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Introduction  

The new civil engineering structures are becoming quite 

strong but very flexible since the increase in the stiffness 

modulus of the new construction materials lag behind the 

increase in their strength. Using lighter and flexible construction 

materials also results in human discomfort and sometimes, 

unsafe conditions. Developments in design technology and 

material qualities in civil engineering enable the construction of 

more light and slender structure, which are vulnerable to variety 

of dynamic loads (winds, waves, earthquakes, moving load, etc.) 

that significantly affect the safety and serviceability of structure, 

material contents and human occupants thus have been a matter 

of great concern for a very long time.  

The extent of protection required for these structures may 

range from reliable operation and occupancy comfort to human 

and structural survivability.  The standardized codes have given 

through a number of modifications as the aftermath of major 

events such as earthquake, cyclone, etc. and have made these 

revisions essential. Though code revisions promise better safety 

in future structures provided the code specifications are followed 

properly, yet the stability of the structures already constructed 

following old codes of practice are in real threat. Therefore, 

control of the civil engineering structures such as tall buildings, 

long bridges and towers has generated much interest to be able 

to solve some of these problems.  

In general transportation infrastructure is an important 

factor affecting the development of a national economy. With 

rapid urbanization, growth of population and road traffic 

congestion results in degradation of level of service in most of 

the urban areas. As a result, there has been an increasing need 

for providing relief to urban traffic through the provisions of 

adequate transport infrastructure. Because of space and terrain 

limitations more transportation structures such as highways and 

railways have been constructed as bridges in urban areas. With 

the recent advances in design technology, high performance 

materials and construction techniques enable the construction of 

longer, more flexible, light and slender structures, which are 

more vulnerable to dynamic loads, especially the moving loads, 

therefore, it has become essential to study the behavior of 

bridges under moving loads at various speeds. In this aspect, the 

majority of the literature has been devoted to investigation of the 

bridge vibrations using the so-called moving force model [(35), 

(39), (14), (15)] moving mass model [(40), (23), (4)] and 

moving sprung mass models [(31), (41)] for the vehicles. It is 

true in the past two decades that researchers continue to develop 

vehicle models of various complexities to account for the 

dynamic properties of the vehicle, (20) and complicated two 

dimensional [(21), (16)]; or three dimensional [(38), (7), (26), 

(17), (18)] vehicle bodies, were developed, respectively to take 

the inertial force, the suspension system, and the complex 

dynamic mechanisms of vehicles into account. The vibration of 

bridge structure due to the passage of vehicles is an important 

consideration in bridge design; generally, resonance conditions 

will result in large response and vibration induced by heavy and 

high-speed vehicles affect significantly the safety and 

serviceability of bridges and also affect vehicle safety operations 

and the comfort of passengers. Vibration that occurs in bridges 

can amplify the propagation of existing cracks resulting in 

further damage to the bridge. It has become one of the causes of 

reduction in long-term serviceability of the bridge, although 

major bridge failures are not usually caused directly by moving 

vehicles, and it is also a critical factor to bridge’s structure 

fatigue and rapid deterioration (32). Extensive researches [(12), 

(37)], including both experimental and theoretical works, have 
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been conducted to determine the dynamic behavior of bridges 

under moving vehicles. The results of field tests and analytical 

researches have shown significant dynamic response exceeding 

that anticipated on certain small and medium span bridges [(19), 

(25)]. Thus, vibration induced by heavy moving loads may 

significantly increase the maximum internal stresses of bridges 

in excess of those originally assumed by designer. As a result 

many bridges suffer a sharp decrease in service life and the 

existing are approaching the end of their service life, and even 

endanger the safety of supporting structure and therefore require 

extensive repairs and/or replacement unless other ways are 

found to reduce stresses and strains due to external loads 

(Earthquake, Wind, Moving Loads, etc.) and to sustain the 

safety of the bridges. One method of reducing the vibration of 

structures is to add an energy dissipative system to the primary 

structure to control the dynamic response. The Tuned Mass 

Damper (TMD), which is a secondary vibration system 

connected to the primary structure at suitable points, is a 

classical device to dissipate a substantial amount of vibration 

energy of the main structure. A typical TMD generally consists 

of a mass, a spring, and a dashpot. Since Den Hartog firstly 

investigated the optimum values of TMD parameters using a 

two-degree of freedom model in 1950s, the TMDs have been 

extensively studied and applied to suppress vibrations of 

buildings and bridges. It is well known that the TMD is effective 

in suppressing the single-mode resonant vibration when its 

frequency is tuned to the modal frequency of the structure [(22), 

(10)]. Much of research efforts were focused on developing the 

design procedure and optimizing the TMD parameters. Although 

excessive studies [(8), (9), (24)] have been conducted on TMDs 

for suppressing vibration of structures under wind and seismic 

loads, little research has been done on applying TMDs to control 

vehicle-induced bridge vibration (28). 

Here in this paper, an attempt is made to study the possible 

effectiveness of TMDs for suppressing vibrations of bridges 

under vehicle loads. In order to achieve this objective, a general 

formulation of the vehicle-induced bridge vibration controlled 

with a TMD system is first developed, which takes into account 

the road surface conditions. Then, a comprehensive investigation 

is made to investigate the efficiency of the TMD for suppressing 

vibrations of different bridges under two vehicle load patterns, 

i.e. two trucks moving side by side and several trucks passing 

over the bridge in a traffic flow. Such a study is helpful in 

evaluating the control performance before real control devices 

are designed in practice. These analytical results will also be 

useful in carrying out further studies of control strategies in 

order to suppress the vehicle-induced bridge vibration. 

Vehicle-bridge with tmd coupled system 

The present study developed a fully computerized approach 

to simulate the interaction of series of coupled vehicles with 

bridge system installed with a passive TMD at a desired 

position. . The vehicle model used in this study is a so-called 3-

D suspension model (or full truck model) that includes a 

combination of vehicle bodies represented by several rigid 

bodies connected by both primary and secondary vehicle 

suspension systems (Fig. 1). The tires and suspension systems 

are idealized as linear elastic spring elements and dashpots. The 

contact between the bridge deck and the moving tire is assumed 

to be a point contact. The model can be used to simulate vehicles 

on highway roads or bridges with axle number varying from two 

to five. This is a more realistic model because it incorporates 

pitching, rotating, and yawing motions of the vehicle and also 

the variation of the axle force on the tires of each axle (7). The 

TMD with one vertical degree of freedom consist of a rigid mass 

with a suspension system idealized as elastic spring element and 

dashpot.  

 

Fig 1A: Dynamic Interaction Analytical Model Of The 

Vehicle-Bridge System  - Longitudinal View 

 
Fig 1B: Dynamic Interaction Analytical Model Of The 

Vehicle-Bridge System- Sectional View 

  

  

 
 

Fig. 2: Time History Of 

Deflection At Mid-Span Of 

Slab Bridges With And  

Without TMD 

Fig. 3: Time History Of 

Deflection At Mid-              

Span Of Girder Bridges With 

And Without TMD 
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The proposed approach uses the direct integration method to 

treat the interaction by updating the characteristic matrices 

according to the position of contact points of vehicle at each 

time step and the TMD position permanently at single Desired 

location. Therefore, the equations of motion are time dependent 

and they should be modified, updated, and solved by the Runge-

Kutta method (5) at each time step. The road surface roughness 

r(x) and the separation of the vehicle tire from the bridge due to 

large irregularities of the road surface is also taken into 

consideration in the analysis. In the present study, the vehicle-

bridge coupled with TMD problem is firstly characterized by 

three sets of differential equations of motion, one for the bridge, 

the other for the vehicle and one that of TMD. Then the 

combined systems are coupled through the contact condition. 

For demonstration purposes a 3-axle articulated truck consisting 

of up to 11 independent degrees of freedom is shown in Fig.1. 

The equation of motion for the vehicle is derived based on the 

following matrix form  

  

            G

v v v v v v v cM d C d K d F F   && &
 (1) 

Where the vehicle mass matrix [Mv], damping matrix [Cv], and 

stiffness matrix [Kv] are obtained by considering the equilibrium 

of the forces and moments of the vehicle system; {dv} is the 

displacement vector of vehicle; {Fv
G
} is the self-weight of the 

vehicle; and {Fc} is the vector of wheel-bridge contact forces 

acting on the vehicle. 

The bridge is modeled using the conventional finite element 

method, and the equations of motion for the bridge can be 

expressed as 

                                 

          bbbbbbb FdKdCdM   + TF   (2) 

Where [Mb] is the bridge mass matrix, [Cb] is the damping 

matrix, and [Kb] is the stiffness matrix; {Fb} is the wheel-bridge 

contact force on the bridge; and {FT} is the interacting force 

between the TMD and the bridge. The force exerted on the 

bridge by the vehicle acts at the very point of the vehicle 

passage and the inertia force by the TMD at one single 

permanent location. 

The equations of motion for the vehicle and bridge are 

coupled through the interaction forces, i.e. {Fb} and {Fc}. {Fb} 

and {Fc} are action and reaction forces existing at the contact 

points of the two systems and are expressed as a function of the 

deformation of the vehicle’s lower springs {Δl} (42): 

         )()( xrZZCxrZZKFF balbalcb
   (3) 

in which r(x) is the road surface profile of the bridge deck (Fig. 

1) and it can be simulated using reversed Fourier transformation.  

In which 
)(

)()(
)( tV

dx

xdr

dt

dx

dx

xdr
xr 

 and )(tV  is the vehicle 

velocity; Za is vehicle axle suspension displacement in vertical 

direction, and Zb is the displacement of bridge at wheel-road 

contact points. The TMD is installed at a desired position of the 

bridge where its response becomes a maximum. The equations 

of motion, which represent the interaction between the TMD and 

the bridge, are 

       bTTbTTTT ZZKZZCdM   = 0  (4) 

 

Where [MT] is the mass of TMD, [CT] is the damping of TMD, 

[KT] is the spring coefficient, and ZT is the displacement of 

TMD. At time t, the interacting force, {FT}, between bridge and 

TMD is 

       bTTbTTT ZZCZZKF    (5) 

Firstly, the design of damper and spring element is carried out 

under the theory of classical TMD optimization, which 

determinates optimal tuning ratio of frequency and damping 

ratio: A lot of proposed tuning conditions are available for 

TMD, but Den Hartog’s (1962) optimum tuning conditions are 

most often used as suggested are given below  
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Where CT and cc are damping values corresponding to the TMD 

and critical damping values, respectively.   The mass ratio εT, the 

mass of the bridge Mb, natural frequency of the fundamental 

mode ωn .The dynamic responses of structures are affected more 

significantly by the TMD damping values than by the damping 

values of structures, one can use the critical damper damping 

proposed by Tsai (1993), which avoids beating phenomenon is 

given as below:  

TnT    

In this paper, Den Hartog’s frequency tuning condition and 

Tsai’s critical damper damping value function of modal 

damping ratio ξn, and mass ratio εT are adopted to achieve 

maximum vibration control efficiency.  By substituting  Eq. (3) 

and Eq. (5) into Eq. (1) and Eq. (2), the final equations of 

motion of bridge, TMD, and vehicle system can be rewritten in 

matrix form as in the following equation. 
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                                             (6) 

The additional terms Cbb, Cbv, Cvb, Kbb, Kbv, Kvb, and in Eq. 

(6) are due to the expansion of the contact force vector 

expressed by Eq. (3) and Eq. (5). As a vehicle passes over a 

bridge not only the position but also the magnitude of the 

contact force are changing with respect to time. This is caused 

by the fact that the position the vehicle, the response of bridge 

and vehicle, and the road roughness r(x) at the wheel and bridge 

deck contact points no longer remain the same. The change of 

contact force with time indicates that the additional terms in Eq. 

(6) are time-dependent and will change as the vehicle moves 

across the bridge. To simplify the modeling procedure, the 

bridge mode superposition technique is used based on the 

obtained bridge mode shapes and the corresponding natural 

circular frequencies. Since the ratio of the TMD mass to the 

bridge mass is assumed to be very small, the attachment of TMD 

does not cause a meaningful change to the static equilibrium of 

the bridge, and the mode shapes of the bridge remain the same 

as those of the original bridge without the TMD. The mode 

superposition makes it possible to separate the bridge modal 

analysis from the vehicle-bridge coupled model. Consequently, 

the number of equations in Eq. (6) and the complexity of the 

entire procedure are greatly reduced. A MATLAB program is 
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developed based on the above methodology. The mass matrix, 

stiffness matrix, and damping matrix of vehicle and bridge are 

automatically assembled using the fully computerized approach. 

The equations of motion are solved in time domain by using the 

Runge-Kutta method. By solving the equations, the dynamic 

response of the vehicle, bridge, and TMD can be obtained in 

time history. 

Numerical Analysis and Discussion 

Two numerical examples of different truckload cases, i.e. 

two trucks moving side by side and several trucks moving one 

following another, are investigated by using the developed 

method. Different bridges are also considered to study the 

effectiveness of TMD. Three typical simply supported 

rectangular short span concrete slab bridge of normal range of 

span 6m of 0.30m slab thickness, 8m of 0.40m slab thickness 

and 10m of 0.50m slab thickness and slab-on-girder bridges, 

with span lengths of 16.76 m (55 ft), 24.38 m (80 ft) and 30.48 

m (100 ft) designed for HS20-44 loading are investigated in this 

paper. The slab-on-girder bridges consist of seven girders that 

are simply supported with girder spacing of 2.13 m (7 ft). The 

bridges have a roadway width of 14.32 m (47 ft) and a bridge 

deck thickness of 0.20 m (8 in). The primary data of the bridges 

and the first modes of each bridge are listed in Table 1. The 

damping ratio is assumed to be 0.02. The AASHTO HS20-44 

truck is used in the numerical analysis and its sketch is shown in 

Fig. 1. The geometry, mass distribution, damping, and stiffness 

of the tires and suspension systems of this truck are listed in 

Table 2 (37). The static wheel loads for the first, second, and 

third axle are 17.8 KN, 71.2 KN, and 71.2 KN, respectively, 

which make the total weight of this truck 320 KN. Modal 

frequencies of the vehicle are calculated as 1.52, 2.14, 2.69, 

5.94, 7.74 and17.95 Hz. The truck was assumed to pass a step up 

of 0.0381 m, which is used to simulate the differential faulting 

between the bridge deck and approach slab (6), and then move 

on a smooth surface of bridge deck at a constant speed of 20 m/s 

(45mph). Since the bridges considered in the present study have 

two traffic lanes, two vehicles, one in each lane, is considered at 

any given moment. In this case, two trucks are assumed to move 

side by side when passing over bridges, which agrees also with 

the critical live load specifications of AASHTO codes [(1), (2)]. 

According to the preliminary analyses, the bridge’s first mode is 

dominant in the dynamic response for all eight bridges. To 

reduce the bridge dynamic response, it is desirable to tune the 

TMD to the fundamental frequency (the first frequency) of the 

bridge. The TMD is positioned at the center of the bridge (Fig. 

1) where the first mode response is at the maximum. The mass 

ratio of 1% is selected in this study, though ratios between 1% 

and 5% have generally been used in other studies [(34), (29), 

(24)]. Fig. 2 and Fig. 3 display the time history of the deflection 

of all the bridges with and without TMD. It is observed that the 

maximum dynamic deflection when the vehicle is on the bridge 

(forced vibration period) is slightly reduced by TMD. For 

instance, the maximum dynamic deflections of the 8 m slab 

bridge and the 30.48 m girder bridge without TMD are 5.42 mm 

and 6.90 mm, respectively. After the installation of the TMD, 

the deflections of these two bridges are reduced to 5.16 mm and 

6.99 mm, respectively. This indicates that the reducing effect of 

the forced vibration is only 4.86% for the 8 m slab bridge, and 

0.60% for the 30.48m girder bridge. It is evident that the TMD 

does not significantly suppress the forced vibration in these 

bridges. However, it is obvious from Fig. 2 and Fig. 3 that the 

vibration level of all bridges is greatly reduced during the free 

vibration period, which means the TMD is effective in reducing 

the free vibration although it is difficult to control the forced 

vibration. The forced vibration for the passage of two side-by-

side trucks is very short for the bridges considered in this study. 

In this short period of passage of vehicle, the bridge only 

vibrates for very few cycles (Fig. 2 and Fig.3). Although the 

TMD increases the overall damping of the bridge, it needs time 

to respond to the vibration before it can effectively absorb 

vibration energy from the main structure and then suppress the 

vibration. Table 3 summarizes the reduction of displacement for 

different bridges, which displays that the suppression effect for 

the shorter bridges (B1, B2, B3, and B4) is generally better than 

that for relatively longer bridges (B5 and B6). This is probably 

due to the fact that the vibration of the shorter bridges is more 

active (i.e., with higher frequencies) than the longer bridges. 

Since the fundamental frequency of B1 to B4 is relatively high, 

during the forced vibration period, there are more excited 

vibration cycles in the TMDs for the shorter bridges than for the 

longer bridges. On the other hand, compared with B5 and B6, 

the multi-axle truck loads applied on the relatively short bridge 

(B1, B2, B3, and B4) can be considered as repeated loads 

(similar to the train load on short bridges) although the number 

of axles of the truck is small, because the bridge span is short 

compared to the 4.26 m spacing of the HS20 truck axles. 

Whereas, for longer bridge, since the bridge span is relatively 

long compared to the axle spacing there is only one half-cycle of 

loading as the truck crosses the span. Thus, the loading 

frequency for shorter bridge is higher than that of the longer 

bridge, which causes more actively vibration in the shorter 

bridges. 

Conclusions 

The vehicle-induced bridge vibration may affect the 

durability of the structure and the safety and comfort of 

passengers. It also can lead to deterioration and reduction in 

service life of the bridge. Although the major bridge failures are 

not normally caused by vehicle-induced vibration, it causes 

more subtle problems and contributes to fatigue, surface wear, 

and cracking of concrete deck and beams, which leads to 

corrosion. In this study, the TMD is investigated for the purpose 

to suppress the vehicle-induced vibration of bridges by a finite 

element approach. Based on the numerical analyses of short and 

mediate bridges, the following conclusions can be drawn: A 

conventional TMD control approach usually focuses on 

suppressing the resonant vibration by supplying additional 

damping to the concerned modes. However, in the case of two 

trucks passing the bridge side by side, it was found that the 

addition of damping provided by the TMD does not result in an 

appreciable reduction of the maximum dynamic displacement 

during the forced vibration period (i.e. when the vehicle is on the 

bridge) due to the reason that the forced vibration period is too 

short and that the TMD does not have enough time to respond. 

Although this approach could be inefficient for forced vibration, 

it is evident from the analysis results that the TMD is effective 

in reducing the vibration level in free vibrations. On the other 

hand, for all the bridges investigated in this study, the reduction 

of acceleration is larger than that of the displacement.  

It is emphasized that the performance of TMD may be 

influenced by the dynamic characteristics of bridge vibrations 

induced by moving vehicles. The properties of the bridge, the 

moving oscillator and the TMD were chosen to simulate the 

maximum interaction between a bridge and a vehicle. When the 

natural frequency of the vehicle matches that of the bridge, the 
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bridge behaves like a vibration absorber. As is seen in TMD, the 

first mode is greatly reduced, where second and third, higher 

modes remain nearly unchanged. This is due to the fact that the 

TMD control basically minimized the RMS responses of the 

structure due to the broad bound excitations. Thus the first mode 

will be the largest contributions to the RMS response and will be 

primarily modified to reduce the RMS response. The decay of 

vibration is rapid in all control cases, so much as that the 

vibration level is almost zero by the time the vehicle moved off 

the bridge and effectively reduces the duration of exposure. This 

effect is important for two reasons; it keeps vibration level down 

when the bridge is excited by a continuous stream of vehicles 

and because annoyance is function of both vibrational level and 

duration. Although not specifically pursued by the TMD 

systems, important reductions in the vehicle relative 

displacement were achieved Similar to the case of the vehicle’s 

displacement, accelerations of the bridge were greatly reduced 

with respect to the uncontrolled case, even though the TMD 

systems were not focused on reducing this aspect of the 

response. The TMD has more effect on short bridges with large 

fundamental frequencies than on longer bridges. This is due to 

the fact that the vibration of short bridge is more “active” than 

longer bridge because of the relatively higher natural frequency 

and multi-axle load frequency of short bridges, which excites 

more cycles of TMD vibrations. More generally, it can be 

concluded that for the same TMD, for the case of several trucks 

moving in a row, the TMD for reducing the forced bridge 

vibration is more effective than the case with only two trucks 

moving side by side. The evaluation of the control performance 

is helpful before real control devices are designed in practice. 

For example, in a given condition the most effective way to 

reduce bridge response may or not be to install a TMD. The 

analytical result will be useful in carrying out further studies of 

control strategies in order to make decisions to suppress the 

vehicle-induced bridge vibration. 
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Table 1: Modal Frequencies of Bridges 

 Slab bridge Girder bridge 

 B1 B2 B3 B4 B5 B6 

Span length 6m 8m 10m 16.76m 24.38m 30.48m 

First bending mode (Hz) 12.92 9.64 7.68 7.56 4.45 3.44 

Second bending mode (Hz) 51.75 38.57 30.72 24.47 15.98 12.54 

First torsional mode (Hz) 15.37 12.71 11.27 9.34 5.77 4.50 

Second torsional mode (Hz) 23.04 22.26 22.61 11.86 8.68 8.52 

 
Table 2:  Major Parameters of AASHTO HS20-44 vehicle 

Mass of truck body 1  2612 (kg) 

Pitching moment of inertia of truck body1  
2022 

(kg.m2) 

Rolling moment of inertia of tuck body 1  
8544 

(kg.m2) 

Mass of truck body 2  
26113 

(kg) 

Pitching moment of inertia of truck body2  
33153 

(kg.m2) 

Rolling moment of inertia of tuck body 2  181216 

(kg.m2) 

Mass of the first axle suspension  490 (kg) 

Upper spring stiffness of the first axle  
242604 

(N/m) 

Upper damper coefficient of the first axle  2190 

(N.s/m) 

Lower spring stiffness of the first axle  
875082 

(N/m) 

Lower damper coefficient of the first axle  2000 

(N.s/m) 

Mass of the second axle suspension  808 (kg) 

Upper spring stiffness of the second axle  
1903172 

(N/m) 

Upper damper coefficient of the second axle  7882 

(N.s/m) 

Lower spring stiffness of the second axle  
3503307 

(N/m) 

Lower damper coefficient of the second axle  
2000 

(N.s/m) 

Mass of the third axle suspension  653 (kg) 

Upper spring stiffness of the third axle  
1969034 

(N/m) 

Upper damper coefficient of the third axle  7182 

(N.s/m) 

Lower spring stiffness of the third axle  3507429 

(N/m) 

Lower damper coefficient of the third axle  
2000 

(N.s/m) 

L1  1.698 (m) 

L2  2.569 (m) 

L3  1.984 (m) 
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Table 3: Maximum Responses Of Bridges With And Without TMD 
 

Span length 
Deflection (mm) Acceleration (m/s2) 

 Without TMD With TMD Without TMD With TMD 

L=6m 4.550 4.376 (-3.83%)* 17.43 15.83 (-9.18%)* 

L=8m 5.423 5.159 (-4.86%) 11.61 10.12 (-12.86%) 

L=10m 5.196 5.031 (-3.24%) 5.75 4.99 (-13.23%) 

L=16.76
m 

5.743 5.470 (-4.75%) 10.24 9.13 (-10.83%) 

L=24.38

m 
7.200 7.091 (-1.51%) 2.79 2.64 (-5.12%) 

L=30.48
m 

6.902 6.872 (-0.44%) 1.25 1.21 (-5.12%) 

 

 


