
B Prabadevi et al./ Elixir Comp. Sci. & Engg. 49 (2012) 9876-9878

9876

Introduction

The Indian Space Research Organization (ISRO) aims at

developing an independent satellite based navigation system to

serve its user community with reliable and continuous

positioning and timing service of accuracy better than 20m over

India and a region extending about 1500km around India.

IRNSS is to be established using the combination of GEO and

GSO spacecrafts. The navigational requirements of IRNSS

comprises of providing

1. High accuracy real time position, velocity and time for

authorized users on a variety of platforms.

2. Good accuracy for a single frequency user with the help of

grid based ionosphere corrections.

3. All weather operation, 24hrs a day [1-3].

It has three segments viz. Space segment, Ground segment

and User segment. IRNSS constellation consist of seven

satellites three in Geostationary orbit (GEO) and four satellites

in Geosynchronous orbit (GSO) inclined at 29° to the equatorial

plane in the space segment. The navigational message is

received from seven satellites periodically. The Ground segment

is responsible for controlling the IRNSS satellites and generating

the navigation data. One of the important ground elements for

IRNSS is the IRNSS Range and Integrity Monitoring Station

(IRIMS). IRIMS are dedicated for continuous one way ranging

and monitoring of the IRNSS satellites [2]. The IRNSS User

community is classified as (Standard Positioning Service) SPS

user and Restricted Service (RS) users. In each, user’s

community will have single and dual frequency users. In each

receiver type, there shall be an option for single and dual

frequency operation [1, 3].

The navigational data from the satellites are received in

binary notation at IRIMS receiver which is dumped in the binary

file. The logs in the binary file are in little Endian format [3].

The extraction process is implemented in LINUX operating

system, endianness plays a major role. Endianness describes the

format in which the numbers are stored in the system memory

i.e. whether the bytes are represented from left to right or right

to left. The Internet Protocol (IP) defines big-endian as the

standard network byte order used for all numeric values, so data

should be converted into the little Endian format for accurate

data extraction.

The following tasks are accomplished:

1. Extracting logs data from the binary file using IEEE-754 [4]

decoding and union concept in c for floating point values

considering the endianness in the client process.

2. Creating a shared memory for storing the logs data received

through UDP packet in the shared memory in the server process.

Establishing the Inter Process Communication (IPC) using Posix

shared memory and Named

3. semaphore between the unrelated server and reader processes

[5].

4. The reader process access the data from the shared memory

and write it to the text files, one text file for each log.

The paper is organized as follows Proposed work in the

section 2, system architecture in section 3, Experimental results

in section 4 and conclusion in section 5.

Proposed work and system architecture

This section describes the proposed work and system

architecture with the process involved.

Proposed work

The binary file from the IRIMS receiver is given as input to

the IRNSS Log Data Extraction (ILDE). The binary file contains

the packets identified by the packet Header. Each packet

contains a log with its log header and data. The logs contain the

data received from all seven satellites for two frequency modes.

The binary file is extracted and stored in the local structures, one

structure for each log. The log structure is stored in the shared

memory structure which can be fetched and accessed by other

process by establishing the IPC between the processes using the

POSIX shared memory. The accessed logs data are written to

output file

These processes are named as

Tele:

E-mail addresses: prabadevi.boopathy@gmail.com

 © 2012 Elixir All rights reserved

Ranging station log data extraction for IRNSS project
B Prabadevi

 a
 and Neetha Tirmal

b

a
Department of Computer science, Sona College of Technology , Salem-05, India.

b
Space Navigation Group, ISAC, Bangalore-17, India.

ABSTRACT

Indian Regional Navigation Satellite System is a regional navigation system for Indian

Region This system consists of seven satellites each generating navigational message in

binary notation at stipulated time based on the data uploaded periodically from the control

segment. Each satellite sends data in two bands viz. S and L5. Ground ranging stations

receive Range and navigation data from IRNSS satellites. The data received is in

properiately packed binary format and needs to be extracted to engineering units for further

processing. The measurement data logs are received for every 1 second and the navigation

data logs are received at every 12 seconds from each satellite. Since the logs are stored in the

little Endian format and the packet headers are in big Endian format, endianness has to be

considered for accurate data extraction. These logs after decoding are sent in UDP packets

to the receiver which in turn stores the data in the shared memory for its readers. The reader

process fetches the data from the memory and stores it to a file.

 © 2012 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 20 June 2012;

Received in revised form:

23 July 2012;

Accepted: 4 August 2012;

Keywords

Satellite,

Data extraction,

Navigation,

Endianness,

Shared memory, Semaphore.

Elixir Comp. Sci. & Engg. 49 (2012) 9876-9878

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

B Prabadevi et al./ Elixir Comp. Sci. & Engg. 49 (2012) 9876-9878

9877

1. UDP Sender/Client

2. UDP Receiver/Server

3. The Reader

The UDP Sender/Client: This process extracts the logs in the

binary file with reference to the data formats comply WAAS G-

III EICD document [6]. The client performs the following

functions depicted in Fig. 1.

Fig. 1 Activities in the client Process

Each packet is preceded by the IRIMS header. It is

identified by 3 byte Hexadecimal synchronization pattern

“0XACCA1F" and length of the header is 23 bytes [7].

The IRIMS header is followed by the actual log which is

preceded by the Log Header that occupies 23 bytes. The log

header can be uniquely identified by the four byte

synchronization pattern “0xAACC4756”.All logs are protected

with a 32-bit CRC at the end of each message [6].

The log is identified by the Message id Field in the Log

Header. From the message id the corresponding log is extracted.

The extraction of the headers and logs are described in next

section. The Table 1gives the extracted logs with their message

id and functionality.

The stored structures are written to the UDP socket and then

transmitted to the UDP Receiver/client.

Table I

Logs Message id and its frequency of occurrence
 Log Message ID Frequency of occurrence

Agcinfo 4096 Every second

Almanac 4097 Whenever changed

Cardstatus 4098 Once in every 5 minutes

Corrdata 4099 Every second

Corrlocation 4100 Once in every 5 minutes

Ethstatus 4101 Once every 5 minutes

Measurementdata 4103 Every second

Rawframedata 4104 As soon as it arrives (at present 12 s)

Rxcommands 4105 Whenever changed

Satpos 4106 Every second

Timesolution 4107 Every second

Version 4108 Whenever updated

The UDP Receiver/Server

The UDP Server receives the extracted logs from the UDP

Client. The UDP sender creates a POSIX shared memory with 3

objects. The log received from the client is stored to the shared

memory object only if the particular block is empty and sets a

flag to one indicating that the data is written for the reader

process. It checks for the space in the other two blocks if the

block one is non-empty block, and returns an error in case of

non-empty blocks. The logs received and stored are controlled

by POSIX Named Semaphore [5].

The Reader:

The Reader process and UDP server are synchronized using

POSIX shared memory and Named semaphores. The reader

process locks the shared memory and checks for the log data

availability, if the object is full fetches the data sets the flag to

zero and unlocks the memory. The fetched logs data is written to

the output file.

System Architecture:

The architecture of the proposed work is depicted in the fig 2.

Fig. 2 System Architecture

The processes described in the proposed work are depicted in

the fig2.

Implementation

This section describes about the method of extraction of the

logs with different data type.

As mentioned earlier the logs are in the little Endian format

and the packet headers are in big Endian format, the packet

headers can be extracted without changing the endianness.

The little Endian format is changed to standard big Endian

by shifting operations and byte reversal. The data types of

integer type can be extracted by the byte reversal and shifting

operations. The float and double values are extracted using two

methods

1. Character arrays and Union

2. IEEE decoding

The character Arrays and Union: The float values and double

values are fetched in the character arrays and the Endian

conversion is done. This is stored to the character arrays of

union and displayed as float and double values of union for float

and double values respectively

IEEE decoding: The single and double precision floating point

values are decoded as per IEEE-754 format described in the

Tables 2 and 3.

Table 2

IEEE Single Precision Format
Fields Sign Exponent Mantissa

No of bits 1 8 23

Table 3

IEEE Double Precision Format
Fields Sign Exponent Mantissa

No of bits 1 11 52

B Prabadevi et al./ Elixir Comp. Sci. & Engg. 49 (2012) 9876-9878

9878

The steps involved in converting the Hexadecimal floating point

value to floats and doubles are as follows

1. Convert each Hex value to binary

2. Convert the binary value to Binary Scientific Notation (BSN)

i.e. Sign, Exponent, Mantissa fields

3. Convert BSN value to decimal equivalent

These are performed using functions.

Results and discussion

The system is implemented with the binary data from the

seven satellites and one reference receiver. The output text files

are validated using the actual logs data received from the IRIMS

station. The output screen shots for few sample logs are shown

in the fig 3 and 4

Fig 3. Agcinfo log with packet header and log Header

Fig. 4 Almanac log with its log data

The log summary file contains the count of number of each log

in the binary file. The sample screen shot for this binary file is

shown in the fig. 5.

Fig.5 log summary file

Comparison between two methods of implementation: the data

from the above two methods are validated manually and found

to be same values.

Conclusions and Future work

The architecture for the IRNSS Logs Data Extraction is

implemented. The IPC is established between the processes

UDP Server and the Reader Process using the POSIX shared

memory and POSIX Named semaphores. The result is validated

with actual logs data.

The future enhancement is to perform the extraction at

server process with more number of blocks and data from 17

IRIMS Stations.

References

[1] IRNSS Project Report, 2004

[2] IRNSS Ground Segment PDR Document, June 2008

[3] IRNSS Navigation Software Design Document,

Dec 2011

[4] Floating point numbers, IEEE Std. 754, 2008.

[5] Stevens W.Richard, Unix Network Programming, Vol 2, 2nd

ed., Prentice Hill, 1999.

[6] WAAS G-III External Interface Control Document, D14799,

Novtel, 23 March 2011.

[7] IRIMS Reference Receiver Interface Control Document,

2011

