
M. Nandhini et al./ Elixir Comp. Sci. & Engg. 48 (2012) 9280-9284

9280

Introduction

Scheduling can be defined as a problem of finding an

optimal sequence to execute a finite set of operations satisfying

most of the constraints. The purpose of scheduling is to

minimize the production time and costs. Production scheduling

aims to maximize the efficiency of the operation and reduce

costs. One of the most popular models in the area of scheduling

is Multi Job-shop scheduling.

The Multi Job-shop scheduling problem (MJSSP) is an NP

hard combinatorial optimization problem, which is very difficult

to solve by conventional methods. The main goal of

combinatorial optimization is finding the best possible solution

from the set of feasible solutions. The amount of computation

required to find optimal solution increases exponentially with

problem size. The research on MJSSP not only promotes the

development of relative algorithms in the field of artificial

intelligence, but also provides means of solutions and

applications for complex MJSSP.

The goal of MJSSP is to allocate machines to complete jobs

over time, subject to the constraint that each machine can handle

at most one job at a time. Thus, the MJSSP allocates resources

over a specified time to perform a predetermined collection of

tasks. The complexity of MJSSP increases with its number of

constraints and size of search space. The constraints of the

problem are so strong, making the valid search space of the

problem too complicated.

Historically researchers have proposed several methods to

solve the MJSSP using artificial intelligence methods. Exact

methods are based predominantly on the Branch and Bound

(BB) method, Dynamic Programming and Constraint Logic

programming.

On the other hand, various heuristic and meta-heuristic

algorithms, which are a quite good alternative such as simulated

annealing (SA), tabu search (TS), genetic algorithm (GA),

particle swarm optimization (PSO) ant colony optimization

algorithm (ACO) and several other bio-inspired and nature-

inspired algorithms (Zalinda et.al, 2004).

 Nakano and Yamada (1991) proposed conventional

genetic algorithms for job shop problems and they were among

the first who applied a conventional GA that uses binary

representation of solutions, to the job shop scheduling problem.

 Yamada T and Nakano R(1992) proposed a genetic

algorithm applicable to large-scale job-shop problems. In their

work, they proposed a GA that uses problem-specific

representation of solutions with crossover and mutation, which

are based on the GT(Giffler–Thomson) algorithm.

José Fernando Gonçalves et.al.,(2002) proposed a hybrid

genetic algorithm for the job shop scheduling problem. In their

work, schedule was generated using a procedure that generates

parameterized active schedules and at each schedule a local

search heuristic was applied to improve the solution.

Juang (2004) proposed a hybrid of genetic algorithm and

particle swarm optimization for recurrent network design. In this

paper, the author described how the hybridization of GA with

PSO overcomes each other’s disadvantages.

Hong Zhou.et.al(2009) proposed a hybrid framework

integrating a heuristic and a genetic algorithm (GA) for JSS to

minimize weighted tardiness. In which, for each new generation

of schedules, the GA determines the first operation of each

machine, and the heuristic determines the assignment of the

remaining operations.

Tamilarasi A and Anantha kumar T(2010) presented an

enhanced genetic algorithm with simulated annealing for job

shop scheduling problem. In their work, the best solution

obtained without change for certain number of generations using

GA is further improved by SA.

This paper gave an idea to hybridize the genetic algorithm

with simulated annealing to solve the JSSP in different view

Tele:

E-mail addresses: mnandhini2005@yahoo.com

 © 2012 Elixir All rights reserved

A Hybrid of genetic algorithm and simulated annealing for optimizing multi

job shop scheduling
M. Nandhini

1
, S.Kanmani

2
, M. Thariga

1

 1
Development Centre, Bharathiar University, Coimbatore,TamilNadu -46, India.

2
Department of Information Technology, Pondicherry Engineering College, Puducherry-14, India.

3
Department of Computer Science, Pondicherry University, Puducherry-14, India.

ABSTRACT

A new hybrid approach with Genetic Algorithm and Simulated Annealing is proposed to

solve Multi Job-Shop Scheduling problem, which is one of the well-known hardest

combinatorial optimization problems. The main objective of multi job shop scheduling

problem is to find a schedule of operations of each job in a set of jobs that can minimize the

maximum completion time called makespan. To improve the makespan, SA algorithm has

been designed and combined with genetic algorithm . Thus, hybrid GA is implemented over

MJSSP and the effectiveness and efficiency is proved by getting promising results for

different benchmark job-shop scheduling problem instances.

 © 2012 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 2 May 2012;

Received in revised form:

15 June 2012;

Accepted: 3 July 2012;

Keywords

Multi Job-shop scheduling,

Heuristics,

Multi-objective optimization,

Roulette wheel selection,

Simulated Annealing.

Elixir Comp. Sci. & Engg. 48 (2012) 9280-9284

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

M. Nandhini et al./ Elixir Comp. Sci. & Engg. 48 (2012) 9280-9284

9281

which is not attempted in the literature, in order to obtain

optimum value with minimum computation time .

In this paper, a randomized constructive heuristic approach

is employed to find the feasible schedule for MJSSP. Combining

the advantages of GA and SA, a new hybrid approach is used to

solve the MJSSP.

It is proposed that, to minimize the computation time, in

each iteration, a few individuals that have a poor fitness value

are substituted by a new solution generated by SA and the

resulting set of solutions are moved to the solution space by GA.

This paper is organized as follows. In Section 2, a brief

introduction of Multi job-shop scheduling and its constraints are

presented. Section 3 describes the general description of GA and

SA. The Hybrid GA and SA for solving MJSSP is presented in

Section 4. Experimentally evaluated experimental results on a

set of typical instances and comparative analysis are shown in

Section 5. Conclusions and final remarks are discussed in

Section 6.

Multi-Job Shop Scheduling Problem

 Multi Job-shop scheduling problem (MJSSP) is considered

as hard combinational optimization problem and it has been the

subject of a significant amount of literature in the Operations

Research (OR) areas. The MJSSP consists of n jobs and m

machines. Each job must go through m machines to complete its

work and it is considered that one job consists of m operations.

Each operation uses one of m machines to complete one job’s

work for a fixed time interval. Once one operation is processed

on a given machine, it cannot be interrupted before it finishes

the job’s work. The sequence of operations of one job should be

predefined and may be different for any job. In general, one job

being processed on one machine is considered as one operation

noted as Oij (means j
th

 job being processed on i
th

 machine, 1 ≤ j

≤ n,1 ≤ i ≤ m) . Each machine can process only one operation

during the time interval.(Garey et.al., (1976) and Lawler

et.al.,(1993).

The objective of MJSSP is to find an appropriate operation

permutation for all jobs that can minimize the makespan Cmax

i.e., to Minimize the final completion time.

The maximum completion time of the final operation in the

schedule of n×m operations with minimum waiting time of jobs

and machines is called makespan. The n×m JSSP, the problem

can be modeled by a set of m machines, denoted by

M={1,2,…,m}, to process a set of n×m operations, denoted by O

= {1,2,…,(n×m)}

Where,

n : number of jobs

m : number of operations for one job

Oi : completed time of operation i (i=1,2,……(n×m))

ti : processing time of operation i on a given machine

 Cmax : makespan

 The problem can be understood with its known constraints

(mandatory &optional) / assumptions as listed below.

 No machine can process more than one job at a time

 No job can be processed by more than one machine at a time

 The order in which a job visits different machines is

predetermined by technological constraints

 Different jobs can run on different machines simultaneously

 At the moment T, any two operations of the same job cannot

be processed at the same time

 Processing time on each machine is known

 Idle time of machines may be reduced

 Waiting time of jobs may be reduced

Thus, the MJSSP is to allocate machines to complete jobs

over time, subject to the above constraint. The complexity of

MJSSP increases with its number of constraints and size of

search space. The constraints of the problem are so strong,

making the valid search space of the problem too complicated.

Description of GA and SA

Genetic Algorithm

Genetic algorithm (GA) is a adaptive search heuristic that

mimics the process of natural evolution. This heuristic is

routinely used to generate useful solutions to optimization and

search problems. GA belong to the larger class of evolutionary

algorithms (EA), which generate solutions to optimization

problems using techniques inspired by natural evolution, such as

inheritance, mutation, selection, and crossover.

The basic concept of GAs is designed to simulate processes

in natural system necessary for evolution, specifically those that

follow the principles first laid down by Charles Darwin of

survival of the fittest. As such they represent an intelligent

exploitation of a random search within a defined search space to

solve a problem.

The Evolutionary process of GA is as follows: The evolution

process starts from a population of random individuals. It is

known as a generation. In each generation, the fitness of the

whole population is evaluated, multiple individuals are

stochastically selected from the current population based on

their (fitness), modified (mutated or recombined) to form a new

population(Sivanandham S N and Deepa S N ,2008), which

becomes current population in the next iteration of the

algorithm. GA is considered as one of the most powerful

techniques in evolutionary algorithms, so GA has been

employed as a tool that can handle a very complex search space

with a high probability of success in finding the optimal

solutions. The flow diagram for GA’s evolutionary process is

given in Fig.1.

Fig. 1 Evolutionary process of GA

Simulated Annealing

Simulated annealing (SA) is a generic probabilistic

metaheuristic for the global optimization problem of locating a

good approximation to the global optimum of a given function

in a large search space. It is often used when the search space is

very large. The name and inspiration come from annealing in

metallurgy.

SA is a technique involving heating and controlled cooling

of a material to increase the size of its crystals and reduce their

defects. The heat causes the atoms to become unstuck from

M. Nandhini et al./ Elixir Comp. Sci. & Engg. 48 (2012) 9280-9284

9282

their initial positions (a local minimum of the internal energy)

and wander randomly through states of higher energy; the slow

cooling gives them more chances of finding configurations with

lower internal energy than the initial one.

The Evolutionary process of SA is as follows: The

evolution process starts from a random individual. Each step of

the SA algorithm attempts to replace the current solution by a

random solution. The new solution may then be accepted with a

probability that depends both on the difference between the

corresponding function values and also on a global parameter T

(called the temperature), that is gradually decreased during the

process. The dependency is such that the choice between the

previous and current solution is almost random when T is large,

but increasingly selects the better or "downhill" solution (for a

minimization problem) as T goes to zero. The flow diagram for

SA’s iterative process is given in Fig.2.

Fig. 2 Iterative process of SA

METHODOLOGY OF PROPOSED SYSTEM

Many algorithms have been proposed by hybridizing of GA

with SA (Xia Weijun et. al.,2004, Sohrab Khanmohammadi and

Hamed Kharrati, 2010, Elnaz Baghal Azardoost and Nrges

Imanipour,2011).In order to reduce the computation time, and to

reduce machine and jobs idle times, new approach is applied on

mutation in the proposed work. Also, after mutation is applied

over a schedule, to improve the fitness value SA is applied. The

proposed architecture is shown in a schematic diagram in Fig. 4.

Initially, we start with a possible solution (chromosome) for

the schedules which are randomly generated. This process is

repeated to get 600 chromosomes. This set of chromosomes is

our initial search space called population. The chromosomes

evolve through successive iterations, called generations. During

each generation, the chromosomes are evaluated, using some

measures of fitness.

The state representation, fitness function and other operators

that are used in our implementation are discussed in this section.

State Representation

 State formation takes number of jobs, number of operations

for each job, sequence of operations of each jobs, processing

time of each job’s operation and allotment of operation over

machines as inputs. In our work, each state is represented as an

array of structures as in Fig. 3. Each structure consists of job

name and its operation as members.

Fig. 3 State Representation of MJSSP

For 3 Jobs and 3 Operations, the schedule is represented as

follows in which the Operation sequences should not change:

O11 -> denotes first job’s first operation

O23 -> denotes second job’s third operation

Since, 3 jobs x 3operations, the array structure should be of

9 positions with all jobs operations.

Feasible Solution Generation

 A Feasible schedule is generated by the Random

constructive heuristics process. First operation in a schedule can

be scheduled if it is been first operation of any of the jobs.

Following this, unscheduled operations of remaining jobs are

scheduled by verifying operation consistencies and capacity

constraints. In the following example, the heuristic process is

clearly mentioned. The operation sequence of any job should not

change in the schedule. It should start from 1 and ends with m

(no. of operations). An example of feasible solution is given in

Fig.5.

Fig. 5 Feasible Schedule

O11 -> denotes first job’s first operation

O23 -> denotes second job’s third operation

Since, 3 Jobs x 3 Operations, the array structure should be

of 9 positions with all jobs operations.

For n jobs on m machines MJSSP, the schedule is created in

n x m dimensions.

Fig. 4 Schematic diagram of proposed GA with SA

M. Nandhini et al./ Elixir Comp. Sci. & Engg. 48 (2012) 9280-9284

9283

Fitness Function Evaluation

 The evaluation of individual in the population is commonly

regarded as the most computational demanding step. This step is

executed in every generation for all the individuals. The

evaluation of an individual can be done in isolation from the rest

of the population, and no communication with the other

individuals of the population is required or desired. The

identification of good or bad solutions in a population is usually

accomplished according to a solution’s fitness. The essential

idea is that a solution having a better fitness must have a higher

probability of selection.

Min Z = Min (Makespan)

Where,

Job No. I : 1..n

Operation No. J : 1..m

In this work, the fitness function is a kind of objective

function that quantifies the optimality of a solution, so that the

particle may be ranked against other particle in the population.

In our case, the fitness for the MJSSP is evaluated using Gantt

chart. From the Gantt chart, the processing time is calculated.

Elitism Strategy

Elitism is a method, which copies few best chromosomes

into new population. The rest is done in classical way. Elitism

can very rapidly increase performance of GA, because it

prevents losing the best found solution. Here, 10% of

chromosomes having higher fitness values are copied into new

population in order to retain the best solution in the next

generation.

Roulette Wheel Selection

The basic part of the selection process is to stochastically

select from one generation to create the offspring of the next

generation. The requirement is that the fittest individuals have a

greater chance of survival than weaker ones. This replicates

nature in that fitter individuals will tend to have a better

probability of survival and will go forward to form the mating

pool for the next generation.

In roulette wheel selection, individuals are given a

probability of being selected that is directly proportionate to

their fitness. Two individuals are then chosen randomly based

on these probabilities and produce offspring. Pseudo-code for a

roulette wheel selection algorithm is shown in Fig. 6.

for all members of population

 sum += fitness of this individual

end for

 for all members of population

 probability = sum of probabilities + (fitness / sum)

 sum of probabilities += probability

end for

loop until new population is full

 do this twice

 number = Random between 0 and 1

 for all members of population

 if number > probability but less than next

probability

 then the current member is selected

 end for

 end

 create offspring

end loop

Fig .6. Pseudo Code for Roulette Wheel Selection

Two-Point Crossover

Crossover operator aims to interchange the information and

genes between chromosomes. Therefore, crossover operator

combines two or more parents to reproduce new children, then,

one of these children may hopefully collect all good features that

exist in its parents.[12]

In two-point crossover, two crossover points are chosen and

the contents between these points are exchanged between two

mated parents to produce two child offspring. The schematic

representation of two-point crossover in MJSSP is shown in Fig.

7.

Mutation

Mutation means randomly deriving change to the gene

sequence of the chromosomes. In GA, mutation is a purely

random operator, in which the probability that a gene will

mutate is of low value at the time of initialization.

In this paper, the procedure of mutation for MJSSP is

proposed as follows:

Fig. 7 Two Point Crossover

(a) The distance of each job last operation and its previous

operation is calculated

(b) From the distance set, a Job’s last operation with larger

distance is swapped next to its previous operation

(c) All jobs’ operations after the swapped job operation is

shifted one position to its right

The schematic representation of mutation is shown in Fig. 8.

Fig. 8 Mutation

Repair

Repairing is mainly done for removing the violation of

constraints after reproduction operation. This function has

composed of two distinct tasks: fault detection and fault

correction.

Knowing the location of the offending timeslots, repairing

replaces these timeslots with free slots at first. If conflict rises,

iteratively replaces with other timeslots entries in order to get rid

of constraints violation.

Simulated Annealing

Simulated Annealing inserted within genetic algorithm is

considered as an effective way to produce high quality solution

than using stand alone genetic algorithm.

M. Nandhini et al./ Elixir Comp. Sci. & Engg. 48 (2012) 9280-9284

9284

Especially after mutation in the GA process, we propose to

apply simulated annealing to improve the candidate solution’s

fitness value. As its outcome, when applying SA, it produces the

fitness value lower than the parent fitness value.

The feasibility of the schedule in each generation would be

improved by hybridizing GA with SA. So that ,the optimal

solution will be obtained by passing minimum number of

generations. Hence, the convergence speed becomes high.

Termination Criterion

This iterative process continues until optimum fitness value is

obtained.

COMPUTATIONAL RESULTS

We programmed the algorithms in Java Programming

Language and run it on the Intel Pentium Core 2 Duo 3GHz

Processor and 2 GB RAM configuration system with Windows

XP as the platform.

To illustrate the performance of proposed algorithm , the

benchmark instances of Lawrence(1984) with different sizes

have been selected from the OR-Library (Beasley J E ,1990).

Evolution process started with 600 schedules in the initial

population. If the optimum solution is reached , the process is

terminated and the optimal solution is declared.

The optimal solutions obtained for some benchmark

instances on different algorithms such as simple GA, GA with

SA by [13] and proposed GA with SA are listed in the Table. 1

along with their CPU time. The CPU time is the time spent by

CPU on each benchmark problem till receives the optimal

schedule with the above machine configuration.

It is observed from Table.1 that the computation time of

large size instances are lesser than the time taken by GA with

SA[13] taken for comparison.

Hence, our proposed GA with SA can be used to solve

MJSSP with multi objectives with lesser time is proved.

CONCLUSION

A hybrid algorithm with GA and SA helps in getting

optimal solution with less computation time than existing

algorithm is proved with its performance. It is suitable solivng

large sized instances of multi objective combinatorial problems

with more soft constraints like MJSSP. Hence , the superior

results indicate the successful incorporation of GA and SA.

As future enhancement to this project, we have planned to

hybrid GA with any of the metaheuristics algorithms to study

the impact of natural inspiration over bioinspired process.
REFERENCES

[1] Beasley J E (1990) OR-library: Distributing test problems

by electronic mail. J. of the Operational Research Society,

41(11),1069–1072.

[2] Elnaz Baghal Azardoost and Nrges Imanipour (2011) A

Hybrid Algorithm for Multi Objective Flexible Job Shop

Scheduling Problem. In Proc of the Int. Conf. on Industrial

Engineering and Operations Management,795-801.

[3] Garey J E ,Johnson D S, and Sethi R (1976) The complexity

of flow shop and job shop scheduling. Mathematics of

Operations Research, 1(2),117–129.

[4] Hong Zhou, Waiman Cheung and Lawrence C. Leung

(2009) Minimizing Weighted Tardiness of Job-shop Scheduling.

Euro. J. of Operational Res., 194(3), 637-649.

[5] José Fernando Gonçalves, Jorge José de Magalhaés, Rua

Dr,Roberto Frias, Jorge Jose, Magalhâes Mendes and Maurício

G C Resende (2002) A Hybrid Genetic Algorithm for Job Shop

Scheduling Problem. Euro. J. Operational Research, 167.

[6] Juang C F (2004)A hybrid of genetic algorithm and particle

swarm optimization for recurrent network design. IEEE

[7] Transactions on Evol. Computation, 34(2) ,997-1006.

[8] Lawler E L, Lenstra J K ,Rinnooy Kan A H G, and Shmoys

D B (1993) Sequencing and scheduling: Algorithms and

complexity. Handbooks in Operations Research and

Management Science,4,445-552.

[9] Nakano R and Yamada T (1991) Conventional genetic

algorithm for job shop problems., In Proc. of International

Conference on Genetic Algorithms, 474–479.

[10] Ono, Yamamura M, and Kobayashi S (1996) A genetic

algorithm for job-shop scheduling problems using job-based

order crossover. In Proc. of ICEC '96, 547-552.

[11] Sivanandham S. N and Deepa S N(2008) Introduction to

Genetic Algorithm :Springer.

[12] Sohrab Khanmohammadi and Hamed Kharrati(2010) A

New Hybrid evolutionary Algorithm for Job-shop Scheduling

Problems. Applied Mathematics and Informatics,51-56.

[13] Tamilarasi A and Anantha kumar T (2010) An enhanced

genetic algorithm with simulated annealing for job-shop

scheduling. International J. of Engn.Sci. and Technol. 2(1),144-

151.

[14] Xia Weijun, Wu Zhiming, Zhang Wei and Yang

Genke(2004) .A New Hybrid Optimization Algorithm for the

Job-shop Scheduling Probem. In Proc. of the American Control

Conference Boston, 5552-5557.

[15] Yamada T and Nakano R (1992) A genetic algorithm

applicable to large-scale job-shop problems. In Proc. of The

Second Int. Conf. on Parallel Problem Solving from Nature

PPSN ’92, 281-290.

[16] Zalinda Othman, Khairanum Subar and Norhashimah

morad(2004) Job shop scheduling with alternative machines

Using genetic algorithms. Journal Teknologi, 41(D), 67–78.

TABLE 1. COMPUTATIONAL RESULTS

Sl. No Instance Name Instance Size Best Known Value

OPTIMAL VALUES CPU TIME

Simple GA GA with SA [13] GA with SA (Proposed)
GA with SA
(Proposed)

(In Seconds)

GA with SA
(In Seconds)

[13]

1 LA01 10 x 5 666 794 666 666 14 15

2 LA02 10 x 5 655 686 655 655 182 190

3 LA03 10 x 5 597 666 597 597 28 36

4 LA04 10 x 5 590 620 590 590 45 48

5 LAO5 10 x 5 593 593 593 593 39 36

6 LA06 15 x 5 926 926 926 926 40 38

7 LA07 15 x 5 890 962 890 890 32 35

8 LA08 15 x 5 863 963 863 863 79 98

9 LA09 15 x 5 951 951 951 951 89 97

10 LA10 15 x 5 958 1011 958 958 90 95

11 LA16 10 x10 945 1008 945 945 80 94

12 LA17 10 x10 784 809 784 784 76 96

13 LA18 10 x10 848 916 848 848 198 230

14 LA19 10 x10 842 863 842 842 210 213

15 LA20 10 x10 902 928 902 902 157 170

