI), Karaikudi (Tamilnadu), India. The FT-Raman spectrum of PDD was recorded using 1064 nm line of Nd:YAG laser as excitation wavelength in the region $3500-100 \mathrm{~cm}^{-1}$ on thermo electron corporation model Nexus 670 spectrometer equipped with FT-Raman module accessory. FT-IR spectral measurement was carried out at St. Joseph College, Tiruchirappalli, India. The FT-IR spectrum of the title compound was recorded in the region $4000-400 \mathrm{~cm}^{-1}$ on Perkin Elmer Spectrophotometer in KBr pellet. The spectrum was recorded at room temperature with a scanning speed of $30 \mathrm{~cm}^{-}$ ${ }^{1} \mathrm{~min}^{-1}$ and the spectral width of $2.0 \mathrm{~cm}^{-1}$. The observed experimental FT-IR and FT-Raman spectra are shown in Figs. 1 and 2 , respectively.

Computational method

Geometry optimization and vibrational frequencies of pyridine-2,6-dicarbonyl dichloride were calculated at the HF[11] and DFT levels with B3LYP (Becke-3-Lee-Yang-Parr three parameters) hybrid functional with correlation function such one proposed by Lee, Yang and Parr[12,13]. B3LYP is most promising in providing reasonably acceptable vibrational wave numbers for organic molecules. Standard 6-311+G (d,p) basis
set has been used in both methods in order to see the effect of correlation. Gaussian 09 software package[14] and the methods implemented therein have been utilized to accomplish all the calculation. All the parameters were allowed to relax and all the calculations were converged to an optimized geometry which corresponds to a true energy maximum, as revealed by the lack of imaginary values in the wavenumber calculations. The Cartesian representation of the theoretical force constants have been computed at the fully optimized geometry by assuming the molecule belongs to C_{s} point group symmetry. The transformation of force field from Cartesian to internal local symmetry coordinates the scaling, the subsequent normal coordinate analysis (NCA), calculation of potential energy distribution (PED) were done on a PC with the version V7.0G77 of the MOLVIB program written by Tom Sundius[15].

A detailed description of vibrational modes can be given by means of normal coordinate analysis, for this purpose the full set of 50 standard internal coordinates (containing 11 redundancies) for the title compound is presented in Table 1. From these, a non-redundant set of local symmetry coordinates were constructed by suitable linear combinations of internal coordinates following the recommendations of Pulay and Fogarasi $[16,17]$ which are presented in Table 2. The theoretically calculated DFT force fields were transformed to this set of vibrational coordinates and used in all subsequent calculations.

Results and discussion

Geometric structure

The optimized structural parameters (Table. 3) and global minimum energy of PDD were calculated by C_{s} point group symmetry with HF/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels. In accordance with the atom numbering scheme is given in Fig. 3. The global minimum energies of PDD are -1389.9530 and -1394.1538 hartrees for HF/6-311+G(d,p) and B3LYP/6$311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ levels, respectively. The computed harmonics were scaled by 0.8901 for wavenumbers less than $1700 \mathrm{~cm}^{-1}$ and 0.9813 for higher wavenumbers. The computed bond lengths and bond angles by both levels show satisfactory agreement with experimental[18] observation.

Fig. 3. - Molecular structure of pyridine-2,6-dicarbonyl dichloride

Vibrational assignments

The 39 normal modes of PDD are distributed among the symmetry species as $\Gamma 3 \mathrm{~N}-6=27 A^{\prime}$ (in-plane) $+12 A^{\prime \prime}$ (out-ofplane) by assuming C_{s} point group symmetry. The detailed vibrational assignments of fundamental modes of PDD along with observed and calculated frequencies, IR intensities, Raman scattering activities and normal mode descriptions have been reported in Table 4. It is convenient to discuss the vibrational spectra of PDD in terms of characteristic spectral region as described below:
\boldsymbol{C} - \boldsymbol{H} vibrations - The hetero aromatic organic compounds commonly exhibit multiple week bands in the region 3100-3000 cm^{-1} due to $\mathrm{C}-\mathrm{H}$ stretching vibrations[19]. In this region, the bands are not affected appreciably by the nature of substituents. In this title molecule, the bands have been assigned at 3191, 3103, $3020 \mathrm{~cm}^{-1}$ in IR and $3188,3102,3024 \mathrm{~cm}^{-1}$ in Raman to C-H stretching vibrations. The scaled values computed by B3LYP/6-311+G(d,p) level coincide well with the experimental observation. The $\mathrm{C}-\mathrm{H}$ in-plane[20] ring bending vibrations normally occurred as number of strong to weak intensity sharp bands in the region $1300-1000 \mathrm{~cm}^{-1}$. The bands for C-H in-plane bending vibrations of the title compound identified at 1282 , $1208,1120 \mathrm{~cm}^{-1}$ in infrared and 1288 and $1210 \mathrm{~cm}^{-1}$ in Raman. The theoretically computed frequency for $\mathrm{C}-\mathrm{H}$ in-plane bending vibrations by B3LYP/6-311+G(d,p) method shows excellent agreement with recorded spectra as well as literature[10] data.

The C-H out-of-plane bending vibrations[10, 21] are strongly coupled vibrations and normally observed in the region $950-800 \mathrm{~cm}^{-1}$. In the present case, the bands are identified at 1002, 970 and $871 \mathrm{~cm}^{-1}$ for C-H out-of-plane bending. Except first two bands, the assigned frequency is found to be well within the characteristic regions. In the case of C-H out-of-plane bending vibrations of present molecule are slightly pulled up fairly. This view of pull of vibrations is purely by the heavy mass of carbonyl chloride group vibration.
$\boldsymbol{C}-\boldsymbol{N}$ vibrations - The pyridine absorbs strongly in the region $1600-1500 \mathrm{~cm}^{-1}$ due to the $\mathrm{C}=\mathrm{N}$ ring stretching vibrations[22]. Accordingly, a medium strong band is observed at $1448 \mathrm{~cm}^{-1}$ in infrared and $1449 \mathrm{~cm}^{-1}$ in Raman in the title molecule. The C-N stretching vibrations[22] are always mixed with other bands and are usually assigned with region $1266-1382 \mathrm{~cm}^{-1}$. The C-N stretching is observed at 1184 and $1188 \mathrm{~cm}^{-1}$ in IR and Raman, respectively and is mixed with $\mathrm{C}-\mathrm{H}$ in-plane bending vibrations. This frequency is also at the lower end of the expected range which may be due to the interaction of C-C vibration, whose frequency extends up this value. This view is supported by the literature[22,23].
\boldsymbol{C} - \boldsymbol{C} vibrations - The ring carbon-carbon stretching vibrations[24] occur in the region $1625-1430 \mathrm{~cm}^{-1}$. The in-plane deformation vibration is at higher frequencies than the out-ofplane vibrations. In the present work, the frequencies observed in the FT-IR spectrum at $1595,1561,1480,1350,992$ and 720 cm^{-1} have been assigned to $\mathrm{C}-\mathrm{C}$ stretching vibrations. The same vibrations appear in the FT-Raman spectrum at 1596, 1349 and $989 \mathrm{~cm}^{-1}$. The theoretically computed values by B3LYP/6$311+G(d, p)$ method for $\mathrm{C}-\mathrm{C}$ vibrations are good agreement with FT-IR experimental values.
\boldsymbol{C}-Cl vibrations - Strong characteristic absorption due to C-X stretching vibration is observed and the position of the band is influenced by neighboring atoms or groups the smaller the halide atom the greater the influence of the neighbors. Unlike aliphatic compounds there appears to be no pure C-X stretching vibration band for aromatic halogen compounds. The $\mathrm{C}-\mathrm{Cl}$ stretching absorption is observed in the broad region between 850 and $550 \mathrm{~cm}^{-1}$. In view of this, the bands in IR at 754 and 741 cm^{-1} having a Raman counterpart at $741 \mathrm{~cm}^{-1}$ are assigned to the $\mathrm{C}-\mathrm{Cl}$ stretching of PDD. The $\mathrm{C}-\mathrm{Cl}$ in-plane bending modes of the title compound are observed at 421 and $400 \mathrm{~cm}^{-1}$ in Raman.
$\boldsymbol{C}=\boldsymbol{O}$ vibrations - The carbonyl stretching vibration $\mathrm{C}=\mathrm{O}$ is expected in the region $1715-1680 \mathrm{~cm}^{-1}$ and in the present study, the bands observed at 1781 and $1745 \mathrm{~cm}^{-1}$ in the Raman spectrum are assigned as $\mathrm{C} 7=\mathrm{O} 8$ and $\mathrm{C} 13=\mathrm{O} 14$ stretching
modes. B3LYP calculations give these modes at 1784 and 1740 cm^{-1}. The mode $\gamma \mathrm{C} 7=\mathrm{O} 8$ is simultaneously active in IR and Raman spectra which clearly explains a charge transfer between the donor and acceptor through a π-conjugated path. The fundamentals of $\mathrm{C}=\mathrm{O}$ in-plane and out-of plane bending vibrations are presented in Table 4. These assignments are in good agreement with the literature[25,26] values for heterocyclic compounds.

Conclusion

The pyridine-2,6-dicarbonyl dichloride is of biological and pharmaceutical importance belongs to C_{s} point group symmetry. The Fourier transforms infrared and Raman spectra of the title molecule were recorded in the region of $4000-400 \mathrm{~cm}^{-1}$ and $3500-100 \mathrm{~cm}^{-1}$. The optimized geometrical parameters such as bond lengths, bond angles and dihedral angles were measured by using Gaussian package. Comparison between the calculated and experimental structural parameters indicates that B3LYP results are in good agreement with experimental value. The infrared intensities, Raman activities, reduced masses and force constants of the title compound were determined and the vibrational assignments have been analyzed. The difference between the observed and scaled frequency values of most of the fundamentals is very small. On the basis of agreement between the calculated and observed results, assignments of fundamental vibrational modes of PDD are examined. Therefore, the assignments made at higher level of theory with higher basis set with only reasonable value seem to be correct. From the vibrational discussion, it was concluded that the substitution of H atom by the COCl group distort the ring geometries to small extent and the planarity of the molecule.

References

[1] Krishnakumar V, John Xavier R, Spectrochimica Acta Part A, 61 (2005) 253.
[2]Medhi R N, Barman R, Medhi K C \& Jois S S, Spectrochimica Acta, Part A, 56 (2001) 1523.
[3]Joule J A \& Smith G F, Heterocyclic Chemistry (University Press, Cambridge), (1978) 44.
[4]Krishnakumar V \& Ramasamy R, Indian J Pure \& Appl Phys, (40) (2002) 252.
[5]Krishnakumar V Keresztary G, Sundius T \& Xavier R J, Spectrochimica Acta, Part A 61 (2005) 261.
[6]Yadav B S, Kumar V, Singh V \& Sembwal B S, Indian J
Pure \& Appl Phys, 37 (1999) 34.
[7]Sherman A R "Pyridine" in e-EROS (Encyclopedia of Reagents for Organic Synthesis) (Ed: Paquette) 2004, (J Wiley, New York).
[8] Arivazhagan M \& Krishnakumar V, Indian J Pure \& Appl Phys, 41 (2003) 1113.
[9] Singh H J \& Srivastava P, Indian J Pure \& Appl Phys, 47 (2009) 557.
[10] Yadav B S, Ali Israt, Kumar \& Yadav P, Indian J Pure \& Appl Phys, 45 (2007) 979.
[11] Roothaan C C J, Revs Mod Phys, 23 (1951) 69.
[12] Becke A D, J Chem Phys, 98 (1993) 5648.
[13] Lee C, Yang W \& Parr R G, Phys Rev B, 37 (1988) 785.
[14] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E et al., Gaussian 09, Revision A 02 (Inc., Wallingford CT) 2009.
[15] (a) Sundius T, Vibrational Spectrosc, 29 (2002) 89; (b) MOLVIB, V. 7.0: Calculations of Harmonic Force Fields and Vibrational modes of molecules, QCPE Program NO. 807 (2002).
[16] Pulay P, Fogarasi G, Boggs J E \& Vargha A, J Am Chem. Soc, 105 (1983) 7073.
[17] Fogarasi G, Zhou X, Taylor PW \& Pulay P, J Am Chem Soc, 114 (1992) 819.
[18] Sundaraganesan N, Meganathan C, Anand B \& Joshua B D and Lapouge C, Spectrochimica Acta Part A, 67 (2007) 830.
[19] Coates J, Meyers R. A, Interpretation of Infrared Spectra: A Practical Approach, John Wiley and Sons Ltd., Chichester, 2000.
[20] Krishnakumar V \& John Xavier R, Indian J Pure \& Appl Phys, 41 (2003) 597.
[21] Krishnakumar V, Balachandran V \& Chithambarathanu T, Spectrochimica Acta Part A, 71 (2009) 11.
[22] Socrates G, Infrared Characteristic Group Frequencies, (John Wiley, New York), 1981.
[23] John Xavier R, Balachandran V, Arivazhagan M \& Ilango G, Indian J Pure \& Appl Phys, 48 (2010) 245.
[24] Sundaraganesan N, Karpagam J, Sebastian S \& Cornard J P, Spectrochimica Acta Part A, 73 (2009) 11.
[25] Gunasekaran S \& Sailatha E, Indian J Pure \& Appl Phys, 47 (2009) 259.
[26] Gunasekaran S, Natarajan R K, Rathikha R \& Syamala D, Indian J Pure \& Appl Phys, 43 (2010) 503.

Table 1 - Definition of internal coordinates of pyridine-2,6-dicarbonyl dichloride

No(i)	Symbol	Type	Definition
Stretching			
1-3	r_{i}	C-H	C3-H10, C4-H11, C5-H12
4-5	R_{i}	C-C	C2-C7, C6-C13
6-7	P_{i}	$\mathrm{C}=\mathrm{O}$	C7-08, C13-O14
8-11	q_{i}	C-C	C2-C3, C3-C4, C4-C5, C5-C6
12-13	t_{i}	$\mathrm{C}-\mathrm{Cl}$	C7-C19, C13-C115
14-15	S_{i}	C-N	C2-N1, C6-N1
In-plane bending			
16-21	$\alpha_{\text {i }}$	C-C-H	C2-C3-H10, C4-C3-H10, C3-C4-H11, C5-C4-H11, C4-C5-H12, C6-C5-H12
22-25	β_{i}	C-C-C	$\begin{aligned} & \text { N1-C2-C7, C3-C2-C7 } \\ & \text { N1-C6-C13, C5-C6-C13 } \end{aligned}$
26-27	γ_{i}	C-C-O	C6-C13-O14, C2-C7-O8
28-29	σ_{i}	C-C-Cl	C2-C7-C19, C6-C13-Cl15
30-35	δ_{i}	Ring	$\begin{aligned} & \text { N1-C2-C3, C2-C3-C4, C3-C4-C5, } \\ & \text { C4-C5-C6, C5-C6-N1, C6-N1-C2 } \end{aligned}$
Out-of-plane bending			
36-38	ω_{i}	$\mathrm{Car}_{\mathrm{ar}}-\mathrm{H}$	H10-C3-C2-C4, H11-C4-C5-C3, H12-C5-C4-C6
39-40	ω_{i}	$\mathrm{Cara}_{\mathrm{ar}}-\mathrm{C}$	C7-C2-C3-N1, C13-C6-N1-C5
41-42	ω_{i}	C-O	O8-C7-C2-C3(N1), O14-C13-C6-C5(N1)
43-44	ω_{i}	$\mathrm{C}-\mathrm{Cl}$	C19-C7-C2-C3(N1), C115-C13-C6-C5(N1)
45-50	τ_{i}	tRing	$\begin{aligned} & \text { C2-C3-C4-C5, C3-C4-C5-C6, C4-C5-C6-N1, } \\ & \text { C5-C6-N1-C2, C6-N1-C2-C3, N1-C2-C3-C4 } \end{aligned}$

For numbering of atom refer Fig. 3

Table 2 - Definition of local symmetry coordinates of pyridine-2,6-dicarbonyl dichloride

No(i)	Symbol ${ }^{\text {a }}$	Definition ${ }^{\text {b }}$
1-3	$\mathrm{CH}_{\text {ar }}$	$\mathrm{r}_{1}, \mathrm{r}_{2}, \mathrm{r}_{3}$
4-5	CC	$\mathrm{R}_{4}, \mathrm{R}_{5}$
6-7	CO	$\mathrm{P}_{6}, \mathrm{P}_{7}$
8-11	CC	$\mathrm{q}_{8}, \mathrm{q}_{9}, \mathrm{q}_{10}, \mathrm{q}_{11}$
12-13	CCl	$\mathrm{t}_{12}, \mathrm{t}_{13}$
14-15	CN	$\mathrm{S}_{14}, \mathrm{~S}_{15}$
16-18	CCH	$\left(\alpha_{16}-\alpha_{17}\right) / \sqrt{2},\left(\alpha_{18}-\alpha_{19}\right) / \sqrt{ } 2,\left(\alpha_{20}-\alpha_{21}\right) / \sqrt{ } 2$
19-20	CCC	$\left(\beta_{22}-\beta_{23}\right) \sqrt{6},\left(\beta_{24}-\beta_{25}\right) \sqrt{6}$
21-22	CCO	γ_{26}, γ_{27}
23-24	CCCl	$\sigma_{28}-\sigma_{29}$
25-27	Rring	$\begin{aligned} & \left(\delta_{30}-\delta_{31}+\delta_{32}-\delta_{33}+\delta_{34}-\delta_{35}\right) / \sqrt{6} \\ & \left(-\delta_{30}-\delta_{31}+2 \delta_{32}-\delta_{33}-\delta_{34}+2 \delta_{35}\right) / \sqrt{ } 12, \\ & \left(\delta_{30}-\delta_{31}+\delta_{33}-\delta_{34}\right) / 2 \end{aligned}$
28-30	CH	$\omega_{36}, \omega_{37}, \omega_{38}$
31-32	CC	ω_{39}, ω_{40}
33-34	CO	ω_{41}, ω_{42}
35-36	CCl	ω_{43}, ω_{44}
37-39	тring	$\begin{aligned} & \left(\tau_{45}-\tau_{46}+\tau_{47}-\tau_{48}+\tau_{49}-\tau_{50}\right) / \sqrt{ } 6, \\ & \left(\tau_{45}-\tau_{46}+\tau_{48}-\tau_{50}\right) / 2, \\ & \left(-\tau_{45}+\tau_{46}-\tau_{47}-\tau_{48}+2 \tau_{49}-\tau_{50}\right) / \sqrt{ } 12 \end{aligned}$

${ }^{\text {a }}$ These symbols are used for description of the normal modes by PED in Table 4
${ }^{\mathrm{b}}$ The internal coordinates used here are defined in Table 2.

Table 3 - Optimized geometrical parameter of pyridine-2,6-dicarbonyl dichloride obtained by HF/6-31+G(d,p) and B3LYP/6-31+G(d,p)

Parameters	$\operatorname{Exp}^{\text {a }}$	Bond	ngth(A)	Parameters	Exp $^{\text {a }}$	Bond angle (${ }^{\circ}$)		Parameters	Dihedral angle $\left(^{\circ}\right.$)	
		HF	B3LYP			HF	B3LYP		HF	B3LYP
N1-C2	1.340	1.347	1.346	C2-N1-C6	117.3	118.94	119.00	C6-N1-C2-C7	180.00	180.00
N1-C6	1.340	1.347	1.346	N1-C2-C3	123.7	122.43	122.34	C2-N1-C6-C13	180.00	180.00
C2-C3	1.395	1.403	1.401	N1-C2-C7		113.76	113.61	N1-C2-C3-C4	0.0004	0.00
C2-C7		1.491	1.489	C3-C2-C7		123.79	124.04	N1-C2-C3-H10	179.99	180.00
C3-C4	1.394	1.397	1.394	C2-C3-C4	118.51	118.30	118.32	C7-C2-C3-C4	-180.00	-180.00
C3-H10		1.080	1.077	C2-C3-H10		120.50	120.59	C7-C2-C3-H10	-0.00	-0.01
C4-C5	1.394	1.397	1.394	C4-C3-H10		121.18	121.08	N1-C2-C7-O8	0.03	0.00
C4-H11	1.081	1.083	1.079	C3-C4-C5	118.5	119.56	119.67	N1-C2-C7-Cl9	179.96	179.99
C5-C6	1.395	1.403	1.401	C3-C4-H11	120.2	120.21	120.16	C3-C2-C7-08	179.96	180.00
C5-H12	1.081	1.080	1.077	C5-C4-H11		120.21	120.16	C3-C2-C7-Cl9	-0.03	-0.01
C6-C13		1.491	1.489	C4-C5-C6	118.5	118.30	118.32	C2-C3-C4-C5	-0.01	-0.01
C7-08		1.202	1.193	C4-C5-H12	120.2	121.18	121.08	C2-C3-C4-H11	180.00	179.99
C7-C19		1.909	1.925	C6-C5-H12		120.50	120.59	H10-C3-C4-C5	-180.00	-180.00
C13-O14		1.202	1.197	N1-C6-C5	123.6	122.43	122.34	C3-C4-C5-H12	-180.00	-180.00
C13-C115		1.909	1.925	N1-C6-C13		113.76	113.62	H11-C4-C5-C6	179.99	179.99
				C5-C6-C13		123.79	124.04	C4-C5-C6-C13	-180.00	-180.00
				C2-C7-08		127.66	128.13	H12-C5-C6-N1	179.99	180.00
				C2-C7-C19		113.73	113.54	H12-C5-C6-C13	-0.01	-0.01
				O8-C7-C19		118.59	118.31	N1-C6-C13-O14	0.04	0.00
				C6-C13-O14		127.66	128.13	N1-C6-C13-Cl15	179.95	179.99
				C6-C13-C115		113.73	113.54	C5-C6-C13-O14	179.95	180.00
				O14-C13-C115		118.59	118.32	C5-C6-C13-Cl15	0.03	0.01

${ }^{\mathrm{a}}$ Taken from Ref. 18

Table 4 - Vibrational assignment of fundamental observed frequencies and calculations frequencies using HF/6-311+G and B3LYP/6-311+G levels with basis sets[Wave number cm^{-1}, IR intensities using(KM mole ${ }^{-1}$); Raman activity (Normalized to 100)

Reduced mass(amu); Force constant(mdyme $\left.\mathrm{A}^{-1}\right)$]

No.	Species	Observed frequencies $\left(\mathrm{cm}^{-1}\right)$		Computational frequencies $\left(\mathrm{cm}^{-1}\right)$			$\underset{\text { Intensity }}{\text { IR }}$		Raman activity		Reduced Mass		Force Constant		Assignments /(\%PED)
				Unscaled		$\begin{aligned} & \text { Scaled } \\ & \text { B3LYP } \end{aligned}$									
		IR	Raman	HF	B3LYP		HF	B3LYP	HF	B3LYP	HF	B3LYP	HF	B3LYP	
1	A^{\prime}	3191w	3188w	$\begin{gathered} 327 \\ 6 \\ \hline \end{gathered}$	3248	3192	0.00	0.00	108.97	104.97	1.09	1.09	6.93	6.82	$\nu \mathrm{CH}$ (99)
2	A'	3103s	3102s	$\begin{gathered} \hline 327 \\ 3 \\ \hline \end{gathered}$	3245	3102	2.75	1.39	27.96	27.99	1.09	0.09	6.89	6.77	vCH (99)
3	A'	3020w	3024w	$\begin{gathered} 323 \\ 5 \\ \hline \end{gathered}$	3206	3022	3.54	4.79	84.42	82.52	1.09	0.09	6.73	6.61	vCH (99)
4	A^{\prime}	1784vs	1781s	$\begin{gathered} 182 \\ 7 \end{gathered}$	1807	1784	405.03	436.77	124.88	127.60	13.19	13.18	25.97	25.36	$\mathrm{vC=O}$ (98)
5	A^{\prime}		1745w	$\begin{gathered} 182 \\ 2 \\ \hline \end{gathered}$	1801	1740	27.09	31.84	73.50	75.94	13.13	13.11	25.69	25.06	$v \mathrm{C}=\mathrm{O}$ (97)
6	A^{\prime}	1595vs	1596vs	$\begin{gathered} 162 \\ 1 \end{gathered}$	1606	1601	19.93	20.86	47.14	48.87	4.74	4.44	7.35	6.76	$\mathrm{vC-C}$ (95)
7	A^{\prime}	1561w		$\begin{gathered} \hline 161 \\ 0 \\ \hline \end{gathered}$	1592	1565	4.44	3.97	77.83	75.94	5.95	5.54	9.09	8.29	$v \mathrm{C}-\mathrm{C}$ (95)
8	A^{\prime}	1480ms		$\begin{gathered} 149 \\ 7 \end{gathered}$	1487	1478	11.31	10.92	21.52	48.87	2.12	2.07	2.80	2.70	$\mathrm{vC-C}$ (94)
9	A^{\prime}	1448ms	1449ms	$\begin{gathered} 143 \\ 3 \end{gathered}$	1415	1445	6.61	5.73	3.80	75.45	3.50	3.41	4.23	4.03	$v \mathrm{CN}$ (87)
10	A^{\prime}	1350w	1349w	$\begin{gathered} 134 \\ 8 \end{gathered}$	1321	1309	0.05	0.03	6.30	25.42	6.62	5.82	7.09	5.99	$v \mathrm{C}-\mathrm{C}$ (93)
11	A^{\prime}	1282vs	1288s	$\begin{aligned} & 127 \\ & 3 \end{aligned}$	1260	1285	1.38	0.39	73.58	2.08	5.40	5.50	5.16	5.15	$\delta \mathrm{CH}$ (77)
					1021	1711		-		$5<2$				1×6	

Table 4 - Vibrational assignment of fundamental observed frequencies and calculations frequencies using HF/6-311+G and B3LYP/6-311+G levels with basis sets[Wave number cm^{-1}, IR intensities using(KM mole ${ }^{-1}$); Raman activity (Normalized to 100)

Reduced mass(amu); Force constant(mdyme $\left.\left.\mathbf{A}^{-1}\right)\right]$ - Contd

No.	Species	Observed frequencies $\left(\mathrm{cm}^{-1}\right)$		Computational frequencies $\left(\mathrm{cm}^{-1}\right)$			$\begin{gathered} \text { IR } \\ \text { Intensity } \end{gathered}$		Raman activity		Reduced Mass		Force Constant		Assignments /(\%PED)
				Unscaled		$\begin{aligned} & \text { Scaled } \\ & \text { B3LYP } \end{aligned}$									
		IR	Raman	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~F} \end{aligned}$	B3LYP										
							HF	B3LYP	HF	B3LYP	HF	B3LYP	HF	B3LYP	
21	A'	754w		76 1	756	758	19.60	18.51	1.70	1.37	1.92	2.01	0.65	0.68	$\mathrm{vC}-\mathrm{Cl}$ (90)
22	A'	741s	741w	$\begin{aligned} & 74 \\ & 9 \end{aligned}$	748	742	0.00	0.01	5.11	5.12	7.34	7.30	2.42	1.99	$\nu \mathrm{C}-\mathrm{Cl}$ (91)
23	A'	720s		74 0	737	728	371.86	399.35	0.00	0.01	8.02	8.03	2.31	2.26	$\nu \mathrm{C}-\mathrm{C}$ (90)
24	A"	660vs		67 5	672	666	0.39	0.29	17.68	18.92	8.48	8.52	2.28	2.27	$\gamma \mathrm{C}=\mathrm{O}$ (58)
25	A'	621w		62 2	323	620	19.27	16.99	1.18	0.28	7.71	7.64	1.75	1.69	§C-C (54)
26	A'	560 ms	562s	50 6	508	512	0.38	0.60	1.51	1.60	7.85	7.73	1.18	1.15	$\delta \mathrm{C}-\mathrm{C}$ (55)
27	A"	475ms	475s	$\begin{aligned} & 49 \\ & 6 \end{aligned}$	491	473	6.71	6.10	16.13	18.27	11.46	11.36	1.66	1.61	$\gamma \mathrm{C}-\mathrm{C}$ (52)
28	A"		455w	$\begin{aligned} & \hline 45 \\ & 6 \end{aligned}$	451	455	0.00	0.00	1.24	1.09	6.18	6.18	0.75	0.74	$\gamma \mathrm{C}-\mathrm{C}$ (50)
29	A'		421w	44	441	420	8.28	7.28	0.11	0.06	4.14	4.15	0.47	0.47	$\delta \mathrm{C}-\mathrm{Cl}(54)$
30	A"	403vw	400 ms	$\begin{aligned} & \hline 40 \\ & 0 \\ & \hline \end{aligned}$	388	401	10.56	11.60	8.86	13.45	17.64	17.80	1.66	1.58	$\gamma \mathrm{C}=\mathrm{O}$ (51)
31	A'		376 ms	38 4	374	376	44.53	0.03	4.30	5.19	13.92	12.77	1.21	1.05	$\delta \mathrm{C}-\mathrm{Cl}$ (53)
				2 n	201	200		nom		not		1215		1	

