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Introduction  

Yeast cell envelope consists of cell wall, periplasmic space 

and plasma membrane. It has a major role in maintaining 

osmotic homeostasis and permeabilty properties of the cell. Cell 

wall in S. cerevisiae, is a remarkably thick envelope which 

contributes to 15 to 25% of the dry mass of the cell. The 

combination of considerable mechanical strength and high 

elasticity allows the wall to transmit and redistribute physical 

stress, thus offering efficient protection against mechanical 

damage (10). Major structural constituents of the cell wall 

includes polysaccharides (80- 90%); mainly glucans and 

mannannoproteins, with a minor percentage of chitin and lipids 

(6). Inner layer of load-bearing polysaccharides of cell wall 

which form a microfibrillar network includes both β-1, 3 and β-

1, 6-linked glucans providing strength to the cell wall. Cell wall 

glycogen in Saccharomyces cerevisiae was found to be attached 

to β-glucan component (2). Cell wall proteins of Saccharomyces 

cerevisiae can be divided into two groups as SDS extractable 

proteins and the remaining as mannoproteins released after β-(1-

3) glucanase treatment, indicating that they are intimately 

associated with cell wall glucan (17). Glucanase-extractable wall 

proteins not only carry N- and O-linked side chains, but also 

glucose containing side chains (18). In particular, the diversity 

of the protein population that is anchored to the stress-bearing 

polysaccharides of the cell wall plays an important role in 

adaptation of the cell to environmental conditions, in growth 

mode and in survival. Role of cell surface α-glucans in 

flocculation of yeast is confirmed by amyloglucosidase 

treatment (1). Calcium ions also exhibit an important role in 

flocculation over a broad pH range (16) as well as in lectin 

mediated flocculation mechanism by maintaining these lectins in 

active conformation. The surface of yeast cells plays a major 

role in aggregation, flocculation and adhesion, which are 

important for the production of bright beer. The mechanism by 

which yeast cells flocculate involves surface proteins on 

flocculent yeast cells binding to carbohydrate receptors on 

nearby cells (13). Lectin mediated flocculation mechanism 

requires Ca
2+ 

ions to maintain their active conformation (9).
 

Calcium ions are required for mutual adhesion of cells by 

forming salt bridges between their surface carboxyl groups (7, 

14). Flocculation is an inheritable characteristic of yeast cells 

which includes FLO genes like FLO1, FLO2, FLO4, FLO5 and 

FLO8 (3). Flocculation level in yeast is determined by FLOP, a 

flocculation protein at the cell surface (8). Mechanism of 

flocculation in top and bottom flocculating yeast cells is 

different where the important determinant of flocculation in S. 

cerevisiae involves cell surface hydrophobicity, surface charge 

and zymolectin density. Ethanol enhances flocculation in top 

fermenting yeast cells while flocculation in bottom fermenting 

yeast is mediated by lectins along with Ca
2+

 ions.  

So the studies will be carried out regarding the effect of 

ethanol and Ca
2+

 on cell surface carbohydrate, surface protein as 

well as flocculation in Saccharomyces italicus. This will 

conclude the correlation between flocculation, cell wall 

glycogen and cell surface α-glucans in yeast cells. 

Materials and methods 

Microorganisms & Cultural conditions: 

Bottom flocculating yeast strain of Saccharomyces italicus 

NCIM-3230 was from National Chemical Laboratory, Pune. All 

the strains were routinely maintained on YEPD agar at +4
0
C. 

Peptone, yeast extract, malt extract were from Difco 

Laboratory, Detroit, MI. Amyloglucosidase was purchased from 

Sigma Chemical Company; USA & Glucose Oxidase Kit was 

from BioLab. Cerric ammonium nitrate was from Qualigen. 

Glucose was measured using glucose oxidase peroxidase 

method (11) and total carbohydrate was estimated by phenol 

sulfuric acid method (5). Proteins were analyzed by Folin Lowry 

method (12).  
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2+

 and ethanol enhance flocculation in yeast cells where 

the level of flocculence is correlated with the cell surface α-glucans.     
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Media composition:   

Media with variable concentrations of glucose and ethanol 

were used to study their effect on the glycogen, cell surface α-

glucans, surface carbohydrate as well as surface proteins in yeast 

cells. 

Set A: Increasing sugar concentration (Flasks: a, b, c, d, and 

e)  

2, 4, 6, 8 and 10% glucose; 0.5% peptone and 0.3% yeast extract 

in a set of five flasks each. 

Set B: Increasing sugar concentration and constant ethanol 

concentration (Flasks: f, g, h, i, j)  

2, 4, 6, 8, 10 % glucose, 0.5% peptone, 03% yeast extract and 8 

% (v/v) ethanol in a set of five flasks.  

Set C: Effect of CaCl2 on yeast glycogen content:  

YPG: (0.3 % yeast extract, 0.5 % peptone, 8 % glucose). 

YPD-LCa: (0.3 % yeast extract, 0.5 % peptone, 8 % glucose, 

0.08 % CaCl2). 

YPD-HCa: (0.3 % yeast extract, 0.5 % peptone, 8 % glucose, 0. 

8 % CaCl2).      

Set D: Effect of CaCl2 and ethanol on yeast glycogen:  

YPDE: (0.3 % yeast extract, 0.5 % peptone, 8 % glucose, 8 % 

v/v ethanol). 

YPD-LCaE: (0.3 % yeast extract, 0.5 % peptone, 8 % glucose, 

0.08 % CaCl2, 8 % v/v ethanol). 

YPD-HCaE: (0.3 % yeast extract, 0.5 % peptone, 8 % glucose, 

0.8 % CaCl2, 8 % v/v ethanol). 

Harvesting of yeast cells 

All the flasks from Set A, Set B, Set C and Set D were 

inoculated with 24 h starter culture (10 % v/v) grown in the 

same medium. Fermentation was carried out at room 

temperature (25 °C). Then yeast cells were harvested under cold 

conditions from each flask after 48 h of fermentation and 

washed repeatedly with chilled distilled water. 

Isolation of glycogen 

Glycogen was isolated from yeast cells by alkali digestion 

method (15). Cells harvested from culture medium were 

subjected to alkali digestion using 2 ml 20 % KOH/g yeast cells 

and kept in boiling water bath for 1h. The resultant alkali digest 

was cooled in ice bath and adjusted to pH 7.0 using ice cooled 

0.5 M HCl. The yeast cell digest was centrifuged to separate out 

supernatant containing soluble glycogen and the residual 

insoluble jelly like mass consisting of cell wall β-glucans. Both 

these fractions were used further for quantitative determination 

of soluble and insoluble glycogen as well as total carbohydrate. 

Estimation of glycogen: 1 mL volumes of the digest 

supernatant and residual sediment were incubated with 1.2 ml 

solution containing sodium acetate buffer, pH 4.2, 

amyloglucosidase (2 I.U.) and α-amylase (1 I.U.) at 37 ºC for 1 

h. Glucose released in the reaction mixture was measured by 

glucose oxidase peroxidase method. The amount of glucose in 

the supernatant and residual sediment represents soluble and 

insoluble glycogen respectively. 

Determination of surface α-glucan content 

Yeast cells harvested from from set A, B, C and D were 

subjected to amyloglucosidase treatment to determine cell 

surface α-glucans as well as surface protein content. 

Cells were fixed by using 1.5 % v/v glutaraldehyde. 1 g 

yeast cells suspended in 4 ml of sodium acetate buffer (100 mM, 

pH 4.2) were then treated with 0.3 ml of amyloglucosidase at 37 

ºC for 1 h. Along with the sample tube an appropriate control 

was also prepared. The reaction mixture was centrifuged and the 

supernatant obtained was used for estimation of cell surface - 

glucan as well as total carbohydrate content by the glucose 

oxidase peroxidase method and phenol sulphuric acid method 

respectively.  

Determination of Total carbohydrate 

Fractions of supernatant solution and residual suspension 

derived by centrifugation of neutralized yeast digest contained 

soluble and insoluble carbohydrate respectively. Total 

carbohydrate was measured by phenol sulphuric acid method.  

Results 

Presence of a third pool of glycogen at the cell surface level 

of yeast represents surface α-glucans made up of glucose 

residues predominantly is confirmed by amyloglucosidase 

treatment. 

From Figure 1 it exemplifies those cells grown in media 

containing both glucose (2-10 % w/v) as well as ethanol (8% 

v/v) display higher surface α-glucan content than those observed 

for the cells grown in media with only glucose (2-10 w/v). This 

indicates that exracellular ethanol not only affects the storage 

level of cytoplasmic & cell wall bound insoluble glycogen (4) 

but also third pool of cell surface glycogen present in the form 

of α-glucans.  
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Figure 1. Amount of surface α-glucans released after 

amyloglucosidase treatment 
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Figure 2. Amount of cell surface carbohydrate released from 

yeast cells after amyloglucosidase treatment 

Cell surface carbohydrate in yeast cells comprised of 

glucose and mannose presenting mannan side chains as well as 

galactose. Figure 2 indicates the similarity of the results 

regarding total carbohydrate content with those obtained for 

surface α-glucans in yeast cells. The carbohydrate content was 

found to be higher when yeast growth media contained 8 % v/v 

ethanol in addition to glucose (2-10 % w/v).  
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Figure 3. Amount of cell surface proteins released from yeast 

cells after amyloglucosidase treatment 

From Figure 3 it is observed that cells grown in the medium 

containing 8% (v/v) ethanol in addition to glucose (2-10 % w/v 

sugar) exhibit comparatively higher surface protein content than 

those obtained for yeast cells grown in glucose (2-10 % w/v 

sugar) medium. Thus action of amyloglucosidase on yeast 

releases both the glucose as well as proteins present at the cell 

surface level. 

Effect of CaCl2: The effect of CaCl2 on glycogen and 

carbohydrate content of yeast cells is depicted in Figures 4 and 

5. The amount of insoluble glycogen (7.6) and carbohydrate 

(22.5 mg) in yeast cells from medium YPD-LCa containing 0.8 

g/L CaCl2 was similar as in cells grown in YPD medium without 

CaCl2 (7.4 mg glycogen and 23 mg carbohydrate). Cells grown 

in the medium YPD-HCa containing excess of CaCl2 (8 g/L) 

exhibited decrease in insoluble glycogen (4.5 mg) and 

carbohydrate (18.0 mg) content. Higher amount of surface α-

glucans were observed for yeast cells from both YPD-LCa and 

YPD-HCa media containing CaCl2. (Table-1). 
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Figure 4. Effect of CaCl2 on yeast glycogen content 
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Figure 5. Effect of CaCl2 on yeast carbohydrate content 

Table 1. Effect of CaCl2 on Surface α-glucan content of yeast 

cells 
Media  Surface α-glucan (µg/g) 

wet wt. 

Media  Surface α-glucan (µg/g) 

wet wt. 

YPD                160 YPD-E               190 

YPD-

LCa 

               240 YPD-

LCaE 

              295 

YPD-

HCa 

               290 YPD-

HCaE 

              365 

Effect of CaCl2 and Ethanol: Combined effect of CaCl2 and 

ethanol on yeast glycogen content is displayed in Figure 6 and 7. 

Yeast cells grown in the medium YPD-LCaE containing 0.08 

g/L CaCl2 and 8 % (v/v) ethanol exhibit higher amount of 

insoluble glycogen (11.4 mg/g) and carbohydrate (43 mg/g) than 

those for the cells grown in YPD medium. But the amount of 

both glycogen and carbohydrate was reduced 6.7 mg and 31.0 

mg when the YPD-HCaE medium with excess amount of CaCl2 

(0.8 g/L) along with 8 % (v/v) ethanol was utilized for yeast cell 

growth. Cells harvested from media YPD-LCaE and YPD-HCaE 

also exhibited higher amount of cell surface α-glucans as 295 µg 

and 365 µg respectively as a result of combined effect of CaCl2 

and ethanol on yeast (Table 1). No significant increase was 

observed in the respective values of soluble glycogen and 

carbohydrate content. 
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Figure 6. Effect of CaCl2 and Ethanol on yeast glycogen 

content 
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Figure 7. Effect of CaCl2 and Ethanol on yeast carbohydrate 

content 

Discussion-Conclusion 

Yeast glycogen is comprised of α-glucans with α (1, 4) and 

α (1, 6) linkages and it serves as a major storage carbohydrate. 

Presence of third pool of glycogen in the form of α-glucans at 

the cell surface level of Saccharomyce italicus is confirmed by 

amyloglucosidase treatment. Ethanol plays an important role in 

the flocculation process of these cells thereby showing higher 

amount of insoluble glycogen as well as surface α-glucan 

content. Elevation in the level of glycogen was observed for 

yeast cells grown in YPD medium containing calcium. Calcium, 

a secondary messenger in eukaryotic cells plays an important 

role in glycogen metabolism enhancing the level of glycogen 

synthesis in yeast. Combined effect of CaCl2 and ethanol also 

displays elevation in the level of surface α-glucan content in 

yeast cells (Table 1).  These surface α-glucans play an important 

role in the process of flocculation in Saccharomyces italicus. 

This revealed the correlation between ethanol, calcium, 

insoluble glycogen representing α-β-glucan complex and 

flocculation in yeast. Apart from cell surface carbohydrate 

extracellular ethanol also affects surface glycoproteins in yeast 

cells. Action of ethanol on the cell wall of yeast results net 

increase in the level of surface glycoproteins like 

glucomannoproteins as well as galactomannoproteins. 
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