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Introduction  

In recent years considerable interest has been shown  in  the 

study of peristaltic transport  through  and past porous media 

because of its  important applications in biomechanics  and 

medicine.   Several investigations on peristaltic pumping 

through  flexible impermeable walls  are  made based  on the no-

slip   condition at  the impermeable  wall.   Jaffrin et al. (1969),  

Ramachandra  Rao  and Usha (1995),  Brasseur et al. (1987), 

Srivastava and Srivastava (1995) Vajravelu et al. (2005), 

Kodandapani and srinivas (2008), Srinivas and Gayatri (2009) 

and others  studied  fluid  mechanics  of peristaltic   pumping  

considering the boundaries  of the ducts  as impermeable. 

Mishra and Ghosh (1997) proposed a mathematical model to 

study the blood flow taking the channel bounded by permeable 

walls.  It is well known that peristaltic transport also takes place 

in small blood vessels.     The tissue region in the blood vessels 

is modeled as porous medium by many researchers (Gopalan, 

1981).  In view of this Mishra (2004) studied the peristaltic   

pumping of a Newtonian fluid in a channel with a porous 

peripheral layer.  In all the above investigations the thickness of 

the permeable bed has not considered in the analysis. 

When the flow takes over a permeable bed the usual no slip 

condition is not valid at the permeable surface.  Beavers and 

Joseph (1967), Saffman (1971), Ochoa – Tapia and Whitaker 

(1995) proposed different slip conditions at the permeable walls. 

Mishra and Ramachandra Rao (2004) discussed the peristaltic 

pumping through a porous tube assuming Saffman slip condition 

at the permeable boundary.  Channabasappa and Ranganna 

(1976) studied the flow of viscous stratified fluid of variable 

viscosity past a porous bed. 

The gastrointestinal tract is surrounded by a number a 

number of muscle layer having smooth muscles. One of the 

important smooth muscle layers in gastrointestinal tract are 

submucosa and a layer of epithelial cells and these are 

responsible for absorption of nutrients and water in the intestine. 

These layers consist of many folds and there are pores 

throughout the tight junctions of them. In view of this the study 

of peristaltic transport with porous peripheral layer is important. 

In practical problems involving flow past a porous lining it is 

necessary to involve directly the thickness  of  the  porous  lining 

to have an increase in the  mass  flow  rate.  Motivated by this 

the peristaltic pumping of a Newtonian fluid in an inclined 

channel lined with porous material is   investigated under   long 

wavelength and low Reynolds number assumptions.  The 

velocity distribution, the volume flow rate, the pressure rise and 

the frictional force are obtained.  The effect of thickness of 

porous lining on the peristaltic pumping is discussed 

Mathematical  formulation and solution 

Consider the peristaltic pumping of a viscous fluid in an 

inclined channel of angle   and of half-width ‘a’.   The channel 

is bounded by flexible walls which are lined with non-erodible 

porous material of thickness h
1
. A longitudinal train of 

progressive sinusoidal waves takes place on the  upper and 

lower walls of the channel.  For simplicity we restrict our 

discussion to the half width of the channel as shown in Figure.1. 

                The wall deformation is given by 

                    
2

H X, t a b sin x ct


  


                           (1) 

where b is the amplitude,  is the wavelength and  c is the 

wave speed. 

 
Figure 1: Physical M
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Equations of motion 

Under the assumptions that the channel length is an integral 

multiple of the wavelength   and the pressure difference 

across the ends of the channel is a constant, the flow becomes 

steady in the wave frame  x, y   moving with velocity c away 

from the fixed  (laboratory) frame    X, Y .  The 

transformation between these two frames is given by 

   x X ct; y Y; u x, y U X ct,Y c;     

   v x, y V X ct,Y     1 1p x P X, t                                      (2) 

Where U and V  are velocity components in the  laboratory 

frame u, v are  velocity components  in the wave frame and 
1 1p , P   are pressures  in  wave and  fixed frame  of references  

respectively. In many physiological situations it is proved 

experimentally that the  Reynolds  number of the flow is very 

small.   So, we assume that the flow is inertia-free.  Further, we 

assume that the wavelength is infinite. 

Using the non-dimensional quantities,  
1u x y h h

u ; x ; y ; h ;
c a a a

    


2

2

pa q ct k
p ; q ; t ; Da

c ac a
   
 

b
;

a ac


     

The non-dimensional form of equations governing the motion 

(dropping the bars) becomes 
1 2

2

p u
0 sin

x y

 
    

 
                         (3) 

1

1

p
0 cos

y


   


                                       (4) 

where   
2

1a g

c
 


 and   

3

1

1

a g

c
 

 
 , g  is  the  acceleration  due to 

gravity. 

Let    1

1P P x cos    

Then equation (3) becomes 
2

2

p u
0 sin

x y

 
    

 
                                      (5) 

 

The non-dimensional boundary conditions are 

u
0

y





   at y  = 0                                        (6) 

Da u
u 1

y


  

 
  at   y h                          (7) 

Solution 

Solving equation (5) with the boundary conditions (6)  and (7)  

we get the velocity as 

   
 

22 hy Da
u P sin h 1

2 2

 
       

  

           (8) 

  Integrating the equation (8) and using the condition 

       0    at y  = 0,  we get 

   
 

23 hy Da
P sin h y y y

6 2

 
        

  

         (9) 

The volume flux ‘q’ through each cross section in the wave 

frame is given by 

       

h

0

q u dy



   

     
 

   
3

2h Da
P sin h h

3

 
        

  

         (10) 

The instantaneous volume flow rate  Q x, t  in the laboratory 

frame between the centre line and the wall is 

   
H

0

Q X, t U X,Y, t dY



   

    
 

 
3

2h Da
P sin h

3

 
      

  

                      (11) 

       From equation (10), we have 

    
 

   
3 2

3 q hdp
sin

dx 3 Da
h h

  
  

  


      (12) 

Averaging equation (11) over one period yields the time mean 

flow (time –averaged flow rate)  Q  as 

                     

T

0

1
Q Q dt

T
   

                           q 1                                              (13) 

The pumping characteristics 

 Integrating the equation (12)  with  respect to x over  one 

wavelength, we get   the pressure rise (drop)  over one cycle of 

the wave as 

      
 

   

1

3 20

3 Q 1 h
p dx sin

3 Da
h h

   
   

  


        (14) 

The pressure rise required to produce zero  average flow  rate is 

denoted by  0P . Hence 0P  is 

 

   

1

0
3 20

3 h 1
p dx sin

3 Da
h h

 
   

  


        (15) 

                   It  is  observed  that as Da 0 , 0  and 

0 , equations (9),  (10) and (14) reduce to the 

corresponding  result of  Jaffrin and Shapiro (1971) for the   

peristaltic transport  of the Newtonian   fluid  in  a channel. 

               The dimensionless frictional force F at the wall across 

one wavelength in the inclined channel is given by 

             

1

0

dp
F h dx

dx

 
  

 
  

 

   

1

3 20

3h Q 1 h
F dx sin

3 Da
h h

   
  

  


               (16) 

Discussions of the Results: 

From equation (14), we have calculated the pressure 

difference as a function of  for different values of , for fixed 

  is shown in 

figures (2) to (4).  It is observed that for a given flux   the 

pressure difference    increases with increasing .  Further it 
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is observed that the effect of the porous lining on the walls of the 

channel is to increase the pressure rise in the channel. We also 

observe that the increase in the inclination of the 

angle , will give rise to an increase in the 

pressure difference . 

         From equation (14), we have calculated the pressure 

difference as a function of    for different values of Da and  

for fixed  and is shown in 

figures (5), (6) and (7). It is observed that for a given flux  the 

pressure rise depends on Da and it decreases with increasing 

Darcy number. For a given , the flux  decreased with 

increasing Da.  For free pumping   there is no difference in flux 

for variation in Darcy number. From figures (5) to (7) we 

observe that the pump work against more pressure rise for a 

vertical channel when compared with a horizontal channel. 

        The variation of pressure rise with time averaged flow rate 

is calculated from equation (14) for different amplitude ratios 

and is shown in fig (8) for 

fixed . We 

observe that the larger the amplitude ratio, the greater the 

pressure rise against which the pump works.   For  a given ,  

the flux   depends  and it increases with  increase in  

finally, from equations  (14), we have  calculated  the frictional 

force as a function of    for   a fixed    and for  

different values of  ,  Da and  is  depicted in figures (9) to (12).  

It is observed that the frictional force F has the opposite 

behaviour compared with pressure rise . It is observed that as 

0,0  Da  and 0  the results are reduced to the 

Jaffrin and Shapiro (1971) for the   peristaltic transport of the 

Newtonian   fluid in a channel. 

 

Fig 2: The variation of P  with Q  for different values of 

  with Da=0.01, 2,6.0,01.0,0    

 

Fig 3: The variation of P  with Q  for different values of 

  with Da=0.01, 2,6.0,01.0,
4

 


  

 

Fig 4: The variation of P  with Q  for different values of 

  with Da=0.01, 2,6.0,01.0,
2

 


  

 

Fig 5: The variation of P  with Q  for different values of 

Da with 2,6.0,01.0,1.0,0    

 

Fig 6: The variation of P  with Q  for different values of 

with   2,6.0,01.0,1.0,
4

 


  

 

Fig 7: The variation of P  with Q  for different values of 

Da with   2,6.0,01.0,1.0,
2

 



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Fig 8:  The variation of P  with Q  for different values of 

  with 2,01.0,01.0,1.0,
2

 


 Da  

 

Fig 9: The variation of F with Q  for different values of   

with   2,01.0,01.0,6.0,0   Da  

 
 

Fig10: The variation of F with Q  for different values of   

with   2,01.0,01.0,1.0,
2

 


 Da  

 

Fig11: The variation of F with Q  for different values of Da 

with   2,6.0,01.0,1.0,0    
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