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Introduction  

In multiple regression modeling, the behavioral pattern of 

the set of independent variables (Xi, i = 1, 2……P) offers an 

opportunity for validity of numerical and graphical diagnostics 

for judging the adequacy of a regression model. See Chatterjee 

and Price (1991) or Fox (1991).The examination and plotting of 

residuals to detect adequacies in a fitted multiple regression 

model is a useful and recommended practice (e.g., Daniel and 

Wood 1971, Weisberg 1980). Residuals (Yi-Y^) are deviations 

from regression line and are generated from a fitted model of the 

linear trend Y^i = bo+b1X1+……. +bnXn. Residuals are used to 

check model accuracy of regression assumption and other 

diagnostics checks. Before, we begin to evaluate the residuals to 

check for model accuracy and validate regression assumption, 

we must first of all, determine the amount of collinearity among 

the set of independent variable (Xi, i = 1, 2……P)   which is 

evaluated through the use of variance inflationary factor (VIF) 

or through correlation matrix, notifying bivariate variable with 

high correlation (generally those of 0.90 and above) which is the 

first indication of substantial collinearity. Unfortunately, there 

are no well defined critical value for which is needed to have a 

large VIF. Some authors such as Chatterjee and Price (1991) 

suggest ten (10) as being large enough to indicate a problem. 

David Levine, Mark Berenson and David Stephan (1998) 

suggest five (5) as a rule of thumb. This implies that any set of 

independent variables that is greater than 5 should be deleted 

from the model but less than 5 should be retain for further 

analysis. Subsequently, a stepwise regression analysis has to be 

carried out to ascertain the best subsets approach to model 

building. The best independent variables are selected through 

Cp≤P+1. The residuals are generated from the fitted model and 

used to evaluate the aptness of the fitted model and check for 

goodness of fit tests. 

The regression assumption shows that the forecast, 

confidence intervals and economic insights yielded by a 

regression model may be (at best) efficient and seriously 

unbiased. Cook and Weisberg (1982) proposed both the 

graphical method and the regression diagnostics for an effective 

assessment of residuals. In general, the scatter plots are the 

starting points for checking the model assumption of the 

regression analysis 

Steps Involved in Model Building 

Step 1: Choose a set of predictors to be considered for inclusion 

in the regression model 

Step 2: Fit a full regression model that includes all the predictors 

to be considered so that the (VIF) for each predictor can be 

determined 

Step 3: Determine whether any predictors have a VIF > 5 

There are three possible results that can occur 

(a) None of the predictors have a VIF > 5.If this is the case 

,proceed to step 5 

(b) One of the predictor has a VIF > 5.If this is the case, 

eliminate  that predictor and proceed to step 5 

(c) More than one of the predictors has a VIF > 5.If this is the 

case, eliminate the covariates that has the highest VIF and go 

back to step 2 

Step 4: Perform a best-subsets regression with the remaining 

predictors to obtain the best models (in terms of Cp) for a given 

number of predictors 

Step 5: List all models that have Cp statistic ≤ (P+1) 

Step 6: Among those models listed in step 5, choose a best 

model for prediction 

Step 7: Perform a complete analysis of the model chosen 

including residual analysis in determining regression assumption 

Model Building 

Example 1: Developing a model building process that considers 

standby hours(y) based on influence of total staff present(x1), 

remote hours(x2), dubner hours(x3), and total labor hours(x4). 

We begin our analysis by first measuring the amount of 

collinearity that exists among the set of predictors 
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From Table 1, we observe that none of the predictors have VIF 

> 5. We accept all the predictors and perform a best subset 

regression to obtain the best models. The VIF values are 

relatively small, ranging from 2.0 for total staff hours to a low 

value of 1.2 for remote hours. There is little evidence of 

collinearity among the set of predictors 

The Stepwise Regression Approach to Model Building 

We now continue our analysis of these data by attempting to 

determine the best subset of all covariates that yield an adequate 

and appropriate model without having to use the complete 

model. We begin by describing a widely used search procedure 

called stepwise regression, which attempts to find the best 

regression model without examining all possible regression. 

Once a best model has been found, residuals are used to evaluate 

the fitness of the model. An important feature of this stepwise 

regression is that a predictor that has entered into the model at 

an early stage may subsequently be removed once other 

predictors are considered. That is, in stepwise regression, 

variables are either added or deleted from the regression model 

at each step of the model building process. The stepwise 

procedure terminates with the selection of a best fitting model 

when no additional variables can be added to or deleted from the 

last model fitted 

Here we look for values of P+1 and Cp where Cp ≤ (P+1) 

Mallows (1973) suggested that the best criterion often used 

in the evaluating of competing models is based on the Cp 

statistic. In choosing a model, we look for models with a 

Cp≤P+1 which means a small biased. The Cp statistic is defined 

as 

Cp = (1-R
2
p) (n-T)/1-R

2
T-[1-2(p+1)]    fig 1 

Where 

P = Number of independent variables included in the regression 

model 

T = Total number of parameters (including the intercept) to be 

estimated in the full regression model 

R
2
p = Coefficient of multiple determination for a regression 

model that has P independent variables 

R
2

T = Coefficient of multiple determination for a full regression 

model that contains all T estimated parameters 

Using the above equation in fig 1 to compute Cp statistic for the 

Total Staff Present and Remote hours, we have n= 26, P = 2, T = 

4+1= 5, R
2
p = 0.490, R

2
T = 0.623 

Cp = (1-0.49)(26-5)/1-0.623-[26-2(2+1)] 

Cp = 8.42 

From Table 2, we observed that only the model with all four 

(4) independent variables considered contain a Cp≤P+1 which 

means a small biased and are choosing for prediction. For other 

illustration and comments on interpretation, see Gorman and 

Toman (1996), Mallows (1973) or Daniel and Wood 

(1980).Now that the explanatory variables to be included in the 

model have been selected, a residual analysis should be 

undertaken to evaluate the aptness of the fitted model  

5: Dynamic scatter plots to show error validation 

 

 
 

 
The scatter plots of standardized residuals versus total staff, 

the remote hours, the dubner hours , total labour hours and the i 

residual plots, all reveal no apparent pattern or relationship 

between the residuals. The residuals appear to be evenly spread 

above and below zero (o) for different values of Xi. The 

residuals are constant across all range of predictors 

(homoscesdasticity).This shows that the coefficient estimates are 

unbiased, the standard error of the estimate are correct and the 

statistical inference is valid . The i residuals plots shows 

independence of the error term. 

Assessing Normality Assumption using Letter Value 

Displays 

The basis for this is a numerical summary display called the 

letter value display. Letter values are similar to percentiles of the 

data and are defined by their depth. The Median, the hinges, the 

eights, and the sixteenths are the start of the sequence of the 

letter values. They are defined as follows 

Depth of the median:            d(M) = (n+1)/2. 

Depth of hinges:                  d(H) =  ([d(M)] + 1)/2 

Depth of eights:                   d(E) = ([d (H)] +1)/2 

Depth of sixteenths:             d(D) = ([d (E)] +1)/2 

The remaining depths are found by continuing the pattern. They 

are labeled C, B, A, Z, Y, X. 

To find the letter values, first order the data (the 

standardized residuals). The lower hinge is the observation at a 

distance d(H) from smallest observations, the upper hinge is the 

observation at a distance d(H) from the largest observations. 

Similarly, the lower and upper eights are the observations at a 

depth d(E) and so on. The midpoint for a given depth is the 

average of the upper and lower letter values at the depth. The 

spread is (upper –lower). 

Normality of this letter values are ensure when the 

midsummaries values for the residuals are the same across all 

values,  

From table 3, we notice that there is an upward trend in the 

mid-point values, but the trend are approximate the same and 

this suggests that the errors are normally distributed 

Testing for independence of the error term 

Our Durbin Watson test statistic = 2.220.  Finding critical 

values of Durbin Watson statistic with α = 0.05 level of 

significance             
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Thus, for our data, with four predictors,( P=4) and 26 

observations (n=26), lower critical value(dl) = 1.06 and upper 

critical value(du) = 1.76. Because Durbin Watson (D) = 2.220> 

1.06 and 1.76, we conclude that there is no evidence of 

autocorrelation among the residuals.  The i residuals seems 

independence and the fitted model Y = -0.330.83+1.2456X1i-

0.1184X2i-0.2917x3i+0.1305X4i seems appropriate because of 

the presence of independence among the residuals. 

Regression Statistics 

The simplest and most obvious means of identifying 

collinearity is an examination of the correlation matrix for the 

independent variables. The presence of high correlations 

(generally those of 0.90 and above) is the first indication of 

substantial collinearity. From Table 5, it is very obvious that the 

pairwise correlations are very small which shows that there is 

absent of bivariate collinearity among the set of predictors          

The multiple r = 0.789.R
2
 is 0.623.Adjusted R

2
 is 0.551 and 

standard error for each predictor is very minimal. The 

coefficient of multiple determination computed as 0.623 means 

that 62.3% of the variation in standby hours(y) can be explained 

by the variation in total staff present, remote hours, dubner hours 

and total labor hours. The sample fitted model Y = -

0.330.83+1.2456X1i-0.1184X2i-0.2917x3i+0.1305X4i is good 

for prediction. The P value in Table 6 for each covariate is less 

than 0.05 which is an indication that the predictors are 

statistically significant; hence, the model is good for prediction  

Conclusion  

The potential validation of regression assumption is 

examined through a thorough examination of diagnostics 

regression measures, dynamic scatter plots display, Cp≤P+1 

which means a small biased and test statistic in a multiple 

regression analysis. Using these techniques, the researcher is 

able to have an insight in the validation of regression 

assumption. The value of employing these techniques are well 

documented in books by Belsley, Kuh and Welsch (1980), Gunst 

and Mason (1980), Cook and Weisberg (1982) and Montgomery 

and Peak (1982). 

In all these, analysis of residuals  after the validation were 

characterized with even distribution of scatter plots, improve in 

r
2
, significance and statistical relationship among the 

independent variables, minimal standard error estimate and 

independence of the error term through residual plots against 

time or through Durbin Watson Test. Approximate normality 

were identified through midsummaries values in letter value 

display.  

We therefore regard residual analysis as an indispensable 

tool of regression analysis. It facilitates the job of the analysis 

Recommendation 

In dealing with the use of residuals in detecting the 

validations of the regression assumption, the writer suggests that 

checking these assumptions carry significant benefits for the 

researchers, making sure an analysis meets the associated 

assumptions helps avoid Type 1 and Type п errors. Attending to 

issues as adequacy due to homocesdasticity, normality term, 

independence of the error term often boost effect sizes, usually a 

desirable outcome. The writer suggests other methods of 

residual validations. The probability plots, histogram stem and 

leaf display, box ands whisker plot and Goodness of fit test can 

be use to validate error term of normality. The non-parametric 

test can be used to detect error validations. Other diagnostics 

measures are F statistics, T test, P value and confidence interval.  

The writer also suggest that apart from using stepwising to select 

the best regression model, variance inflation factor and 

correlation matrix in choosing the best regression models, other 

methods that can be used to diagnose predictors that are 

statistically significant are tolerance value, factorial exploration, 

the residual mean square, the multiple correlation coefficient, 

the adjusted multiple correlation coefficient, the press, turkey’s 

rule and freehand method. The writer suggests also that areas of 

residual violations of regression assumption and transformation 

should be look into 

References 

Belsley, D.A. Kuh, E, and Welsch, R.E. (1980), “Regression 

Diagnostics”, New York: John Wiley.  

Belsley, D.A. (1991), “Conditioning Diagnostics”, New York: 

John Wiley 

Cook, D.R.D., and Weisberg. S. (1982), “Residual and Influence 

in Regression”, New York: Chapman and Hall. 

Chatterjee and Price. (1991) or Fox. (1991), “Useful and 

recommended practice”, (e.g., Daniel and Wood 1971, Weisberg 

1980). 

Daniel and Wood, F.S. (1980), “Fitting Equations to Data”: New 

York: Wiley, 

Daniel, C.W, and F. S, “Wood. (1980), “Fitting Equations to 

Data”, 2d Ed”: New York: Wiley. 

Draper, N.R, and Smith, H. (1996), “Applied regression 

Analysis”: Wiley and Sons, Inc 430 pp. 

Gorman, J.W. and Torman, R.J (1966), “Selection of variables 

for fitting equations to data”: Technometrices, 8, 27-5 

Gunt, R.F, and Mason, R.L. (1980), “Regression Analysis and 

its Application”: New York: Marcel Dekker 

Mallows, C. L. (1973), “Some comments on Cp”, 

Technometrics, 15,661-675 

Montgomery, D.C., and Peck, E.A. (1982), “Introduction to 

linear Regression Analysis”, New York: John Wiley. 

Chatterjee, S. and Price, B. (1991), Regression Diagnostics: 

New York: John Wiley 

Fox, J.(1991),Regression Diagnostics, Newbury Park, CA :Sage 

Gujarati, D.N.(1988),Basic Econometrices, New York : 

McGraw-Hill 

Kutner, Nachtsheim, Neter, Applied Linear Regression Models, 

4th edition, McGraw-Hill, Irwin, 2004 

Marquardt, D.W. (1970)” Generalized Inverse, Ridge 

Regression, Biased Linear Estimation, and Nonlinear 

estimation”, Techno metrics 12/2) 591,605-07 

O” Brien, Robert M.2007. ” A Caution Regarding Rules of 

Thumb for Variance Inflation Factors” Quantity and Quality        

 

Table 1: 
Regression Models Collinearity Statistics(VIF) 

Total staff present model for (X1) and other X 1.707 

Remote hours model for (X2) and all other X 1.233 

Dubner hours model for (X3) and other X 1.459 

Total Labour Hours. Model (X4) and all other X 1.999 
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Table 2: Best Subsets Approach to Model Building 

Models Cp statistic P+1 R2 Adj.R2 Std Error Consider This Model for prediction 

X1 13.32152 2 0.367 0.34 38.62 No 

X1X 2 8.419 3 0.490 0.445 35.4 No 

X1X2X 3 7.8418 4 0.536 0.473 34.50 No 

X1X 2X 3X4 5 5 0.623 0.551 31.84 Yes 

X1X2X 4 9.345 4 0.509 0.442 35.49 No 

X1X3 10.65 3 0.45 0.402 36.74 No 

X1X3X 4 7.712 4 0.538 0.475 34.44 No 

X1X4 14.798 3 0.375 0.321 39.16 No 

X2 33.208 2 0.009 -0.032 48.28 No 

X2X3 32.31 3 0.061 -0.02 48.01 No 

X2X3X4 12.14 4 0.459 0.385 37.26 No 

X2X4 23.25 3 0.224 0.1560 43.65 No 

X3 30.39 2 0.059 0.021 47.03 No 

X3X4 11.82 3 0.43 0.38 37.45 No 

X4 24.2 2 0.171 0.14 44.16 No 

 

Table 3 
N = 26 Lower Upper Mid Spread 

M = 13.5 -0.3600 -0.3600 -0.3600 0.000 

H = 7.25 -0.58 1.085 0.2525 1.665 

E = 4.125 -0.925 1.19 0.1325 2.115 

D = 2.57 -1.135 1.255 0.1 2.39 

         1 -1.33 1.60 0.135 2.93 

 
Table 4 

 = 0.05 

 P = 1 P = 2 P = 3 P = 4 

N dl du dl du dl du dl du 

26 1.30 1.46 1.22    1.55 1.14     1.65 1.06     1.76 

 

Table 5: Pairwise Correlation Matrix: An alternative method of Table 1 
 X1 X2 X3 X4 

X1 1.000 .390 0.036 .571 

X2 .390 1.000 0.022 .241 

X3 0.036 0.022 1.000 .395 

X4 .571 .246 0.395 1.000 

 

Table 6 
 Coefficients Std Error P value 

Intercept -330.83 110.895 0.007 

Total Staff 1.2456 0.412 0.006 

Remote -0.1184 0.054 0.04 

Dubner -0.297 0.118 0.0199 

Total Labour 0.1305 0.059 0.039 

 


