
S.Munawar Ali et al./ Elixir Image Processing 50 (2012) 10536-10538 
 

10536 

Introduction 

The handling of digital images has become in recent 

decades a subject of wide spread interest in different areas such 

as medical and technological application, among others. Image 

processing is used to modify pictures to improve them 

(enhancement, restoration), extract information (analysis, 

recognition), and change their structure  (composition, image 

editing)  [1].  Images  can  be  a by optical, photographic, and 

electronic means, but image processing using digital computers 

is the mostcommon Method because digital methods are fast, 

flexible, and precise. 

We may cite lot of examples where image processing helps 

to analyze infer and make decision. The main objective of image 

processing is to improve the quality of the images for human 

interpretation or the perception of the machines independent of 

the images for human interpretation or the perception of the 

machines independently. This paper focuses in the processing 

pixel to pixel of an image and in the modification of pixel 

neighborhoods and of course the transformation can be applied 

to the whole image or only a partial region.  

 The need to process the image in real time, leading to the 

implementation level hardware, which offers parallelism, Thus 

significantly reduces the processing time, which was why 

decided to use Xilinx System Generator, a tool with graphical 

interface under the Matlab Simulink, based blocks which makes 

it very easy to handle with respect to other software for 

hardware description. In addition to offering all the tools for 

easy graphical simulation level. This article presents architecture 

of image processing application generator, which is an extension 

of Simulinkand consists of a bookstore called “Blocks Xilinx”, 

whichare mapped architectures, entities, signs, ports and 

attributes, which script file to produce synthesis in FPGAs, HDL 

simulation and development tools. The tool retains the hierarchy 

of Simulink when it is converted intoVHDL. 

Xilinx system generator based design 

It is requirement of an efficient rapid prototyping system to 

develop an environment targeting the hardware design platform. 

Although the Xilinx ISE 12.1 foundation software is not directly 

utilized, it is required due to the fact that it is running in the 

background when the System Generator blocks are implemented 

[2,3]. The System Generator environment allows for the Xilinx 

line of FPGAs to be interface directly with Simulink. In addition 

there are several cost effective development boards available on 

the market that can be utilized for the software design 

development phase. 

Xilinx System Generator (XSG) is an integrator design 

environment (IDE) for FPGAs, which uses Simulink , as a 

development environment, it is presenting in the form of block 

set. It has an integrated design flow, to move directly to the 

configuration file (*.bit) necessary for programming the FPGA. 

One of the most important features of Xilinx System Generator 

is possessed abstraction arithmetic, which is working with 

representation in fixed point with a precision arbitrary, including 

quantization and overflow. You can also perform simulation 

both as a fixed-point double precision. XSG automatically 

generates VHDL code and a draft of the ISE model being 

develop. Make hierarchical VHDL Synthesis, expansion and 

mapping hardware, in addition to generating a user constraint 

file (UCF), simulation and test bench and test vectors among 

other things. Xilinx System Generator has created primarily to 

deal with complex Digital signal processing (DSP) applications, 

but it has other application like the theme of this work [6]. The 

blocks in Xilinx System Generator operate with Boolean values 

or arbitrary values in fixed point, for a better approach to 

hardware implementation. In contrast Simulink works with 

numbers of double-precision floating point. The connection 

between blocks, Xilinx system generator and Simulink Blocks 

are gateway blocks. Figure.1 shows the broad flow design Xilinx 

System Generator. As already mentioned, you can then move to 

the configuration file to program the FPGA [5]. 

Tele:   

E-mail addresses: munawar.shaik@gmail.com       

         © 2012 Elixir All rights reserved 

FPGA based design and implementation of image architecture using Xilinx 

system generator 
                S.Munawar Ali and S. Naveen Kumar 

Department of ECE, Madina Engineering College, JNTUA University. 

ABSTRACT  

The proposed concept of Fpga based design and Implementation of image Architecture 

Using Xilinx System generator. Recent advances in synthesis tools for SIMULINK suggest a 

feasible high-level approach to algorithm implementation for embedded DSP systems. An 

efficient FPGA based hardware design for enhancement of color and grey scale images in 

image and video processing. The top model – based visual development process of 

SIMULINK facilitates host side simulation and validation, as well as synthesis of target 

specific code, furthermore, legacy code written in MATLAB or ANCI C can be reuse in 

custom blocks. However, the code generated for DSP platforms is often not very efficient. 

We are implemented the Image processing applications on FPGA it can be easily design. 

                                                                                                  © 2012 Elixir All rights reserved. 

 

ARTICLE INFO    

Article  history:  

Received: 1 August 2012; 

Received in revised form: 

31 August 2012; 

Accepted: 20 September 2012; 

 
Keywords  

Xilinx System, 

Video processing, 

Simulink, 

Image Architecture. 

 

 

Elixir Image Processing 50 (2012) 10536-10538 

Image Processing 

Available online at www.elixirpublishers.com (Elixir International Journal) 

 



S.Munawar Ali et al./ Elixir Image Processing 50 (2012) 10536-10538 
 

10537 

 
Figure .1 Design flow in Xilinx System Generator using 

matlab 

Basic Model Based Design 

The very fundamental part of our work is how to read and 

write image through Xilinx system generator with matlab 

platform. In this section, we shows figure 2 and 3the reading of 

image using XSG. We represent how image is read from the 

directory and process in simulink. All the image processing is 

doing between FPGA boundaries gateway in and gateway out. 

Image read is in Simulink is basic block for reading the image 

from the directory and gateway out the image output as per the 

block specified under Xilinx FPGA. 

 
Figure .2 Image Read operations using in XSG 

 
3(a) Input Image 

 

 

 
3(b) Output Image 

Operations Of Image Processing 

Negative of Image  

Figure 4 and 5 shows gray scale and colour image respectively 

the operation of negative of image. 

 
Figure. 4 Gray Image Negative operations 

 
5(a) Input Image    

 
5(b) Output Image



S.Munawar Ali et al./ Elixir Image Processing 50 (2012) 10536-10538 
 

10538 

 
Figure .6 Color Image Negative operations 

In this section we represents how gray scale image is 

inverted using simple block insertion which reflect image 

negative at output side, note that the block required to calculate 

negative is connected within the FPGA Gateway 888IN/OUT 

boundaries. Section C shows the color image can be extract in to 

its R-G-B components. Section D represents the required block 

to calculate color image negative, each color component is treat 

as individual signal and individual image negative blocks 

required to make all component negative and output of each is 

given to the R-G-B video viewer. The result shows in figure 6 

and 7 for two input test images 

B. Enhancement of Image 

 In this in we shows that how image can be enhanced by 

adding a constant to each pixel values.[3,4] Image filtering can 

also be done using model based design different filtering 

architecture  can be defined and Xilinx block can be created. 

Figure 8 and 9 show the simulation model with its result. 

 
Figure.7 Image Enhancement Simulation Block 

 
Figure .7 (a) Input 

 
Figure .7 (b) Output of Gray Scale Negative 

Conclusion 

Xilinx system generator is a very useful tool for developing 

computer vision algorithms. It could be described as a timely, 

advantageous option for developing in a much more comfortable 

way than that permitted by VHDL or Verilog hardware 

description languages (HDLs).The Xilinx System Generator tool 

is a new application in image processing, and offers a friendly 

environment design for the processing, because processing units 

are designed by blocks. This tool support software simulation, 

but the most important is that can synthesize in FPGAs 

hardware, with the parallelism, robust and speed, this features 

are essentials in image processing. In this paper we have 

presented the basic idea how image processing can be done in 

model based approach,we have demonstrated some of the image 

processing application which is done under SIMULINK and this 

can be implement using Xilinx System Generator (XSG). In this 

paper, we have shown how image read and enhance of image 

like, gray scale or color images, R-G-B component extraction 

from color image and color image negative very efficiently and 

we have taken two test images for the color image negative to 

give better idea. 

References 

[1]R. Gonzalaz, R. Woods, “Digital Image Processing”. New 

Jersey: Prentice-Hall 2002.                                         

[2] DSP System Generator User guide  release 12.1. 

[3] Xilinx System Generator User's  Guide, www.Xilinx.com. 

[4] Matlab website,http:// www.mathworks.com. 

[5] White paper: Using System Generator for Systematic HDL 

Design, Verification, and Validation WP283 (v1.0) January 17, 

2008 

[6]J.C.Moctezuma, S.Sanchez, R.Alvarez, A.Sánchez 

“Architecture for filtering images using Xilinx systemgenerator” 

WorldScientific Advanced Series In Electrical and 

ComputerEngineering. 

[7]  Rajan, S.Ravi, FPGA Based  Hardware Implementation of 

Image Filter with Dynamic Reconfiguration Architecture, 

International Journal of Computer Science and  Network  

Security, VOL.6 No.12, December .   

 


