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I. Introduction  

Balanced Incomplete Block Designs (BIBDs) are statistical 

experimental designs used where the subjects must be divided 

into blocks of the same size to receive different treatments, such 

that each subject is tested the same number of times and every 

pair of subjects appears in the same number of subsets 

(Hinkelmann and Kempthorne, 2005). Balanced incomplete 

block designs have 5 parameters krbv ,,, and  which are used 

in describing them. In literature, the ),,,,( krbv  BIBD is also 

referred to as a ),,( kv BIBD or 2- ),,( kv  design (Colbourn 

and Dinitz, 2006). Stinson (2004) defined a BIBD as follows: 

Let ,, kv be positive integers such that 2 kv . A 

),,( kv BIBD is a design ),( AX such that the following 

properties are satisfied: 

1.  vX   

2. A  is a collection of nonempty subsets of X  called blocks 

3. Each block contains exactly k  points  

4. Every pair of distinct points is contained in exactly   blocks 

Although BIBDs have applications traditionally in the 

statistical design and analysis of experiments, they also have 

applications in other fields such as tournament scheduling, 

coding theory, threshold schemes among others (Colbourn and 

Dinitz, 2006). Mathon and Rosa (2006)  highlighted the 

necessary conditions for the existence of a ),,,,( krbv BIBD.  
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Since all the five parameters must be integers, these 

conditions imply that BIBDs with certain parameter sets do not 

exist. Hanani (1961) proved the existence of BIBDs with 

positive integers 3,, kv   or 4 for positive integers b  and r  

satisfying conditions in (iii) and (iv) above. 

Many different techniques have been used in the 

construction of BIBDs: Bose (1939) used difference sets; 

Hedayat and Majumdar (1985) used sequential search algorithm 

to construct Unfinished- BIBDs (U-BIBDs) which were then 

used in the construction of Virtually-Balanced Incomplete Block 

Designs; Prestwich (2003) utilized a Constrained Local Search 

algorithm while Bofill et al (2003) utilized simulated and mean 

field annealing in constructing BIBDs and then gave a 

comparison of the two approaches. Bayrak and Bulut (2006) 

constructed Orthogonal BIBDs using initial blocks obtained 

through difference squares. Kumar (2007) utilized unreduced 
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the qualification of a parent ),,,,( krbv  BIBD as LD ),,,( tpkv  constrained on 

},min{,, pktpvkv   and then considered the case tk  since t  is the smallest 

number of tickets that can guarantee a win in a lottery. The )4,3,10,20,6( BIBD was used as 

the parent BIBD for the procedure. This BIBD yielded three potential LDs each of which 

was completely generated using a Microsoft Office Access database computer program and 

their properties were studied. The three LDs, after their complete generation, yielded the 

),2,3,3,4,4( )3,3,6,10,5(  and )4,3,10,20,6(  BIBDs. These BIBDs follow the generalization 

)1,,1,1,1(   krrbv  where ),,,,( krbv  are the parameters of the 

)2,3,3,4,4(  BIBD. A MATLAB program was used to generate a family of the BIBDs for 

)82,3,,,104(  rbv  with these new set of parameters. All the BIBDs in this 

family are unreduced designs. 
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designs in the construction of Partially BIBDs. The use of tabu 

search and memetic algorithms for constructing BIBDs can be 

found in Yokoya and Yamada (2010)  and Rueda et al (2011) 

respectively. 

Several families of BIBDs exist in literature and are mostly 

based on the techniques of construction. Mandal et al (2008)  

constructed a complete class of )5,3,15,35,7(  BIBDs with  30 

repeated blocks, Kang and Lee (2005)  developed an explicit 

formula and algorithm for a class of )1,1,1( 2  qqq   

symmetric BIBDs with prime q  while Satpati and Parsad 

(2004)  constructed and catalogued nested partially balanced 

incomplete block designs for 30v   and  15r . Morgan et al 

(2001)  gave an exhaustive list of nested BIBDs for 16v   and 

30r . In this paper, we present an approach for constructing a 

family of unreduced BIBDs from LDs for  

)82,3,,,104(  rbv
.  

The organization of the rest of this paper is as follows. In 

Section II, we present an overview of the problem of 

constructing BIBDs from potential LDs. The concept of LDs 

and the relationship between LDs and BIBDs is discussed. A 

brief discussion on unreduced BIBDs is also given. In Section 

III, we describe the method of construction for BIBDs using 

LDs. This method only takes care of BIBDs that satisfy some 

imposed constraints. We present and discuss our results in 

Section IV while the conclusion is in Section V. 

II.  Lotto Designs and Balanced Incomplete Block Designs 

Balanced Incomplete Block Designs can be constructed 

from another BIBD (Stinson, 2004). In this section, we present 

an overview of the problem of constructing BIBDs from 

potential LDs earlier obtained from a parent BIBD. 

Lotto Designs  

In a typical lottery game, a person chooses k numbers from 

v numbers with a small amount of money. This constitutes the 

ticket. The sale of tickets is stopped at a certain point and the 

organisers pick p numbers from the v numbers randomly. These 

p numbers are called the winning numbers. If any of the tickets 

sold match t or more of the winning numbers, a prize is given to 

the holder of the matching ticket. The larger the value of t, the 

larger the prize. A historical background of lottery and its 

various formats around the world are given in Gründlingh 

(2004). 

Li (1999)  gives a formal definition of Lotto Designs: 

“Suppose v, k, p, t  are integers and B  is a collection of k-subsets 

of a set X  of v elements (usually X is X(v)). Then, B  is an (v, k, 

p, t)  Lotto Design (LD) if an arbitrary p-subset of  X(v) 

intersects relevant k-set of B in at least t elements. The k-sets in 

B are known as the blocks of the Lotto design B. The elements 

of X  are known as the varieties of the design”. The author also 

defined potential lotto designs as collections of k-sets formed 

during the construction which may or may not be lotto designs.  

In literature, most researchers have been concerned with 

knowing the minimum number of tickets required to obtain a 

match of at least t numbers. This minimum is usually denoted by 

),,,( tpkvL . For instance, Bate (1978) wrote a computer 

program that can be used to construct minimal ),,,( tpkv lotto 

design. Bate and van Rees (1998) determined the values for 

)2,6,6,(vL  for 54v . Li (1999) gave several upper bound 

construction methods for LDs, one of which is the use of BIBDs. 

Gründlingh (2004)  introduced the notion of a lottery graph and 

obtained closed-form bound formulations for the lottery number.   

Relationship between LDs and BIBDs 

BIBDs can be used in constructing upper bounds for lotto 

designs. However, not all BIBDs can produce Lotto Designs. To 

recognize the qualifying BIBDs, Li (1999) gave the general 

condition they must satisfy in the following theorem:  

 Theorem 1: If B  is the set of blocks of a ),,,,( krbv BIBD 

and tp,  are positive integers where 
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then B  is the set of blocks of  an ),,,( tpkv  Lotto design. 

Hence btpkvL ),,,( .   

Unreduced BIBDs 

          A ),,,,( krbv BIBD is said to be an unreduced design if 

),( kvCb  , )1,1(  kvCr and )2,2(  kvC . They are 

the simplest type of BIBDs and have been found to be useful in 

the construction of Partially Balanced Incomplete Block 

Designs, PBIBDs (Kumar, 2007) and in the theory of resistant 

designs (Baksalary and Puri, 1990). 

III. Methodology 

This section presents the computational procedure used for 

this research work. The parameters p, r, t and   specified in 

Li’s condition were integers defined such that  113  p , 

83  t . The ranges of p and t were selected to fit the range of 

most lottery formats available (Gr undlingh, 2004). Also, 

},min{ pkt  , and tk  . The )4,3,10,20,6( BIBD was selected 

as the parent BIBD and v, k, r and λ were obtained from this 

BIBD; kvpv  , . We consider the case 3 tk where 3 is 

chosen as the smallest number of tickets that can guarantee a 

win in a lottery.  

A FORTRAN language program was written to implement 

the expression for Li’s condition (in Theorem 1) so as to 

determine the ),,,( tpkv  potential lotto designs that can be 

derived from the selected BIBD. All the ),,,( tpkv  potential 

lotto designs that did not satisfy the conditions 

,, kvpv  3 tk were screened out. A complete generation 

(that is the intersection of any set of ),( pvC  with ),( kvC in at 

least 3t  elements) of each of the qualifying potential LDs 

was made using a Microsoft Office Access database computer 

program which was adapted from Rosen (1991).  Any of the p -

sets can be used for the generation but the first p -set was used 

in this work. The potential LDs generated were subjected to tests 

of compliance to BIBDs. This was achieved by observing 

whether each of them satisfied the necessary conditions for the 

existence of a BIBD.   

A MATLAB program was used to generate a family of 

)1,,1,1,1(   krrbv  BIBDs for 

)82,3,,,104(  rbv . The BIBDs in this family were 

finally investigated for the unreduced property since all k -sets 

were involved in the complete generation process.  

To illustrate the procedure that we just described for the 

)4,3,10,20,6( BIBD, we have 4,3,10  kr . Furthermore, 

suppose that 5p  and 3t . Then, Li’s condition 
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would be expressed as 

4
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which simplifies to 4025  . Since 4025  , the 

)4,3,10,20,6( BIBD qualified to be a potential LD with lotto 

parameters )3,5,3,6(),,,( tpkv   where  

 v is the total number of elements in the BIBD and is 

equivalent to the v numbers available for that particular lottery 

format 

 k is the block size of the BIBD and is equivalent to the k 

numbers a player chooses out of the v numbers available in the 

lottery game 

 p is a positive integer and it represents the winning numbers 

selected by organizers of a lottery game 

 t is a positive integer and it is the numbers in k that match the 

winning numbers p. 

We needed to generate all possible combinations 
CCk

v
3

6  and 

CC p
v

5
6  which are 

          

654642651431

653542641621

643632541521

543532631421

652432531321           

and 

                             

65432

65431

65421

65321

64321

54321  

 

respectively. If the p-set = 1 2 3 4 5 is selected as the winning 

number, then using 3t , the intersection when the  p-set = 1 2 

3 4 5 is compared with 
CCk

v
3

6 is the set of blocks 

543532541431421

542432531521321
 

 

which is a )3,3,6,10,5( BIBD.           

IV. Results and Discussion 

Table I shows the potential LDs obtained from the 

implementation of Li’s condition for the )4,3,10,20,6( BIBD. 

However, only those in the first three rows of the table satisfy 

the imposed constraints kvpv  , , 3 tk . Hence, the 

)4,3,10,20,6( BIBD was found to qualify as 

)3,5,3,6(),3,4,3,6( LDLD and )3,6,3,6(LD . Tables II, III and IV 

show the complete generation of each of these LDs. From the 

properties of the different blocks in these tables, it is observed 

that all the LDs satisfied the necessary conditions for BIBDs, 

hence BIBDs can be obtained from them: the )4,3,10,20,6( BIBD  

led to the production of )2,3,3,4,4( , )3,3,6,10,5(  and 

)4,3,10,20,6( BIBDs and these can be generalized as 

)1,,1,1,1(   krrbv  where ),,,,( krbv  are the 

parameters of the )2,3,3,4,4(  BIBD.  A family of BIBDs with 

this new set of parameters for )82,3,,,104(  rbv   

deduced from this generalization is presented in Table V. All the 

BIBDs in this family are unreduced BIBDs since each of them 

satisfied the conditions ),( kvCb  , )1,1(  kvCr and 

)2,2(  kvC . This is presented in Table VI.                                                                    

V. Conclusion 

In this paper, we constructed BIBDs from the parent 

)4,3,10,20,6( BIBD using potential LDs. The LDs were 

constrained on kvpv  , , },min{ pkt  and tk  . Three 

potential LDs were produced and a computer program was used 

to completely generate the potential LDs. The three LDs yielded 

the )2,3,3,4,4( , )3,3,6,10,5(  and )4,3,10,20,6( BIBDs. These 

BIBDs were generalized as )1,,1,1,1(   krrbv   

where ),,,,( krbv are the parameters of the first BIBD 

produced. A MATLAB program was written to generate a 

family of BIBDs for  )82,3,,,104(  rbv  using this 

generalization. All the BIBDs in this family are unreduced 

designs.  
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 Table I: Potential LDs from the (6, 20, 10, 3, 4) BIBD 

v k p t 

*  6 3 4 3 

*  6 3 5 3 

*  6 3 6 3 

6 3 7 3 

6 3 7 4 

6 3 8 3 

6 3 8 4 

6 3 9 3 

6 3 9 4 

6 3 9 5 

6 3 10 3 

6 3 10 4 

6 3 10 5 

6 3 11 3 

6 3 11 4 

6 3 11 5 

          3,,*  tkkvpvsatisfy  

Table II: Blocks Generated from LD(6, 3, 4, 3) for p-set=1 2 3 4 and t=3 

1 2 3 

1 2 4 

1 3 4 

2 3 4 

 

Table III: Blocks Generated from LD(6, 3, 5, 3) for p-set=1 2 3 4 5 and t=3 

1 2 3 

1 2 4 

1 2 5 

1 3 4 

1 3 5 

1 4 5 

2 3 4 

2 3 5 

2 4 5 

3 4 5 
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Table IV: Blocks Generated from LD(6, 3, 6, 3) for p-set= 1 2 3 4 5 6 and t=3 

1 2 3 

1 2 4 

1 2 5 

1 2 6 

1 3 4 

1 3 5 

1 3 6 

1 4 5 

1 4 6 

1 5 6 

2 3 4 

2 3 5 

2 3 6 

2 4 5 

2 4 6 

2 5 6 

3 4 5 

3 4 6 

3 5 6 

4 5 6 

 

Table V: Family of 8)λr,3,2b,10,v(4   BIBD Constructed 

v b r k   

4 4 3 3 2 

5 10 6 3 3 

6 20 10 3 4 

7 35 15 3 5 

8 56 21 3 6 

9 84 28 3 7 

10 120 36 3 8 

 

 

Table VI: Unreduced property of the family of BIBDs generated 
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2  
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23
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5  

)6,3,21,56,8(  
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8
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