
Dilip Kumar Jaiswal/ Elixir Geoscience 49 (2012) 10137-10140 
 

10137 

Introduction  

Deterministic groundwater models generally require the 

solution of partial differential equations. Exact solutions can be 

obtained analytically and numerical methods yield approximate 

solutions to the governing equation through the discretisation of 

space and time, but analytical models require that the parameters 

and boundaries be highly idealized. Some deterministic models 

treat the properties of porous media as lumped parameters, but 

this precludes the representation of heterogeneous hydraulic 

properties in the model. Heterogeneity, is characteristic of all 

geologic systems and is now recognized as playing a key role in 

influencing solute transport and groundwater flow. Transport 

equation (advective-dispersive equation) has many applications 

like groundwater hydrology, chemical engineering bio-sciences, 

environmental sciences and petroleum engineering. Flow 

velocities and hydrodynamic dispersion coefficients are key 

parameters for description of fluid and solute transport in porous 

media. Transport of pollutant degraded groundwater quality. 

Degradation of groundwater quality can be caused by either 

point sources (septic tank, garbage disposal sides, cemeteries, 

mine spoils and oil spoils) or by line sources of poor quality 

water (like seepage from polluted streams or intrusion of salt 

water, from oceans). Some exhaustive list of works are related 

with solute transport, like Bastian and Lapidus (1956), Ogata 

(1970), Marino (1974), Al-Niami and Rushton (1977). Most of 

these works take into account the effects due to adsorption, first 

order decay, zero order production. Coming nearer to real 

problems, Shamir and Harleman (1967), Lin (1977), considered 

the layered porous media and non linear adsorption, Banks and 

Jerasate (1962), Hunt (1978), Kumar (1983) considered the 

unsteady/non-uniform porous media flow.  

Leij et al.(1993) presented analytical solutions for non-

equilibrium solute transport in semi-infinite porous media during 

steady unidirectional flow. The transport equation incorporates 

terms accounting for advections, dispersion, zero-order 

production, and first-order decay. van Kooten (1995) presented a 

method for predicting the advective-dispersive transport of a 

contaminant towards a well in a confined aquifer. Due to 

(macro-) dispersion, particles carry out random walks through 

the porous formation. Logan and Zlotnik (1995) obtained 

solutions of the convection–diffusion equation with decay for 

periodic boundary conditions on a semi-infinite domain. The 

boundary conditions take the form of a periodic concentration or 

a periodic flux, and a transformation is obtained that relates the 

solutions of the two, pure boundary value problems. The 

dispersion coefficient tends to increase with the distance of 

solute concentration observations, this is generally mentioned as 

the scale effect on the dispersion process (Pachepsky et al.; 

2000). Su et al. (2005) presented an analytical solution to 

advection-dispersion equation with spatially and temporally 

varying dispersion coefficient for predicting solute transport in a 

steady, saturated sub-surface flow through homogeneous porous 

media. Smedt (2006) presented analytical solutions for solute 

transport in rivers including the effects of transient storage and 

first order decay. Jaiswal et al. (2009) and Kumar et al. (2010) 

obtained analytical solutions for temporally (assumptions are 

based on the observations of Matheron and deMarsily;1980) and 

spatially dependent solute dispersion in one dimensional semi-

infinite media.  

Water velocity through a pore depends upon its size. This 

variation in pore velocity causes some contaminant to move 

faster and some contaminant to move slower. This variation in 

contaminant movement (due to variation in pore water velocity) 

is called hydrodynamic dispersion. In the present study, one-

dimensional advective–dispersive equation with variable 

coefficient is solved with decay term. Constant dispersion 

coefficient is considered along exponentially function of space 

flow velocity. Point source is assumed varying pulse type nature 

in semi-infinite medium in an initially not solute free domain i.e. 

before introduction of input source the domain is already 

contaminated.  

Mathematical Model and Solution 

 There are many parameters which cause the subsurface 

transport of contaminants. The mechanisms of transport of 
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contaminants in groundwater include advection, dispersion, 

adsorption and decay, chemical reaction and ion exchange, 

biological processes. Dispersion is the combined effects of two 

mass transport processes in porous media namely mechanical 

dispersion and molecular diffusion and advection represents the 

movement of a contaminant with the bulk fluid according to the 

seepage velocity in pore space. One dimensional advective-

dispersive equation may be written as 

( , ) ( , )
C C

D x t u x t C
t x x

   
  

   

                       (1) 

where ( , )D x t  is solute dispersion and it is called dispersion 

coefficient if it is uniform/ steady, and ( , )u x t  is the flow 

velocity of the medium and C  is the solute concentration at 

position x   and time t . It is described by principal of 

conservation of mass and Fick’s law of diffusion. If the medium 

is porous, velocity of the medium satisfies the Darcy law. In the 

limit of very low fluid velocity, dispersion is determined solely 

by molecular diffusion and at high fluid velocities, dispersion is 

purely ‘fluid mechanical’. 

 There are three possibilities for dispersion and velocity 

occurs in which dispersion is constant with variable velocity, 

variable dispersion with uniform velocity and lastly both are 

variable functions. The mass transport phenomenon occurs 

specially due to heterogeneities in the medium that cause 

variation in flow velocities and in flow path, which is referred as 

mechanical dispersion. Molecular diffusion is caused by the 

inhomogeneous distribution of the pollutant concentration. 

Analytical solution of hydrodynamic dispersion problems, even 

in one dimensional may be obtained in limited cases, so 

numerical solutions of the problems applicable to realistic 

engineering have been obtained using finite difference and finite 

element method. But Yates (1990, 1992) developed an analytical 

solution for describing the transport of dissolved substances in 

heterogeneous porous media with a distance-dependent 

dispersion relationship. In present discussion, first possibility 

i.e., constant dispersion with variable velocity take into account.  

 Let   0,D x t D  and   0, exp( )u x t u ax   and first 

order decay term which is directly proportional to flow velocity 

i.e.,   0, exp( )x t ax    where 
0 0au   in Eq. (1). The 

parameter a  is inhomogeneity factor and have dimension of 

inverse of space variable. Inhomogeneity of the medium was 

addressed by dividing the medium into stratified layers and 

variation in the flow velocity causes by the inhomogeneity of the 

medium. The  

0 0 0exp( ) exp( )
C C

D u ax C ax C
t x x


   

     
   

             (2) 

where 
0D , 

0u  and 
0

 are constants.  

Let us introduce a new independent variable X  by following 

transformation  

logx Xm                                                                   (3) 

Eq. (2) becomes, 
2

2 1

0 0 02

aC C C C
D X D X u X

t X XX

    
  

  

                           (4) 

 The thickness between two layers is so small and transport 

properties being homogeneous in each layer and differing from 

other layer. The range of inhomogeneity factor in following 

discussion taken to be account as 0 0.01a   for each layer 

and after this range the transport properties are changed. There is 

no any fixed range of the inhomogeneity factor for the 

stratification. It is depend upon structure of medium. Pickens 

and Grisak (1981) supposed this factor is 0.05 0.1a   but 

Yates (1990) considered the range of inhomogeneity factor is 

0 2a  . Let the inhomogeneity factor is 0.01a  . 

Therefore, 1aX    becomes 0.01 1 0.99X X   . Now, if 0.99 is 

considered approximately 1.0. The partial differential equation 

(4) reduces into that with variable coefficients as,  

 2
2

0 0 02
( )

C C C
D X u D X

t XX

  
  

 

                       (5) 

Again, introducing a new independent variable Z  and then a 

dependent variable K  by the following transformations as, 

 logZ X                                                          (6a) 

and  

 2

0 0

0 0

( , ) ( , )exp
2 4

U U
C Z t K Z t Z t

D D

 
  

 

,               (6b) 

 where 
0 0 0( )U u D   

The partial differential equation (5) becomes, 

  2

0 2

K K
D

t Z

 


 

                                        (7) 

An input concentration is assumed at the origin of the domain. It 

may be either uniform or varying pulse type. But, due to human 

and other responsible activities, input source condition may not 

be uniform. In the presence of the source of pollution, the input 

concentration may be of increasing nature. As soon as the source 

of pollution is eliminated, the input concentration starts 

decreasing instead of becoming zero. Uniform and varying pulse 

type input source condition are written as, 

  0
,

0

C
C x t


 


 , 
0

0

0 t t

t t

 



, 0x                                        (8) 

  0 0
( , ) , ( , )

0

u CC
u x t C x t D x t

x


  

 

, 
0

0

0 t t

t t

 



, 0x        (9) 

respectively. But, varying pulse type input source is more 

realistic condition, because if we considered dispersion 

coefficient 0D   and veloity 
0( , )u x t u  in Eq. (9), we can 

get condition (8). So third-type boundary condition (9) taken 

into account in the present study. 

Let us assume, the domain is initially not solute free, it 

means before introduction of input source the domain is already 

polluted. The second boundary condition is considered of flux 

type of homogeneous nature. Thus, initial and second boundary 

condition is as follows, 

 , iC x t C  , 0t  , 0x                                             (10) 

 ,
0

C x t

x






, 0t  , x                                               (11) 

The initial and boundary conditions written in terms of new 

dependent and independent variables as, 

  0

0

, exp
2

i

U
K Z t C Z

D

 
  

 

,   0Z  ,  0t                         (12) 
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 ,
0

K Z t

Z






 , 0t   , Z                                              (14) 

Applying Laplace transformation on diffusion equation (7) and 

initial and boundary conditions (12)-(14), the solution of 

advective-dispersive solute transport may be written in terms of 

( , )C x t  as,   

 0( , ) ( , )i iC x t C C C A x t   ,
00 t t                           (15a) 

 0 0 0( , ) ( , ) ( , )i iC x t C C C A x t C A x t t     ,
0t t        (15b) 

where 2
2

0 0 0

0 00

( )1
( , ) exp

2 2

x U t U t x U t
A x t erfc

D D tD t 

       
             

 

2

0 0 0 0

0 0 0 0

1
1 exp

2 2

U x U t U x x U t
erfc

D D D D t

     
              

, 

and 
0 0 0( )U u D  .                          

Particular cases 

(i) The solution of advective-dispersive solute transport for 

uniform pulse type input source concentration may be obtained 

to taking condition (8) in the place of (9) and proceed further. 

The solution for uniform pulse type input source concentration 

is, 

 0( , ) ( , )i iC x t C C C B x t   , 
00 t t                     (16a) 

 0 0 0( , ) ( , ) ( , )i iC x t C C C B x t C B x t t     ,
0t t      (16b) 

where 
0 0 0

00 0

1
( , ) exp

2 2 2

x U t U x x U t
B x t erfc erfc

DD t D t

         
      

         

, 

and
0 0 0( )U u D  . 

(ii) If the inhomogeneity factor a  is zero, then the partial 

differential equation (2) reduces into constant coefficients 

without first order decay term as,  

  
0 0

C C
D u C

t x x

   
  

   

                      (17) 

Thus the analytical solutions of advective-dispersive solute 

transport equation with constant coefficients for same initial and 

boundary conditions (reported by van Genuchten and Alves; 

1982) are same as above obtained solutions only differ by 

0 0 U u .  
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Fig. 1. Distribution of solute for varying pulse type input in 

presence of source concentration 

Result and Discussions 

In some cases, such as where there is a fixed amount of 

radioactive decay material, the assumption of boundary 

condition (9) may be reasonable. However the source of solute 

concentration is much more complicated and varies with time 

irregularly. Examples of such sources are distribution of solute 

in aquifers and the distribution of the atmospheric chemical 

concentration.  
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Fig. 2. Distribution of solute for varying pulse type input in 

absence of source concentration 
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Fig. 3. Distribution of solute for uniform pulse type input in 

presence of source concentration 
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Fig. 4. Distribution of solute for uniform pulse type input in 

absence of source concentration 

The concentration values are evaluated from the analytical 

solution described by Eq. (15a, b) in the finite domain 

0 1x  (km) of semi-infinite medium. The other input values 

are considered as: 0 1.0C  , 0.1iC  , 
0D 1.28 (km

2
/yr), 

0 1.69u  (km/yr). Fig. (1) and (2) are drawn at different time 

0.4t  , 1.0, 1.6 in time domain 
0t t  and 2.8t  , 3.4, 4.0 in 

time domain 
0t t , respectively. The time of elimination of 

source concentration is 
0 1.8t  (yr). The distribution of 

concentration in both figures is higher for large time i.e., time 

increases then concentration increases at particular position. The 

behavior of solute transport for uniform pulse type input source 

for analytical solution (16a, b) are shown by Figs. (3) and (4). It 

is observed that from figures, distribution of solute for constant 
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dispersion and exponentially space variable flow velocity is 

quite different from constant dispersion with uniform flow 

velocity. The concentration is decrease with increasing time at 

different time in time domain 
0t t in Fig. (3), while in time 

domain 
0t t , solute concentration is increase with increasing 

time. The nature of Figs. (3) and (4) is reverse of advective-

dispersive equation with constant coefficients. 

The advective-dispersive equation describing groundwater 

flow and transport can be solved mathematically using either 

analytical solutions or numerical solutions. The analytical 

solution can be used to characterize differences in the transport 

process relative to the classical convection-dispersion equation 

which assumes that the hydrodynamic dispersion in the porous 

medium remains constant.  With dispersion and convection, 

there will be some early appearance of contaminant and it will 

take long time to displace all the contaminant from the medium. 

Higher the degradation rate, less is the total amount of 

contaminant that will appear in geological medium 

(groundwater). Higher is the degradation rate less time it will 

take to displace all contaminant out of the medium.  

Conclusion 

 In the present study, one-dimensional advective–dispersive 

equation with constant dispersion and variable velocity 

coefficient is solved through inhomogeneous semi-infinite 

porous medium with first order decay term. Varying pulse type 

point source is considered in an initially not solute free domain. 

Pulse type input condition is useful to rehabilitation of time. 

Inhomogeneity or variability in aquifer properties is 

characteristic of all geologic systems and is now recognized as 

playing a key role in influencing groundwater flow and solute 

transport. 
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