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Introduction  

Micromechanics is the study of composite material behavior 

wherein the material is assumed homogeneous and the effects of 

the constituent materials are detected only as averaged apparent 

properties of the composite materials. 

Methodology: 

Fiber reinforced composites are often selected for weight-

critical structural applications because of their high specific 

stiffness and strength. For determining the properties of 

transversely isotropic lamina following methods are used. 

Mechanics of Material Approach (Rule of Mixture)  

The relevant elastic properties are obtained as given below 

a)Young’s modulus of elasticity: 

The first modulus of the composite material is determined, when 

subjected to loading along fiber direction as below, 

 
         f f ml mE E V E V

  ---- (Eq.1)                     

where, 

El=Young’s modulus of elasticity of lamina in longitudinal 

direction. 

Ef=Young’s modulus of fiber. 

Em=Young’s modulus of matrix. 

Vf=Fiber volume fraction 

Vm=Matrix volume fraction 

The apparent Young’s modulus of the composite material in 

the direction transverse to the fiber, with assumption the same 

transverse stress is assumed to be applied to both the fiber and 

mat 
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     ---- (Eq.2) 

Where, 

Et=Young’s modulus of lamina in transverse direction. 

b) Poisson’s Ratio in L-T plane: 

The major Poisson’s ratio is obtained by the same approach that 

used in analysis of E1 

 
     lt f f m mv v V v V 

    ---- (Eq.3)                              

Where, 

12v  = Poisson’s ratio of lamina in one two plane 

ltfv
 = Fiber longitudinal Poisson’s ratio 

mv
  = Matrix Poisson’s ratio                            

mV  = Matrix Volume fraction 

fV
 = Fiber Volume fraction 

c) Shear modulus in L-T plane: 

c) The Inplane shear modulus is determined as 
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    ---- (Eq.4)                                                                   

where, 

Glt=Shear modulus of lamina in L-T plane 

Gm=Shear modulus of matrix 

Gf=Shear modulus of fiber 

Vf=Fiber volume fraction 

Vm=Matrix volume fraction 

Tele:  +91-9421343958 

E-mail addresses:  amol4560@yahoo.com, 
surekhab2007@rediffmail.com 

         © 2012 Elixir All rights reserved 

Determination of properties of transversely isotropic lamina using 

micromechanics approach 
S.A. Bhalchandra* and Yashodhara S. Shiradhonkar 

Applied Mechanics Department ,Government College of Engineering, Aurangabad (M.S), India. 

 ABSTRACT  

Composites are finding increased use in structural applications, in particular for aerospace 

and automotive purposes. Fiber reinforced composite possess high strength and stiffness. 

Some of these materials perform equally well or better than many traditional metallic 

materials. In addition, fatigue strength-to-weight ratios as well as fatigue damage tolerance 

of many composite laminates are excellent. 

To analyze metallic structures, properties of metals are easily available, but for composite 

structures properties of composite material are not readily available. Composite material is 

nothing but a laminate made from number of different lamina, and the properties of laminate 

depends on properties of lamina.    

The material properties of composite are required for carrying out stress analysis and fatigue 

analysis which in turn predicts the life of component. Objective of present work is to study 

the behavior of composite materials. This investigation deals with lamina composed of 

polymer matrix and carbon fibers. The aim of this study is to determine following properties. 

 Elastic properties, thermal properties and strength properties of transversely isotropic 

lamina by all methods of Micromechanics. 

  Properties of orthotropic lamina using Method of Cells. 

  Verifying the results predicted by Method of Cells with the other micromechanics 

methods like Composite Cylinder Assemblages (CCA) method, Rule of Mixture, Halpin-

Tsai, Chamis method and Zing-ming Huang method. 
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Halpin-Tsai Method   

This is an interpolation method which is an approximate 

representation of more complicated micromechanics results. The 

relevant elastic properties are obtained as given below are 

presented by Jones [1], the expressions for axial Young;s 

modulus (E1) and axial Poisson’s ratio are generally accepted 

results of rule of mixture. The Halpin-Tsai equations are equally 

applicable to fiber, ribbon, or particulate composite: 

a)Young’s modulus of elasticity: 

The first modulus of the composite material is determined in the  

fiber direction when subjected to loading along fiber direction. 
         f f m mlE E V E V

   ---- (Eq.5)                                                      

Young’s modulus of elasticity: 

The apparent Young’s modulus of the composite material in the 

direction transverse to the fiber, is as given below 
(1  )
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Where, 

( / )  1
  

( / )  

f

tf

t m

m

E E

E E








  

 Constant     Measure of fiber reinforcement of composite 

material 
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  1  40 fV  
                  

b) Poisson’s Ratio in L-T plane:  

The major Poisson’s ratio is obtained by the same approach that 

used in analysis of E1 

  V   V  lt f f m mv v v 
           ---- (Eq.7)                                        

c) Shear modulus in L-T plane: 

The in plane shear modulus is determined as 

2(1  )
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Composite Cylinder Assemblages (CCA) 

Assumptions made in CCA are as follows: 

1) All fibers have same radii. 

2) Perfect bond between fiber and matrix. 

3) Neglect the matrix between cylinder and assuming 

axisymmetric loading.  

4) Fibers are linear elastic transversely isotropic material, and 

matrix is isotropic material. 

5) Fiber properties like Young’s modulus, shear modulus, 

Poisson’s ratio, coefficient of thermal expansion and density in 

longitudinal and transverse direction are: --   
, , , , , , ,

l l tf tf ltf ltf ttf f f f
E E G     

 

Matrix Properties: -- , , ,m m m mE     

Fiber Volume Fraction: --V f  

 
Figure .1Composite Cylinder Assemblage [2] 

a)Matrix volume fraction: 
  1  m fV V 

                       
b)Fiber transverse Poisson's ratio:  

    1
2
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E
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G
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c) Matrix bulk modulus: 
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m
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E
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
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         
d)Fiber transverse bulk modulus: 
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e) Matrix shear modulus: 
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m
m
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E
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v
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f)Young’s modulus of elasticity of lamina :   

The first modulus of the composite material is determined in the 

fiber direction when subjected to loading along fiber directionis 

as below. 

 

2
4(   )
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 
          ---- (Eq.9)    

Young’s modulus of elasticity 

The apparent Young’s modulus of the composite material in 

the direction transverse to the fiber, with assumption the same 

transverse stress is assumed to be applied to both the fiber and 

matrix. 
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      ---- (Eq.10) 

g) Shear modulus of lamina (indicates upper bonds): 
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h) Transverse bulk modulus of lamina: 
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    ----(Eq.11) 
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i)Axial Poisson’s ratio: 

The major Poisson’s ratio is obtained by the same approach that 

used in analysis of E1 
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---- (Eq.12)    

     

j)Transverse Poisson’s ratio: 
( )
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Where, 
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k) Axial shear modulus of lamina: 

The in plane shear modulus is determined as 

12
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                     ---- (Eq.14)            

l) Transverse shear modulus of lamina:   

The 2-3 plane shear modulus is determined as 
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m) Axial thermal expansion coefficient of lamina:  
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    ---- (Eq.15) 

Where, 

Constant l   
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n)Transverse thermal expansion coefficient: 
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Where, 

Constant t  

    m ft m tfV V   
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Chamis Method  

Chamis [4, 5] method is used to calculate lamina elastic 

properties. Fiber properties, matrix properties and fiber volume 

fraction are input to this method. The elastic properties can be 

found out as: 

a) Calculation of matrix volume fraction: 

                                            

 
  1  m fV V 

                            
Where, 

mV  = Matrix Volume fraction 

fV
 = Fiber Volume fraction 

b) Calculation of fiber transverse Poisson’s ratio: 
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E
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G
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c) Calculation of matrix shear modulus:  

2(1 )
m

m

m

E
G




   
d) Calculation axial Young’s modulus of Lamina: 

1          lf f m mE E V E V
                                       ---- (Eq.17)  

      

e) Calculation of Poisson’s ratio of Lamina in one two plane: 

12      ltf f m mv v V v V 
                                             ---- (Eq.18) 

              

f)Calculation of Poisson’s ratio of lamina in two three plane: 

2
23

23

    1
2

E
v

G
 

                 ----(Eq.19) 

Where, 

23v
 = Poisson’s ratio of lamina in two three plane 

2E
 = Young’s modulus of lamina in direction two 

23G  = Shear modulus of lamina in two three plane 

g)Calculation of transverse Young’s modulus of lamina: 
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h) Calculation of shear modulus or modulus of rigidity of lamina 

in l-t plane: 
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             ---- (Eq.21)   

                      

i) Calculation of shear modulus or modulus of rigidity of lamina 

in t-t plane: 

23   
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
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  
                         ----(Eq.22)             

J) Calculation of longitudinal tensile strength of lamina: 
   t f lfX V X

                      ---- (Eq.23) 

Where, 

tX
 = Tensile strength of lamina in direction one 

fV
 = Fiber volume fraction 

lfX
 = Fiber longitudinal tensile strength 

k) Calculation of transverse tensile strength of lamina: 

   1    1  m
t f f tm

tf

E
Y V V X

E

  
     

                  ---- (Eq.24)   

Where, 

tY
 = Tensile strength of lamina in direction two 

fV
 = Fiber volume fraction 

mE
 = Matrix Young’s modulus 

tfE
 = Fiber transverse Young’s modulus 

tmX  = Matrix tensile strength 
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l) Calculation of longitudinal compressive strength of lamina: 
   c f cfX V X

           ---- (Eq.25)    

Where, 

cX  = Compressive strength of lamina in direction one 

fV
 = Fiber volume fraction 

cfX  = Compressive strength of fiber 

m) Calculation of transverse compressive strength: 

   1    1  m
c f f cm

tf

E
Y V V X

E

  
     

        ---- (Eq.26)                 

Where, 

cY  = Compressive strength of lamina in direction two 

fV
 = Fiber volume fraction 

mE  = Matrix Young’s modulus 

tfE
 = Fiber transverse Young’s modulus 

cmX  = Matrix compressive strength 

n)Calculation of axial shear stress in one two plane: 

 
 12  1    1  m

f f m
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G
S V V S
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  
     

      ---- (Eq.27)                 

Where, 

12S  = Shear strength of lamina in one two plane 

fV
  = Fiber volume fraction 

mG  = Matrix shear modulus 
ltfG

 = Fiber longitudinal shear modulus  

mS  = Matrix shear strength 

o) Calculation of transverse shear strength: 

23
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m
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G
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G
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  

   
                         ---- (Eq.28)   

Where, 

23S  = Shear strength of lamina in two three plane 

fV
 = Fiber volume fraction 

mG  = Matrix shear modulus 

ttfG
 = Fiber transverse shear modulus  

mS  = Matrix shear strength 

p) Calculation of density of lamina: 
    f f m mV V   

                   ---- (Eq.29)  

Where, 
  = Density of lamina 

f  = Fiber density 

m  = Matrix density 

fV
 = Fiber volume fraction 

mV  = Matrix volume fraction 

q) Calculation of coefficient of moisture expansion of lamina    

in direction one: 

   
  

 

m m

m

E

El

 



1

           
Where, 

 1  = Coefficient of moisture expansion of lamina in       

direction one 

m  = Coefficient of moisture expansion of matrix 

mE  = Young’s modulus of matrix 
  = Density of lamina 

El  = Young’s modulus of lamina in direction one 
m  = Density of matrix 

r) Calculation of coefficient of moisture expansion of lamina in 

direction two: 

      

   
    

m
m m

m

  
  




 2 12

1

 ---- (Eq.30)                      

Where, 
2  = Coefficient of moisture expansion of lamina in direction 

two 

m  = Poisson’s ratio of matrix 
m  = Coefficient of moisture expansion of matrix 

  = Density of matrix 
m  = Density of matrix 

12  = Poisson’s ratio of lamina in one two plane  
 

s)Calculation of coefficient of thermal expansion of lamina in direction one: 

 

1
1

  
  

m m mf lf lfV E V E

E

 



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                      ---- (Eq.31) 

Where, 
1  = Coefficient of thermal expansion of lamina in direction 

one 

lf
 = Coefficient of thermal expansion of fiber in longitudinal 

direction 

lfE
 = Fiber Young’s modulus in longitudinal direction 

m  = Coefficient of thermal expansion of matrix 

mE  = Young’s modulus of matrix 

1E  = Young’s modulus of lamina in direction one 

t) Calculation of coefficient of thermal expansion of lamina in 

direction two: 

2
1

    1  f

f m lf
tf m m

V E
V V

E


  

 
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             ---- (Eq.32) 

Where, 

2  = Coefficient of thermal expansion of lamina in direction 

two 

tf
 = Coefficient of thermal expansion of fiber in longitudinal 

direction 

1E  = Young’s modulus of lamina in direction one 

m  = Coefficient of thermal expansion of matrix 

m  = Poisson’s ratio of matrix 

Zheng-ming Huang Method  

Zheng-ming Huang is a method which is used to calculate 

elastic properties of transversely isotropic lamina.  

Fiber properties, matrix properties and fiber volume fraction 

are input to this method. The elastic properties can be found out 

as given by Zheng-ming Huang [6,11]: 

a) Young’s modulus of lamina in direction-1:  

m ml f lf
E V E V E 

                                            ---- (Eq.33) 

b) Poisson’s ratio of lamina in 1-2 plane:  

m mlt f ltfV V   
                ---- (Eq.34)  

c) Young’s modulus of lamina in direction – 2:   

  

    
11 22

2

11 22 22 21 1222 21

    
  

        

f m f m

f fm m
f m f m f m

V V a V V a
E

V V a V S a V S V V S S a

 


   
 --- (Eq.35)        

Where, 

Constants 12 13, 22 33 44, , ,a a a a a
 are calculated as shown below 



S.A. Bhalchandra et al./ Elixir Cement & Con. Com. 48 (2012) 9588-9593 
 

9592 

 
 

12 12 11 22

13 12

11 11

( )f m

f m

S S a a
a a

S S

  
 


 

22 33 44 0.5 1 m

tf

E
a a a

E

 
     

 
   

Coefficients of stiffness matrix are calculated as shown below, 
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d) Shear modulus of lamina : 
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e) Shear modulus of lamina : 
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Where,                            
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Method of Cells (MOC)  

          The major contribution to the Method of Cells is by 

Aboudi [7, 8].  

He has developed this theory to predict properties of lamina. 

The prediction of ultimate stresses of unidirectional fiber 

composites under complex loading system using 

micromechanics approach has been presented [9].  

Aboudi and Pindera [10] extended this method to generate 

initial yield surfaces unidirectional and cross-ply metal matrix 

composites. 

For Theoretical Formulation of Determination of Properties 

of Transversely Lamina a computer program in FORTRAN 77 is 

developed for determination of Elastic properties, thermal 

properties, and strength properties of lamina using 

micromechanics approach by method of cells, Halpin-Tsai 

method. 

Results: 

Results are represented in graphical form as follows: 
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Conclusions 
1) Axial Young’s modulus, transverse Young’s modulus, shear 

modulus and strength of lamina goes in increasing as the 

percentage of fiber volume fraction increases. 

2) Poisson’s ratio and coefficient of thermal expansion goes on 

decreasing as percentage of fiber volume fraction increases. 

3) The results obtained using micromechanical model of Method 

of Cells are found upper bound for transverse properties. 

4)This method of cells, composite cylinder assemblage method 

are useful for prediction of all properties of lamina like elastic, 

thermal and Strength properties where as other methods can not 

predict all properties.  

5) Results obtained for all properties of lamina by analytical 

methods are in excellent agreement with experimental results 

and results by software package the Laminator. 

6) Empirical expressions are developed to predict properties of 

orthotropic lamina by method of cells. Method of cells can be 

effectively applied for transversely isotropic as well as 

orthotropic lamina where as other methods used only for 

transversely isotropic lamina. 
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