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Introduction  

Among the other mechanical components, researchers pay 

great attention to the rolling element bearings due to their 

unquestionable industrial importance. Different techniques are 

employed in the studies related to the rolling element bearings. 

Brian and Robert (2000) have discussed in their paper about the 

vibrations induced by a defect in the inner raceway of bearing. 

In order to obtain the experimental data the outer ring of the 

bearing is modified. A sensor is integrated into the outer 

raceway of the bearing and it is interfaced with a computer to 

acquire the data.  They have developed a finite element model 

and compared the results obtained from the experimental setup. 

Zeki Kiral and Hira Karagulle (2003) have mentioned basically 

three different ways of loading in machinery: constant 

amplitude–constant direction (gearing forces), constant 

amplitude–varying direction (unbalanced forces) and varying 

amplitude–varying direction (joint forces). The second form is 

considered in the previous sections. The third type of loading,   

varying amplitude–varying direction is also frequently 

encountered in applications and hence is analyzed with regard to 

its effect on the defect detection methods. David Brie (2000) 

stated the effects of load distribution on bearings and has 

obtained experimental data for a single-point defect on the inner 

race of the driving shaft ball bearing. The two main reasons 

making the bearing vibration signal analysis difficult are the 

effect of the load distribution and the approximate knowledge of 

the contact angle. He has concluded that two main facts result 

from the time-frequency analysis. First one deals with the 

periodicity of the impulse train. The second point is mainly 

concerned with the vibration transmission through the bearing. 

Su and Lin (1992) have proposed a vibration model considering 

a bearing assembly with the defect-induced pulse train as the 

system input and the bearing vibration at the outer race or 

bearing housing as the system output. It is assumed that the 

system is a linear one, with time-invariant coefficients. Radivoje 

and Tatjana (2002) have analyzed that the internal geometry is 

changed due to wear. Consequently, diameters of balls and inner 

raceway decrease, and diameter of outer ring raceway increases. 

With change of these dimensions the internal radial clearance of 

the bearing increases, owing to what the load distribution 

between rolling elements becomes more unequal. The 

mathematical relation between rolling bearing life and dynamic 

load rating, external load, linear wear rate, total number of 

rolling elements is established in this paper. Zeki Kýral and Hira 

Karagulle (2006) in their paper have proposed a method based 

on the finite element vibration analysis for defect detection in 

rolling element bearings with single or multiple defects on 

different components of the bearing structure using the time and 

frequency domain parameters. Gunhee Jang and Seong-Weon 

Jeong (2004) have presented an analytical model to investigate 

vibration due to ball bearing waviness in a rotating system 

supported by two or more ball bearings. This research presents 

the principal frequencies, their harmonics and the sideband 

frequencies resulting from the waviness of rolling elements of 

ball bearing. Choudhury and Tandon (1998) have discussed 

about the fundamental frequencies generated by rolling bearings 

with simple formulae. They have stated that these frequencies 

cover a wide range and can interact to give very complex 

signals. This is often further complicated by the presence of 

other sources of mechanical, structural or electromechanical 

vibration on the equipment. The bearing equations assume that 

there is no sliding and that the rolling elements roll over the 

raceway surfaces. Zeki Kiral and Hira Karagulle (2003) have 

analyzed the vibration data and different parameters such as 

Root Mean Square (RMS), Crest Factor (CF) and kurtosis are 

assessed with regard to their effectiveness in the detection of 

bearing condition. Garcia et al (2007) have used Discrete 

Wavelet Transform (DWT) for feature extraction. The extracted 
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features from the DWT are used as inputs in a neural network 

for classification purposes. Nalinaksh et al (2000) have 

described a method to identify faults in rotating machinery using 

neural networks. Hajnayeb et al (2008) in their paper have 

improved the performance and speed of artificial neural network 

based ball-bearing fault detection expert systems by eliminating 

unimportant inputs and changing the ANN structure. An 

algorithm is used to select the best subset of features to boost the 

success of detecting healthy and faulty ball. 

Existing literatures and methodologies are available only for 

bearing vibration monitoring using time and frequency spectrum 

data. Several works has been carried out in the field of condition 

monitoring using Artificial Neural Networks. Also they have 

implemented time and frequency domain in neural nets. 

However the usage of time domain signal features in bearing 

vibration analysis is still obscure. The present work considers 

the features extracted from the time domain signals and the 

classification is done based on those features. This is done to 

classify a normal and defective bearing with the help of time 

domain features. 

1. Problem formulation and Methodology 

The localized defect and distributed defect are formed in bearing 

by wear, flaking, smearing, corrosion, rough treatment during 

assembly in housing, radial loads acting on the bearing. Study of 

bearing defects is done by the following ways 

 A defect can be introduced into the bearing by spark erosion, 

scratches indentation, etc. and the bearing‟s vibration response 

can be measured. 

 The bearing housing can be used for measuring shock waves 

when defects pass through the testing region. 

 The fault frequencies of the bearing under test can be 

measured using a vibration analyzer.  

 The theoretical fault frequency values of a defective bearing 

can be calculated using the fault frequency formulae.   

 With time wave form and frequency spectrum analysis the 

nature and the amplitude of the defect can be identified.   

The time waveform and frequency spectrum in this work is 

done as an initial process for finding the defect and its intensity. 

Artificial neural networks (ANN) are used for several 

applications in the field of Engineering. Here, it is developed for 

condition monitoring the bearing vibration levels. Condition 

monitoring is of two phase,  first to identify whether the bearing 

is defective or normal and second one is to  identify the intensity 

of the defect. 

The neural network system focuses on the above said 

objectives. The two most popular networks namely Radial Basis 

Function Network (RBFN) and Probabilistic Neural Network 

(PNN) for classification are used in this work. In the present 

work, the PNNs were created, trained and tested using 

MATLAB. 

Experimental Setup  

The experimental setup shown in figure-1, comprises of 

lathe fitted with specially fabricated arrangement to hold a 

circular plate. Lathe is used as a media since it is possible to 

achieve variable speed.  The fabricated arrangement consists of 

circular plate for holding the outer race of the bearing. This 

circular plate is rotated by three rods bolted to the face plate of 

the lathe head stock. The shaft is held stationary by holding its 

one end with a non-revolving centre at the head stock and the 

other end with the tailstock‟s centre.  A tapered roller bearing 

(535/532A) was used for each test. 

The location of the sensor plays a significant role in detecting an 

impulse from the defect. Therefore the signals are measured by 

placing the accelerometer in three positions Horizontal, vertical 

and axial directions. The test bearings were loaded in the setup 

and the system was run for 20 minutes prior to measurement. 

This pre-run heats up the bearing components and then the 

vibration response of the system was measured. A dual channel 

vibration analyzer is used for measuring the system‟s vibration 

response.  The time and frequency domain signals were 

measured for the system at three speeds for four different 

bearings. 
 

Figure.1 Experimental Setup with Test Bearing and 

Accelerometer 

The time domain and frequency domain analyses are widely 

accepted for detecting malfunctions in bearings. The frequency 

domain spectrum is more useful in identifying the exact nature 

of defect in the bearings and the time spectrum is used for 

identifying the intensity of the defect. The experimental results 

have to be compared with that of the theoretical characteristic 

frequencies calculated for a defective bearing.  The fault 

frequencies of a bearing relates to the elements (rolling 

elements, inner race, outer race, cage) in the bearing.  

The experimental data is collected for four bearings at three 

different speeds. The sensor is located at three different 

positions for each bearing. Both time domain and frequency 

domain signals were measured. Thus the data was three time 

spectrums and three frequency spectrums for each speed for a 

bearing. The entire data set comprised of 72 (6 x 3 x 4) data. The 

presence of a defect can be established with the frequency 

spectrum but the intensity of the defect cannot be uniquely 

defined with the RMS value alone. Hence the time spectrum 

features were extracted. The following are the seven features 

which are used to define the intensity of the defects in a bearing, 

Maximum value, Overall RMS value, Mean Value, Variant, 

Kurtosis, Crest factor and Clearance factor. The time domain 

signal was comprised of 8192 samples and extracting these 

features from a huge data set was difficult. To overcome this 

difficulty the 8192 samples were split into 32 bins each 

containing 256 samples. The entire process of splitting and 

evaluating the seven features was coded in MATLAB.  From 

these seven features the most suitable features for explaining the 

intensity of the defect is discussed. 

Neural Networks for Classification 

The pattern classification theory has been a key factor in 

fault diagnosis methods development. Some classification 

methods for process monitoring use the relationship between a 

set of patterns and fault types without modelling the internal 

processes or structure of an explicit way. Nowadays, the ANN‟s 

constitute the most popular method. The human learning process 

may be partially automated with ANN‟s, which can be 

configured for a specific application, such as pattern recognition 

or data classification, through a learning process. An artificial 
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neuron is composed for some connections, which receive and 

transfer information, also there is a net function designed for 

collect all information (weights x inputs + bias) and send it to 

the transfer function, which process it and produces an output. 

The process is illustrated in Figure 2. There are two mean phases 

in the ANN‟s application: the learning or training phase and the 

testing phase. The learning phase is critical because it 

determines the type of future tasks able to solve. Once trained 

the network, the testing phase is followed, in which the 

representative features of the inputs are processed. After 

calculated the weights of the network, the values of the last layer 

neurons are compared with the expected output to verify the 

suitability of the design. 
 

Figure 2  Neural Network Architecture 

For the above the feature extracted from the time signal. 

The time domain signal was comprised of 8192 samples and 

extracting these features from a huge data set was difficult. To 

overcome this difficulty the 8192 samples were split into 32 bins 

each containing 256 samples. Therefore the final data set 

obtained for each of the seven parameters was 1152. That is, the 

Final data set, 1152 = 32 (Bins) x 3(Speeds) x 3(Sensor 

locations) x 4(Bearings) 

The classification was done to sort the normal bearing from 

the defective one. Two networks were tested for this 

classification purpose. From the above said data set 864(24 x 3 x 

3 x 4) data were used for training the network and 288(8 x 3 x 3 

x 4) was used for testing the network. The two most popular 

networks namely Radial Basis Function Network (RBFN) and 

Probabilistic Neural Network (PNN) for classification are used 

in this work. In the present work, the PNNs were created, trained 

and tested using MATLAB.  

Results and discussion  

The first step in condition monitoring is to identify whether 

the bearing is defective or normal. Though the experimental 

results are enough for the above said purpose, a pattern 

classification system which can act involuntarily has to be 

inherited for condition monitoring. To fulfill this purpose 

artificial neural network were used in this project for 

classification.  

The classification of bearing based on its condition was 

done using the features extracted from the time domain signals. 

However, the functioning of neural networks is effective on 

using large number of data sets.  For this purpose all the time 

domain features were used. 

Inputs to the Neural Network 

The inputs to neural network are the features extracted from 

the time domain signals. The table 2 lists the time domain 

features for bearing 1 at a particular speed for a sensor position. 

The formula for calculating these features are given in appendix 

1. Similarly, the features were calculated for three speeds and 

three sensor locations. 

 

 

Targets for the Classification Network 

The table 1 shows the targets assigned to the neural network 

input parameters for normal and defective bearing. The targets 

for the classifier network is set as „1‟ for a normal bearing and 

„2‟ defective bearing. The parameters were assigned the targets 

depending upon the condition of the bearing. The neural 

network was done in MATLAB environment with two networks 

(RBFN and PNN). The code for training and testing the network 

of an axial time waveform is given in appendix 2. The selection 

of these two networks was based on the previous literatures and 

their functioning efficiency as classifiers. The two networks 

were tested and the results are discussed in the next section. 

Neural Network Classification Results 

The parameters listed in the previous section were used for 

classification purpose with the corresponding targets mentioned 

previously. The two networks used here were RBFN and PNN. 

Both these networks were tested by varying the spread value. 

Also the number of input parameters (extracted time features) 

used for testing were varied and those results are also discussed. 

The test results in table 3 show that PNN as the most successful 

network among the two. The tests were conducted for several 

other spread values and the most suitable spread value which has 

the highest success rate was found to be 0.1. The corresponding 

success rates are discussed in the table. The features used in 

neural network vary from single to all the seven features. The 

results show higher success rate on using single feature whereas 

it was minimum when all the seven parameters were used. The 

significant aspect to be noted in the results table is the test No. 

14. The features numbered 2, 5, 6 (i.e. Crest factor, RMS value, 

Variant) showed 100% test success in PNN. This due to the fact 

that these features had values which do no correlate with each 

other. Also, there were considerable variations in their values in 

each data set. This resulted in better training of the network and 

ultimately better test results were achieved.  

Conclusion 

The results discussed in the previous chapters arrive at three 

conclusions. First, the presence of a defect in the bearing was 

discussed. This was done with the help of time and frequency 

spectrum. The element in which the defect is present was 

examined with the help of frequency spectrum. The defect 

intensity was also examined using time spectrum. However, the 

unclear nature of time analysis led to feature extraction. 

Next, the features extracted cleared the doubts in obtaining 

intensity from the time spectrum. From the result the most 

defective to the least defective bearing was classified. Thus the 

feature extraction proves to be good indicator of defect intensity. 

Finally, neural networks were used to classify the bearing‟s 

condition. The classification results showed whether the bearing 

is normal or defective. The output from the neural network can 

be used for online condition monitoring. 
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Table 1 Targets for Neural Network 

Bearing No. 
TARGETS FOR INPUT  PARAMETERS 

Clearance Crest Factor Kurtosis Maximum Value Mean Value RMS Value Variant 

1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 

3 2 2 2 2 2 2 2 

4 2 2 2 2 2 2 2 

 
Table 2 Inputs to the Neural Network 

Sl. no Clearance Crest factor Kurtosis Maximum value RMS value Variant Mean value 

1 3.93377 2.338364 3.621464 5.584 1.933973 5.70251 3.740253 

2 2.386514 1.057098 2.599332 5.5096 2.74948 27.1649 7.559638 

3 3.426314 1.980926 3.378461 4.5603 1.883703 5.29968 3.548336 

4 2.313875 0.999157 3.121539 5.7888 2.884412 33.5667 8.319833 

5 3.06103 2.173668 2.683456 3.6482 1.661341 2.81689 2.760054 

6 1.960849 0.864245 3.158704 5.3793 2.99581 38.7415 8.974875 

7 3.46506 2.249549 2.998557 4.3369 1.755826 3.71678 3.082925 

8 2.361699 1.03534 3.393918 5.9563 2.881427 33.0969 8.302619 

9 3.42885 1.840102 2.421499 4.3369 1.890963 5.55488 3.575741 

10 2.333169 1.067927 3.750883 5.9563 2.852079 31.1078 8.134356 

11 3.480162 1.71025 2.758907 5.007 2.079931 8.57108 4.326111 

12 2.605358 1.097561 2.245671 5.8818 2.768671 28.7185 7.665539 

13 3.85092 1.532663 2.935272 5.9191 2.325888 14.9148 5.409756 

14 3.97627 1.686102 5.281759 8.5994 2.699366 26.0116 7.286579 

15 2.981582 1.322989 2.418439 5.0815 2.365257 14.7527 5.594442 

16 2.98309 1.291917 2.606505 5.7888 2.543212 20.0774 6.467925 

17 3.005414 1.307681 2.947156 6.161 2.604671 22.1972 6.78431 

18 2.578081 1.462321 2.541811 4.4858 2.194113 9.41010 4.814133 

19 2.451681 0.94324 2.381476 5.3607 2.821149 32.2997 7.958883 

20 3.21288 1.732918 2.753921 4.9326 2.090813 8.10206 4.371499 

21 3.079505 1.221469 3.23415 7.3337 2.905034 36.0480 8.439223 

22 3.662547 2.170959 3.225435 5.2676 1.95207 5.88738 3.810578 

23 2.185821 0.923792 2.964371 5.6213 2.94979 37.0275 8.701262 

24 2.691393 1.720513 2.229066 3.5924 1.834668 4.35966 3.366007 

25 2.424856 1.027971 2.851432 6.5705 3.017898 40.8540 9.107708 

26 3.832714 2.49058 3.464152 5.0442 1.804963 4.10188 3.257892 

27 2.354052 1.007264 3.564647 6.2727 2.98578 38.7813 8.914882 

28 3.774554 2.285491 3.587189 5.2118 1.895491 5.20015 3.592887 

29 2.138669 0.936905 2.992746 5.6585 2.948109 36.4763 8.691345 

30 3.45407 1.915507 3.137169 5.007 2.000942 6.83262 4.003768 

31 2.266324 0.950691 2.382048 5.5468 2.883713 34.0412 8.315801 

32 3.707334 1.833419 3.503719 6.161 2.238458 11.2922 5.010694 
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Table 5.8 Neural Network Classification Results 

Test No Features Network Success Rate 

1 1 
RBFN 92% 

PNN 100% 

2 2 
RBFN 92% 

PNN 100% 

3 3 
RBFN 92% 

PNN 100% 

4 4 
RBFN 92% 

PNN 100% 

5 5 
RBFN 92% 

PNN 100% 

6 6 
RBFN 92% 

PNN 100% 

7 7 
RBFN 92% 

PNN 100% 

8 1, 2 
RBFN 92% 

PNN 100% 

9 2, 5 
RBFN 92% 

PNN 100% 

10 2, 6 
RBFN 92% 

PNN 100% 

11 5, 6 
RBFN 92% 

PNN 100% 

12 1, 2, 3 
RBFN 83% 

PNN 92% 

13 1, 3, 5 
RBFN 83% 

PNN 92% 

14 2, 5, 6 
RBFN 92% 

PNN 100% 

15 5, 6, 7 
RBFN 83% 

PNN 92% 

16 1, 2, 3, 4, 5, 6, 7 
RBFN 62.5% 

PNN 75% 

 


