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Introduction  

Scheduling can be defined as a problem of finding an 

optimal sequence to execute a finite set of operations satisfying 

most of the constraints. The purpose of scheduling is to 

minimize the production time and costs.  Production scheduling 

aims to maximize the efficiency of the operation and reduce 

costs. One of the most popular models in the area of scheduling 

is Multi Job-shop scheduling. 

The Multi Job-shop scheduling problem (MJSSP) is an NP 

hard combinatorial optimization problem, which is very difficult 

to solve by conventional methods. The main goal of 

combinatorial optimization is finding the best possible solution 

from the set of feasible solutions. The amount of computation 

required to find optimal solution increases exponentially with 

problem size. The research on MJSSP not only promotes the 

development of relative algorithms in the field of artificial 

intelligence, but also provides means of solutions and 

applications for complex MJSSP.  

The goal of MJSSP is to allocate machines to complete jobs 

over time, subject to the constraint that each machine can handle 

at most one job at a time.  Thus, the MJSSP allocates resources 

over a specified time to perform a predetermined collection of 

tasks. The complexity of MJSSP increases with its number of 

constraints and size of search space. The constraints of the 

problem are so strong, making the valid search space of the 

problem too complicated. 

Historically researchers have proposed several methods to 

solve the MJSSP using artificial intelligence methods. Exact 

methods are based predominantly on the Branch and Bound 

(BB) method, Dynamic Programming and Constraint Logic 

programming.  

On the other hand, various heuristic and meta-heuristic 

algorithms, which are a quite good alternative such as simulated 

annealing (SA), tabu search (TS), genetic algorithm (GA), 

particle swarm optimization (PSO) ant colony optimization 

algorithm (ACO) and several other bio-inspired and nature-

inspired algorithms (Zalinda et.al, 2004).  

  Nakano  and Yamada (1991) proposed conventional 

genetic algorithms for job shop problems and they were among 

the first who applied a conventional GA that uses binary 

representation of solutions, to the job shop scheduling problem. 

    Yamada T and Nakano R(1992) proposed a genetic 

algorithm applicable to large-scale job-shop problems. In their 

work, they proposed a GA that uses problem-specific 

representation of solutions with crossover and mutation, which 

are based on the GT(Giffler–Thomson) algorithm. 

José Fernando Gonçalves et.al.,( 2002) proposed a hybrid 

genetic algorithm for the job shop scheduling problem. In their 

work, schedule was generated using a procedure that generates 

parameterized active schedules and at each schedule a local 

search heuristic was applied to improve the solution. 

Juang (2004) proposed a hybrid of genetic algorithm and 

particle swarm optimization for recurrent network design. In this 

paper, the author described how the hybridization of GA with 

PSO overcomes each other’s disadvantages.  

Hong Zhou.et.al(2009) proposed a hybrid framework 

integrating a heuristic and a genetic algorithm (GA) for JSS to 

minimize weighted tardiness. In which, for each new generation 

of schedules, the GA determines the first operation of each 

machine, and the heuristic determines the assignment of the 

remaining operations.  

Tamilarasi A and Anantha kumar T(2010) presented an 

enhanced genetic algorithm with simulated annealing for job 

shop scheduling problem. In their work, the best solution 

obtained without change for certain number of generations using 

GA is further improved by SA. 

This paper gave an idea to hybridize the genetic algorithm 

with simulated annealing to solve the JSSP in different view 
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which is not attempted in the literature, in order to obtain 

optimum value with minimum  computation time . 

In this paper, a randomized constructive heuristic approach 

is employed to find the feasible schedule for MJSSP. Combining 

the advantages of GA and SA, a new hybrid approach is used to 

solve the MJSSP. 

It is proposed that, to minimize the computation time, in 

each iteration, a few individuals that have a poor fitness value 

are substituted by a new solution generated  by  SA  and the 

resulting set of solutions are moved to the solution space by GA.  

This paper is organized as follows. In Section 2, a brief 

introduction of Multi job-shop scheduling and its constraints are 

presented. Section 3 describes the general description of GA and 

SA. The Hybrid GA and SA for solving MJSSP is presented in 

Section 4. Experimentally evaluated experimental results on a 

set of typical instances and comparative analysis are shown in 

Section 5. Conclusions and final remarks are discussed in 

Section 6.  

Multi-Job Shop Scheduling Problem 

 Multi Job-shop scheduling problem (MJSSP) is considered 

as hard combinational optimization problem and it has been the 

subject of a significant amount of literature in the Operations 

Research (OR) areas. The MJSSP consists of n jobs and m 

machines. Each job must go through m machines to complete its 

work and it is considered that one job consists of m operations. 

Each operation uses one of m machines to complete one job’s 

work for a fixed time interval. Once one operation is processed 

on a given machine, it cannot be interrupted before it finishes 

the job’s work. The sequence of operations of one job should be 

predefined and may be different for any job.  In general, one job 

being processed on one machine is considered as one operation 

noted as Oij (means j
th

 job being processed on i
th

 machine, 1 ≤ j 

≤ n,1 ≤ i ≤ m) . Each machine can process only one operation 

during the time interval.(Garey et.al., (1976)  and Lawler 

et.al.,(1993). 

The objective of MJSSP is to find an appropriate operation 

permutation for all jobs that can minimize the makespan Cmax 

i.e., to Minimize the final completion time. 

The maximum completion time of the final operation in the 

schedule of n×m operations with minimum waiting time of jobs 

and machines is called makespan. The n×m JSSP, the problem 

can be modeled by a set of m machines, denoted by 

M={1,2,…,m}, to process a set of n×m operations, denoted by O 

= {1,2,…,(n×m)}   

Where, 

n   : number of jobs 

m   : number of operations for one job 

Oi  : completed time of operation i (i=1,2,……(n×m)) 

ti    : processing time of operation i on a given machine 

       Cmax : makespan 

 The problem can be understood with its known constraints 

(mandatory &optional) / assumptions as listed below.  

 No machine can process more than one job at a time 

 No job can be processed by more than one machine at a time 

 The order in which a job visits different machines is 

predetermined by technological constraints 

 Different jobs can run on different machines simultaneously 

 At the moment T, any two operations of the same job cannot 

be processed at the same time 

 Processing time on each machine is known 

 Idle time of machines may be reduced 

 Waiting time of jobs may be reduced 

Thus, the MJSSP is to allocate machines to complete jobs 

over time, subject to the above constraint. The complexity of 

MJSSP increases with its number of constraints and size of 

search space. The constraints of the problem are so strong, 

making the valid search space of the problem too complicated. 

Description of GA and SA 

Genetic Algorithm 

Genetic algorithm (GA) is a adaptive search heuristic that 

mimics the process of natural evolution. This heuristic is 

routinely used to generate useful solutions to optimization and 

search problems. GA belong to the larger class of evolutionary 

algorithms (EA), which generate solutions to optimization 

problems using techniques inspired by natural evolution, such as 

inheritance, mutation, selection, and crossover. 

The basic concept of GAs is designed to simulate processes 

in natural system necessary for evolution, specifically those that 

follow the principles first laid down by Charles Darwin of 

survival of the fittest. As such they represent an intelligent 

exploitation of a random search within a defined search space to 

solve a problem. 

The Evolutionary process of GA is as follows: The evolution 

process starts from a population of random individuals. It is 

known as a generation. In each generation, the fitness of the 

whole population is evaluated, multiple individuals are 

stochastically selected from the current population based on 

their (fitness), modified (mutated or recombined) to form a new 

population(Sivanandham S N and Deepa S N ,2008), which 

becomes current population in the next iteration of the 

algorithm. GA is considered as one of the most powerful 

techniques in evolutionary algorithms, so GA has been 

employed as a tool that can handle a very complex search space 

with a high probability of success in finding the optimal 

solutions. The flow diagram for GA’s evolutionary process is 

given in Fig.1. 

 
Fig. 1 Evolutionary process of GA 

Simulated Annealing 

Simulated annealing (SA) is a generic probabilistic 

metaheuristic for the global optimization problem of locating a 

good approximation to the global optimum of a given function 

in a large search space. It is often used when the search space is 

very large. The name and inspiration come from annealing in 

metallurgy. 

SA is a technique involving heating and controlled cooling 

of a material to increase the size of its crystals and reduce their 

defects.  The heat causes the atoms to become unstuck from 



M. Nandhini et al./ Elixir Comp. Sci. & Engg. 48 (2012) 9280-9284 
 

9282 

their initial positions (a local minimum of the internal energy) 

and wander randomly through states of higher energy; the slow 

cooling gives them more chances of finding configurations with 

lower internal energy than the initial one. 

The Evolutionary process of SA is as follows: The 

evolution process starts from a random individual. Each step of 

the SA algorithm attempts to replace the current solution by a 

random solution. The new solution may then be accepted with a 

probability that depends both on the difference between the 

corresponding function values and also on a global parameter T 

(called the temperature), that is gradually decreased during the 

process. The dependency is such that the choice between the 

previous and current solution is almost random when T is large, 

but increasingly selects the better or "downhill" solution (for a 

minimization problem) as T goes to zero. The flow diagram for 

SA’s iterative process is given in Fig.2. 

 
Fig. 2 Iterative process of SA 

METHODOLOGY OF  PROPOSED SYSTEM 

Many algorithms have been proposed by hybridizing of GA 

with SA (Xia Weijun et. al.,2004, Sohrab Khanmohammadi and 

Hamed Kharrati, 2010, Elnaz Baghal Azardoost and Nrges 

Imanipour,2011).In order to reduce the computation time, and to 

reduce machine and jobs idle times, new approach is applied on 

mutation in the proposed work. Also, after mutation is applied 

over a schedule, to improve the fitness value SA is applied. The 

proposed architecture is shown in a schematic diagram in Fig. 4. 

Initially, we start with a possible solution (chromosome) for 

the schedules which are randomly generated. This process is 

repeated to get 600 chromosomes. This set of chromosomes is 

our initial search space called population. The chromosomes 

evolve through successive iterations, called generations. During 

each generation, the chromosomes are evaluated, using some 

measures of fitness.  

The state representation, fitness function and other operators 

that are used in our implementation are discussed in this section. 

State Representation 

 State formation takes number of jobs, number of operations 

for each job, sequence of operations of each jobs, processing 

time of each job’s operation and allotment of operation over 

machines as inputs. In our work, each state is represented as an 

array of structures as in Fig. 3. Each structure consists of job 

name and its operation as members. 

 

Fig. 3  State Representation of MJSSP 

For 3 Jobs and 3 Operations, the schedule is represented as 

follows in which the Operation sequences should not change: 

 

O11 -> denotes first job’s first operation 

O23 -> denotes second job’s third operation 

Since, 3 jobs x 3operations, the array structure should be of 

9 positions with all jobs operations.  

Feasible Solution Generation 

 A Feasible schedule is generated by the Random 

constructive heuristics process. First operation in a schedule can 

be scheduled if it is been first operation of any of the jobs. 

Following this, unscheduled operations of remaining jobs are 

scheduled by verifying operation consistencies and capacity 

constraints. In the following example, the heuristic process is 

clearly mentioned. The operation sequence of any job should not 

change in the schedule. It should start from 1 and ends with m 

(no. of operations). An example of feasible solution is given in 

Fig.5. 
 

Fig. 5  Feasible Schedule 

O11 -> denotes first job’s first operation 

O23 -> denotes second job’s third operation 

Since,  3 Jobs x 3 Operations, the array structure should be 

of 9 positions with all jobs operations.  

For n jobs on m machines MJSSP, the schedule is created in 

n x m dimensions. 

 

Fig. 4  Schematic diagram of proposed GA with SA 
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Fitness Function Evaluation 

 The evaluation of individual in the population is commonly 

regarded as the most computational demanding step. This step is 

executed in every generation for all the individuals. The 

evaluation of an individual can be done in isolation from the rest 

of the population, and no communication with the other 

individuals of the population is required or desired. The 

identification of good or bad solutions in a population is usually 

accomplished according to a solution’s fitness. The essential 

idea is that a solution having a better fitness must have a higher 

probability of selection. 

Min Z = Min (Makespan) 

Where, 

Job No.   I : 1..n 

Operation No. J : 1..m 

In this work, the fitness function is a kind of  objective 

function that quantifies the optimality of a solution, so that the 

particle may be ranked against other particle in the population. 

In our case, the fitness for the MJSSP is evaluated using Gantt 

chart. From the Gantt chart, the processing time is calculated. 

Elitism Strategy 

Elitism is a method, which copies few best chromosomes 

into new population. The rest is done in classical way. Elitism 

can very rapidly increase performance of GA, because it 

prevents losing the best found solution. Here, 10% of 

chromosomes having higher fitness values are copied into new 

population in order to retain the best solution in the next 

generation. 

Roulette Wheel Selection 

The basic part of the selection process is to stochastically 

select from one generation to create the offspring of the next 

generation. The requirement is that the fittest individuals have a 

greater chance of survival than weaker ones. This replicates 

nature in that fitter individuals will tend to have a better 

probability of survival and will go forward to form the mating 

pool for the next generation. 

In roulette wheel selection, individuals are given a 

probability of being selected that is directly proportionate to 

their fitness. Two individuals are then chosen randomly based 

on these probabilities and produce offspring. Pseudo-code for a 

roulette wheel selection algorithm is shown in Fig. 6. 

for all members of population 

    sum += fitness of this individual 

end for 

    for all members of population 

    probability = sum of probabilities + (fitness / sum) 

    sum of probabilities += probability 

end for 

     

loop until new population is full 

     do this twice 

         number = Random between 0 and 1 

       for all members of population 

           if number > probability but less than next                                                        

probability  

                then the current member is selected 

       end for 

     end 

     create offspring 

end loop 

Fig .6.  Pseudo Code for Roulette Wheel Selection 

 

Two-Point Crossover 

Crossover operator aims to interchange the information and 

genes between chromosomes. Therefore, crossover operator 

combines two or more parents to reproduce new children, then, 

one of these children may hopefully collect all good features that 

exist in its parents.[12] 

In two-point crossover, two crossover points are chosen and 

the contents between these points are exchanged between two 

mated parents to produce two child offspring. The schematic 

representation of two-point crossover in MJSSP is shown in Fig. 

7. 

Mutation 

Mutation means randomly deriving change to the gene 

sequence of the chromosomes. In GA, mutation is a purely 

random operator, in which the probability that a gene will 

mutate is of low value at the time of initialization. 

In this paper, the procedure of mutation for MJSSP is 

proposed as follows: 

 

Fig. 7 Two Point Crossover 

(a) The distance of each job last operation and its previous 

operation is calculated 

(b) From the distance set, a Job’s last operation with larger 

distance is swapped next to its previous operation 

(c) All jobs’ operations after the swapped job operation is 

shifted one position to its right 

The schematic representation of mutation is shown in Fig. 8. 

 

Fig. 8 Mutation 

Repair 

Repairing is mainly done for removing the violation of 

constraints after reproduction operation. This function has 

composed of two distinct tasks: fault detection and fault 

correction.  

Knowing the location of the offending timeslots, repairing 

replaces these timeslots with free slots at first. If conflict rises, 

iteratively replaces with other timeslots entries in order to get rid 

of constraints violation. 

Simulated Annealing 

Simulated Annealing inserted within genetic algorithm is 

considered as an effective way to produce high quality solution 

than using stand alone genetic algorithm.  
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Especially after mutation in the GA process, we propose to 

apply simulated annealing to improve the candidate solution’s 

fitness value. As its outcome, when applying SA, it produces the 

fitness value lower than the parent fitness value. 

The feasibility of the schedule in each generation would be 

improved by hybridizing GA with SA. So that ,the optimal 

solution will be obtained by passing minimum number of 

generations. Hence, the convergence speed becomes high.   

Termination Criterion 

This iterative process continues until optimum fitness value is 

obtained. 

COMPUTATIONAL RESULTS 

We programmed the algorithms in Java Programming 

Language and run it on the Intel Pentium Core 2 Duo 3GHz 

Processor and 2 GB RAM configuration system with Windows 

XP as the platform. 

To illustrate the performance of proposed algorithm , the 

benchmark instances of Lawrence(1984) with different sizes 

have been selected from the OR-Library (Beasley J E ,1990). 

Evolution process started with 600 schedules in the initial 

population. If the optimum solution is reached , the process is 

terminated and the optimal solution is declared. 

The optimal solutions obtained for some benchmark 

instances on different algorithms such as simple GA, GA with 

SA by [13]   and  proposed GA with SA are listed in the Table. 1 

along with their CPU time. The CPU time is the time spent  by 

CPU  on each benchmark problem till receives  the optimal 

schedule with the above machine configuration. 

It is observed from Table.1 that  the computation time of 

large size instances are  lesser  than the time taken by GA with 

SA[13]  taken for comparison. 

Hence, our proposed GA with SA can be used to solve 

MJSSP with multi objectives with lesser time is proved. 

CONCLUSION 

A hybrid algorithm with GA and SA helps in getting 

optimal solution with less computation time than existing  

algorithm is proved  with its performance. It is suitable solivng 

large sized instances of  multi objective combinatorial problems 

with more soft constraints like MJSSP. Hence , the superior 

results indicate the successful incorporation of GA and SA.  

As future enhancement to this project, we have planned to 

hybrid GA with any of the metaheuristics algorithms to study 

the impact of natural inspiration over bioinspired process.  
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TABLE 1.  COMPUTATIONAL RESULTS 

Sl. No Instance Name Instance Size Best Known Value 

OPTIMAL VALUES CPU TIME 

Simple GA GA with SA [13]  GA with SA (Proposed) 
GA with SA 
(Proposed)  

(In Seconds) 

GA with SA 
(In Seconds) 

[13] 

1 LA01 10 x 5 666 794 666 666 14 15 

2 LA02 10 x 5 655 686 655 655 182 190 

3 LA03 10 x 5 597 666 597 597 28 36 

4 LA04 10 x 5 590 620 590 590 45 48 

5 LAO5 10 x 5 593 593 593 593 39 36 

6 LA06 15 x 5 926 926 926 926 40 38 

7 LA07 15 x 5 890 962 890 890 32 35 

8 LA08 15 x 5 863 963 863 863 79 98 

9 LA09 15 x 5 951 951 951 951 89 97 

10 LA10 15 x 5 958 1011 958 958 90 95 

11 LA16 10 x10 945 1008 945 945 80 94 

12 LA17 10 x10 784 809 784 784 76 96 

13 LA18 10 x10 848 916 848 848 198 230 

14 LA19 10 x10 842 863 842 842 210 213 

15 LA20 10 x10 902 928 902 902 157 170 

 


